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A paradigm change in energy system design tools, energy market, and energy policy is required to attain
the target levels in renewable energy integration and in minimizing pollutant emissions in power gener-
ation. Integrating non-dispatchable renewable energy sources such as solar and wind energy is vital in
this context. Distributed generation has been identified as a promising method to integrate Solar PV
(SPV) and wind energy into grid in recent literature. Distributed generation using grid-tied electrical
hubs, which consist of Internal Combustion Generator (ICG), non-dispatchable energy sources (i.e., wind
turbines and SPV panels) and energy storage for providing the electricity demand in Sri Lanka is consid-
ered in this study. A novel dispatch strategy is introduced to address the limitations in the existing meth-
ods in optimizing grid-integrated electrical hubs considering real time pricing of the electricity grid and
curtailments in grid integration. Multi-objective optimization is conducted for the system design consid-
ering grid integration level and Levelized Energy Cost (LEC) as objective functions to evaluate the poten-
tial of electrical hubs to integrate SPV and wind energy. The sensitivity of grid curtailments, energy
market, price of wind turbines and SPV panels on Pareto front is evaluated subsequently. Results from
the Pareto analysis demonstrate the potential of electrical hubs to cover more than 60% of the annual
electricity demand from SPV and wind energy considering stringent grid curtailments. Such a share from
SPV and wind energy is quite significant when compared to direct grid integration of non-dispatchable
renewable energy technologies.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Integrating renewable energy technologies into the electricity
grid is gradually getting popular due to rapid depletion of fossil
fuel resources and global concerns on greenhouse gases emissions
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Nomenclature

Sets:
t 2 T set of all hours in the year
F 2 Ƒ set of objective functions
N 2 U set of decision space variables related to system design
d 2 Ɗ set of decision space variables related to control system

(D: W [ L)
w 2W set of decision space variable related to fuzzy controller

(W � D)
l 2 L set of all decision space variables related to secondary

level controller (L � D)
s 2 S set of system components

Decision space variable
NSPV number of SPV Panels
NTY-SPV type of SPV Panel
NW number of wind turbines
NTY-W type of wind turbine
NBat number of battery banks
k type of ICG
wij weight matrix for fuzzy rules
LimBC limit cost for battery charge
LimBD limit cost for battery discharge
LimGTB limit cost for battery charge from grid
LimBTG limit cost for battery discharge to grid
SOCmin minimum state of charge
SOCMin,G minimum state of charge when discharging to grid
SOCSet maximum state of charged to be reached when charging

from grid

Other variables used in the model:
CRF capital recovery factor
DOD depth of discharge
FAC fixed annual cash-flow
FACGI cash flow for grid integration
ICC initial capital cost
hSPVt SPV cell temperature
gPV
t efficiency of SPV panels

FICGt fuel consumption by ICG
Gb
t global tilted solar irradiation on SPV panel

LPSt loss of power supply
PBat�Max
t maximum power flow from the battery

PEG
t units exported to the grid

PELD
t electricity demand of the micro grid at time step t

PICG
t power generation by ICG

PIG
t units imported from the grid

PRE
t power generated using renewables

PSPV
t power generated from SPV panels

PW
t power generated from wind turbines

xkt inputs to the fuzzy controller
yt operating load factor of ICG
Rl lth implication rule for the fuzzy controller

Input Parameters for the model:
b tilt angel of SPV panels
gW�losses general power losses in wind turbine
AM air mass
ASPV collector area of one SPV panel
ELDt electricity load demand
GCEG

t COE for selling electricity to MUG
GCIG

t COE for purchasing electricity from MUG
PR rated power of the turbine
vCI cut-in wind speed of the turbine
vCO cut-off wind speed of the turbine
vR rated wind speed of the turbine
vt wind speed at hub level of wind turbine

Objective functions used:
LEC levelized energy cost
GIEG grid Integration level considering exports
GIIG grid integration level considering imports
GIIEG grid integration level considering both imports and ex-

ports

Constraints used:
EGLim maximal units sold to the grid
IGLim maximum units purchased from the grid
LOLP loss of load probability

Other acronyms used
ESP energy service provider
GI Grid Interactions
ICG internal combustion generator
SPV solar PV
SOC state of charge of battery bank
t time step
OM operation and maintenance cost
WRE waste of renewable energy
GC grid cost for electricity
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and nuclear energy. Several countries have their own goals with
different time lines in this regard. For example, Germany has a
goal to cover 50% of the generation system using renewable
energy by 2030 [1], while in Finland it is 38% by 2020 [2].
Switzerland is expected to phase-out nuclear energy by 2035 by
increasing the energy efficiency and the share of renewable
energy sources. In Sri Lanka, it is expected to increase the share
of non-conventional renewables, such as SPV and wind energy,
up to 20% by the end of 2020. Recent studies highlight that dis-
tributed generation using solar PV (SPV) and wind energy is
promising to foster the renewable energy penetration in the mar-
ket [3,4].

Energy systems fully driven using renewable energy sources is a
dream that wider community of researchers try to make a reality
[5–9]. Replacing dispatchable energy sources driven by fossil fuel
through distributed SPV, wind and biomass/bio energy sources is
the major challenge in this context. Mismatch in time of peak
demand and generation due to stochastic nature of wind speed
and solar radiation as well as of electricity demand makes the
renewable energy integration process difficult [10,11]. Integration
of dispatchable energy sources, energy storage and converting into
hybrid renewable energy systems is a cost effective approach in
increasing the reliability during the renewable energy integration
process. Further, this helps to amalgamate energy sources with
higher seasonal variation in energy potential [12,13] with less
impact to the grid. More importantly, this is the starting point of
minimizing the contribution of dispatchable energy sources based
on fossil fuels, which makes existing energy systems more eco-
friendly and sustainable [10,14]. However, optimum designing of
such energy systems is a challenging task.

Several research groups have focused on optimizing grid-
integrated hybrid energy systems. Fathima and Palanisamy [15]
provides a detailed review of the major recent works on grid-
integrated hybrid energy systems. Two different approaches can



234 A.T.D. Perera et al. / Applied Energy 190 (2017) 232–248
be used in this context to optimize the system design considering
the dispatch simultaneous.

(1) Energy system is expected to operate in finite set of states
(finite state machines) in which operating conditions for
the dispatchable energy sources and storage is defined. Sub-
sequently, state transfer function is optimized along with
the energy system (sizing problem) [16–19].

(2) Optimum operating conditions for dispatchable energy
sources and storage is obtained for each time step consider-
ing these as decision space variables [20–24]. This can be
further classified into two groups, depending whether dis-
patching is optimized as time depended small scale prob-
lems or globally as a unique large size problem as
explained in Ref. [25].

Both these methods are coming with their strengths and weak-
nesses. The first method can consider non-linear models (consider-
ing valve point effect etc.) easily for energy conversion processes
without simplification. Furthermore, first method can present the
performance of the system (for 8760 time steps) with less compu-
tational time. However, the number of possible states that the sys-
tem could operate increases exponentially with the complexity of
the energy flow within the system (especially for poly-generation
with multiple dispatchable energy sources and storages). Second
method is more suitable when considering complex energy sys-
tems with multiple dispatchable sources and storage. However,
computational time and the resources required become extremely
high when using this method. According to Evins [22] optimization
time can reach up to nine days when considering second method
while Pruitt et al. [24] report that there are limitations in handling
a time horizon due to the increase of decision space variables. Fur-
ther, simple linearization of objective functions can influence the
results of the optimization problem significantly [26]. Hence,
designing energy systems with simple energy flow such as hybrid
energy systems and grid tied hybrid energy systems tends to use
the first method while the second method is used for poly-
generation [20–24].

The first part of the manuscript introduces a novel optimization
algorithm to design grid integrated electrical hubs extending the
first method based on finite states. Electrical hub is a simplified
version of multi-energy hubs (amply studied in recent literature
considering its operation [27–31] and design optimization
[22,23]). The electrical hub consists of wind turbines, SPV panels,
battery bank and an Internal Combustion Generator (ICG) which
is designed to operate as a grid-tied hybrid energy system. Finite
state machines have been amply used to optimize energy systems
with similar architecture to electrical hubs and hybrid energy sys-
tems which are operating both stand-alone and grid integrated
modes [18,19,32–35]. In previous studies of the authors, [17,36],
multi objective optimization and multi criterion decision making
related to stand-alone hybrid energy systems were taken into dis-
cussion without grid interactions. A comprehensive review about
optimization techniques used on this regard can be found in Ref.
[37]. Grid integrated hybrid energy with a similar architecture to
electrical hubs have been also optimized by extending the dispatch
strategy used to optimize stand-alone systems [38,39]. As a result,
the state of the charge of the battery bank and the price of electric-
ity in the grid has not been considered in the dispatch strategy
although these factors can significantly influence the cash flow of
the system according to Ref. [40,41]. Number of states that system
could operates increase notably when considering the energy stor-
age, dispatchable energy sources and grid interactions simultane-
ously. In order to address these issues, this study introduces a
novel bi-level dispatch strategy coupling fuzzy logic and finite
state machines in order to optimize system design along with
dispatch strategy. Fuzzy logic has been amply used in dispatch
optimization of hybrid energy systems [42–45] which is consid-
ered as one of the most promising techniques by the recent review
on energy management strategies for hybrid energy systems [46].
However, for the best of author’s knowledge fuzzy logic has not
been used for dispatching to support design optimization (system
sizing problem) before, which can be used as an attractive method
to address the limitations in the existing design optimization
process.

The second part of the manuscript presents a detailed assess-
ment on the potential of electrical hubs to integrate SPV and wind
energy with a minimum impact to the grid (making the energy sys-
tem to be autonomous while minimize the energy export and
import to and from the grid). Integrating higher fractions of non-
dispatchable renewable energy technologies while operating at
higher autonomy levels (minimum grid interactions) is a difficult
task [47,48]. According to Ueckerd et-al [49] direct integration of
higher fractions of non-dispatchable renewable energy sources
above 30% is beyond the reach due to the limitations in the grid.
A quantitative and qualitative analysis about the potential of inte-
grated energy systems (such as electrical hubs) to extend the SPV
and wind energy integration (with minimum impact to the grid)
is missing in literature besides its timely importance. This moves
beyond design optimization where detailed assessment of the elec-
trical hub is required. To achieve this objective, Pareto optimiza-
tion is conducted in this study considering Levelized Energy Cost
(LEC) and Grid Interaction (GI) level (extending the definitions in
Ref. [47,48]) as objective functions. Decision space variables
related to the system sizing problem and dispatch strategy are con-
sidered as decision space variables to be optimized. Sensitivity of
the mode of grid interactions (importing and exporting electricity
from the grid), the price of electricity and the curtailments in the
grid and role of ICG and energy storage on SPV and wind energy
integration are taken as the aspects to be assessed.

The manuscript is arranged in the following manner; a novel
method to optimize electrical hubs is proposed in the first part of
the manuscript extending existing methods to optimize grid inte-
grated hybrid energy systems which is discussed in Sections 2–5.
The second part (Section 6) is devoted to evaluate the potential
of electrical hubs to increase the SPV and wind energy contribution
with a minimum impact to the electricity distribution grid consid-
ering the recent and future changes in the grid.
2. Overview of the problem

This section provides an overview about the concept of electri-
cal hub within the framework of distributed generation and the
computational tool developed to assess electrical hubs.
2.1. Distributed generation to electrical hubs

It is a challenging task to use distributed renewable energy
sources with stochastic nature in order to deliver the distributed
demand. This needs to be achieved through several steps as
demonstrated in Fig. 1. Distributed demand should be identified:
building performance simulation tools such as EnergyPlus [50] or
CitySim [51] can be used to calculate the distributed demand. Clus-
tering the demand helps to locate ‘‘demand centers” where the dis-
tributed energy systems will be located [52]. Hence, clustering the
distributed demand is followed by building energy modeling as
shown in Fig. 2. Simultaneously, it is important to assess the poten-
tial of renewable energy sources being parallel to the demand sim-
ulation. This is usually achieved in two steps. First, energy maps
are used to identify the promising renewable energy technologies
(qualitatively). Afterwards, a detailed investigation (quantitatively)
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Fig. 1. Overview of the design problem.

Fig. 2. Overview of the electrical hub.
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is conducted to gather the basic time series data for the selected
energy technologies (which were identified as promising energy
technologies during the first step).

Designing distributed energy systems consists of two processes
i.e., designing the energy systems and designing the grid. This
study only focuses on the energy system, therefore operation and
maintenance of the utility grid is not considered. The method
which is introduced in this study can be used to assess the
potential of renewable energy integration in virtual power plants,
smart micro-grids, grid-tied hybrid energy systems with minor
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modifications in boundary conditions, and the computational
model [53–55].
2.2. System configuration of the electrical hub

The Electrical hub, considered in this paper consists of two non-
dispatchable energy sources: solar PV panels and wind turbines, as
well as one dispatchable energy source; an Internal Combustion
Generator (ICG) as shown in Fig. 2. Moreover, a battery bank is
used as the energy storage. The battery bank is used to absorb
the fluctuations of the renewable energy generation and demand.
As shown in Fig. 2, the electrical hub interacts with the main utility
grid (which is called as the grid hereafter) whenever it is required
to cater the demand. Grid curtailments are considered for both
import and export electricity to and from the electrical hub and
real time price is considered from the energy service provider
when interacting with the grid which differentiate the present
study from a simple grid connected hybrid energy systems. The
electrical hub responds to the price signals of the grid when deter-
mining the operation strategy.
2.3. Overview of the developed design tool

Design optimization of electrical hubs consists of several inter-
connected steps. Energy System design process starts with collect-
ing basic techno-economic data, renewable energy potentials,
demand profile and information related to the grid. Main objective
of the computational model is to optimize the design and control
strategy based on the objective functions considered. Variables
related to the system configuration (capacity of wind turbines,
SPV panels, battery bank, ICG and the type of wind turbine and
SPV panels used for the design) and dispatch strategy are consid-
ered as the decision space variables in the optimization algorithm.
Levelized Energy Cost (LEC) and Grid Integration (GI) level are con-
sidered as objective functions and power supply reliability and grid
curtailments are used as constraints in the optimization. A compu-
tational tool is developed which consists of several parts as shown
in Fig. 3.

The first part of the computational model is used to calculate
the energy generation of renewable energy technologies (SPV pan-
els and wind turbines) as shown in Fig. 3. A mathematical model is
developed to present the energy conversion process in each system
Fig. 3. Outlook of the c
component towards achieving this objective. The task of the simu-
lation block is to compute performance indicators that are used to
formulate objective functions being connected to the mathemati-
cal models. In order to achieve this, energy flow (energy conversion
through the path) of the system is evaluated considering the
hourly time series of the renewable power generation, demand
and electricity price in the grid. Time series simulation of the sys-
tem is used to formulate objective functions. Time series simula-
tion has been amply used in energy system optimization in order
to evaluate the performance of the system throughout the year
[16,17,22]. Finally, objective functions formulated through the life
cycle simulation are optimized in the optimization block. An
extended explanation about each block is provided in Sections 3–5.
3. Mathematical model for the electrical hub

The mathematical model developed in this work consists of sev-
eral parts devoted to analyze the energy and cash flow of the sys-
tem, grid interactions and power supply reliability. This is used to
formulate LEC and Grid Integration (GI) level which are considered
as objective functions (F 2 Ƒ: set of objective functions) to be opti-
mized. Decision space represents variables of the system design
and operation (dispatch strategy); the system design variables con-
sist of the type (technology) of SPV panels, wind turbines and the
capacities of SPV panels, wind turbines, ICG and battery bank in
the optimum system design (N 2 U: set of decision space variables
related to system design). This section formulates the time series of
renewable power generation using SPV and wind based on the cor-
responding values of the decision space variables.

3.1. Energy flow model

The main objective of the energy flow model is to evaluate the
power generation and energy conversion processes within the
system. A brief description of the computational model which is
used to determine the electricity generation through the
dispatchable/non-dispatchable sources and the other energy
conversion processes is presented in this section.

3.1.1. Modeling non-dispatchable energy technologies
Time series of hourly solar radiation on a horizontal plane

for the considered location are obtained from the closest
omputational tool.
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meteorological station. These values are used to calculate the solar
radiation on a tilted plane that comprises the SPV panels (e.g. Gt

b)
using an anisotropic diffuse solar radiation model. A detail descrip-
tion of the corresponding model is given in Ref. [56]. Thereafter, a
semi empirical formula proposed by Durisch et al. [26] is used to
determine the energy efficiency of the SPV panels gSPV

t for time step
tðt 2 T : set of all hours in the yearÞ according to Eq. (1).

gSPV
t ¼ pSPV qSPV Gb

t

Gb
0

 !
þ Gb

t

Gb
0

 !mSPV24 35 1þ rSPV
hSPVt

hSPV0

 !
þ sSPV

AM
AM0

� �"

þ AM
AM0

� �uSPV
#
; 8t 2 T ð1Þ

In Eq. (1), AM is the air mass value [27] and hSPVt is the solar cell tem-

perature. Standard values for Gb
0, h

SPV
0 , AM0 are taken respectively as

Gb
0 ¼ 1000 Wm�2, hSPV0 ¼ 25 �C and AM0 = 1.5. Parameter values of

pSPV , qSPV, rSPV , sSPV , mSPV , uSPV for different SPV technologies, such
as mono-crystalline, polycrystalline and amorphous silicon cells,
are taken from Ref. [57]. The hourly power supply from the SPV

panels PSPV
t is calculated according to Eq. (2). ASPV and

NSPV ðNSPV 2 NÞ represent the area of a single SPV panel as well as
the number of SPV panels.

PSPV
t ¼ Gb

t g
SPV
t ASPVNSPV ; 8t 2 T ð2Þ

Similar to the energy conversion model of the SPV panels, the
energy flow model for wind turbines consist of two main compo-
nents: (i) a model to evaluate the wind speed at the hub level of
the wind turbine and (ii) a model to evaluate the electrical power
generation from wind turbines. Hourly wind speed at 10 m
anemometer height is used to calculate wind speed at hub level
(vt) of the wind turbine using a power law approximation.

Performance of the wind turbine can be modelled mainly using
two different types of models turbine according to Thapar et al.
[58]. These are wind turbine models based on the presumed shape
models based actual shape of the performance curve of the wind
turbines. Thapar et al. [58] shows that the latter is more accurate
in many applications. This study is using the second method. In
this method, the ‘‘power curve” of the wind turbine, provided by
the manufacturer is taken and the wind turbine is modeled using
ns number of cubic spline interpolation functions, considering
ns + 1 points from the power curve given by the manufacturer
[59,60] according to Eq. (3).

ePw
t ¼

ePw
t ¼ 0 vCI > v tePw
t ¼ aw1 v3

t þ bw
1 v2

t þ cw1 v t þ dw
1 ; vCI < v t < v1ePw

t ¼ aw2 v3
t þ bw

2 v2
t þ cw2 v t þ dw

2 ; v1 < v t < v2

. . . . . . . . .

. . . . . . . . .ePw
t ¼ awnsv

3
t þ bw

nsv
2
t þ cwnsv t þ dw

ns ; vns�1 < v t < vns ðvRÞePw
t ¼ PR; vR < v t < vCOePw
t ¼ 0; v t > vCO

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

;8t 2 T

ð3Þ
In Eq. (3), awi , b

w
i , c

w
i , and dw

i are coefficients of the polynomial
function which vary depending on the ‘‘power curve”. vR, vCI, vCO
and PR denote rated wind speed, cut-in wind speed, cut-off wind
speed and rated power of the wind turbine. Finally, net power gen-
eration (PW

t ) is calculated using Eq. (4).

PW
t ¼ ePW

t ðvtÞNwgW�losses; 8t 2 T ð4Þ
In Eq. (4), NWðNW 2 NÞ denotes the number of wind turbines
which is optimized using the optimization algorithm, ~pW

t denotes
power generated by one wind turbine calculated using the power
curve and gW-losses accounts for other losses that take place in the
energy conversion.

3.1.2. Modeling dispatchable energy technologies
The battery bank and the Internal Combustion Generator (ICG)

are used to store and supply the dispatchable energy requirement.
Hourly energy requirement from the dispatchable energy source
and storage is determined by the dispatch strategy which is illus-
trated in detail in Section 4. Fuel consumption of the ICG (FICG

t ) is

calculated based on hourly power generation from ICG (PICG
t )

according to Eq. (5). Fuel consumption is usually computed using
linear relationship of load factor [61]. A fourth order polynomial
function of load factor (based on the performance curve of the
ICG provided by the manufacturer) is used to model [35,61,62]
the fuel consumption in this study in order to improve the accu-
racy of the calculations.

FICG
t ¼

X
8t2T

aICGk þ bICG
k yt þ cICGk y2t þ dICG

k y3t ;þeICGk y4t ð5Þ

In this equation, aICGk , bICG
k , cICGk , dICG

k and eICGk are taken from the
performance curve of the kth ICG, k ðk 2 NÞ, obtained from the opti-
mization algorithm. In this equation, yt denotes the operating load
factor of ICG which is calculated using fuzzy logic controller
according to Section 4.1. Life time of the ICG is considered based
on the operating time of the ICG. Based on that, number of replace-
ment for the ICG is calculated which is used for the cost model.

State of Charge (SOC) of the battery bank is determined using
finite state machines as describes in Section 4.2. Capacity of the
battery bank NBat (NBat 2 U) is optimized using the optimization
algorithm. Self-discharge rate of the battery bank is taken as
0.02% of the charge level. The Rain-Flow Algorithm [63] is used
to determine the life time of the battery bank depending on the
number of charge/discharge cycles. Based on that number of
replacement for the battery bank, life cycle cash flow for the energy
storage is calculated.

3.2. Grid interaction level

The electricity grid is a critical infrastructure which is vulnera-
ble to cascade failures [64]. Strong interactions via both importing
and exporting electricity are discouraged from a perspective of grid
stability. Stability of the grid is considered in two different steps in
the design process of the grid integrated energy system [43].
Firstly, curtailments for grid interactions are introduced. Due to
hourly, daily and seasonal changes in both electricity demand
and renewable energy supply, it is difficult to determine these
parameters which should ideally be dynamic. Hence, grid curtail-
ments are introduced as an upper bound for the energy interac-
tions with the grid in this work. Secondly, a method is used to
minimize the net interactions considering either importing or
exporting energy from the grid or both. The two methods can be
used as a performance indicator to evaluate the autonomy level
of the system. It is important to note that these methods cannot
replace the technical procedures used to access and monitor the
stability and performance of the grid, which need to be carried
out after the optimization of the system design.

The maximal limit for grid interaction (both to and from) is lim-
ited to EGLim (i.e., the maximal power units that can be sold to the
grid within a time step) and IGLim (e.g., the maximal power units
that can be purchased from grid within a time step) belonging to
the first category. Three different performance indicators are used
in this study to measure the interaction with the grid which are
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developed based on [48,65]. The first indicator, GIIG is based on the
total electricity amount purchased from the grid (Eq. (6)). This
indicator depicts the support of the grid to maintain the reliability
level of the electrical hub. The second indicator, GIEG is the total
energy amount that is sold or exported to the grid (Eq. (7)). With
the integration of renewables, selling electricity to the grid
becomes essential in order to minimize the operating cost of the
system; though, excess transfer of electricity can reduce the stabil-
ity of the grid. Finally, energy flows in both directions are consid-
ered as the third indicator (GIIEG) as shown in Eq. (8).

GIIG ¼
X
8t2T

PIG
t

,X
8t2T

PELD
t ð6Þ

GIEG ¼
X
8t2T

PEG
t

,X
8t2T

PELD
t ð7Þ

GIIEG ¼
P

8t2TP
EG
t þ PIG

tP
8t2TP

ELD
t

ð8Þ

In these equations, PELD
t denotes electricity demand of the elec-

trical and PIG
t and PEG

t denotes the power imported and exported to
and from the grid. The formulation for both these parameters
depends on operating state. For an example PEG

t can be defined
according to Eq. (9) for a one simple operating state i.e. State 3
(described in Section 4.2) which is different in other operating
states.

PEG
t ¼ PRE

t þ PICG
t � ELDt ; 8t 2 T ð9Þ

In this equation, ELDt and PRE
t denote electricity load demand of

the application and renewable power generation (PW
t þ PSPV

t ).

3.3. Power supply reliability of the hub

Power supply reliability is calculated in this study using the loss
of load probability (LOLP) model used in Ref. [66–69]. Loss of
power supply (LPS) is considered to be occurring whenever power
generation within the system is less than the demand (according to
Eq. (10)); and the mismatch cannot be supplied by both battery
bank (due to the limitations in energy storage) and grid (due to
the grid curtailments).

LPSt ¼ ELDt � PRE
t � PICG

t � PBat�Max
t � IGLim; 8t 2 T ð10Þ

PBat�Max
t denotes maximum power flow from the battery depending

upon the state of charge.
LOLP presents the probability that loss of power supply can

occur due to the limitations in the generation when catering the
demand for the time period considered.

P
8t2TLPSt presents the

expected loss of energy, or energy not supplied for the time period
considered (8760 h). LOLP presents the LPS as a fraction of total
demand according to Eq. (11) which is used as the performance
indicator to evaluate the power supply reliability.

LOLP ¼
P

8t2TLPStP
8t2TP

ELD
t

ð11Þ
3.4. Life cycle cost model

The developed Life Cycle Cost (LCC) model evaluates the cash
flows taking place during different time periods of the project.
The cost model consists of three components: (i) the Initial Capital
Cost (ICC), (ii) a Fixed Annual Cash-flow (FAC) and (iii) Variable
Annual Cash-flow (VAC). The ICC of system components comprises
the purchase and installation costs for the systems components.
The ICC of the whole system is determined considering the initial
financial investment of the wind turbines, the SPV panels, the bat-
tery bank, the ICG and the power electronic equipment (such as
DC/AC converters and inverters).

VAC includes the replacement cost of the battery bank, ICG and
inverters, which depends on operating conditions, operating hours
and life expectancy. The present value of VAC (VACPV) is subse-
quently calculated. The Net Present Value (NPV) of the system
comprises of all the cash flows mentioned above. Finally, NPV is
used to calculate Levelized Energy Cost (LEC) considering the ELD
of the electrical hub.
4. Novel dispatch strategy and simulation

Seasonal variations of the renewable energy potential, demand
and the dispatch strategy of the system notably influence the sys-
tem sizing [70]. Hence, simulation of the system, considering
hourly variation of renewable energy potential, grid conditions
and demand is vital. Meanwhile, power generation using dispatch-
able energy sources and energy interactions with storage and grid
need to be carried out in an optimumway. This mean that dispatch
strategy needs to be optimized with the system simultaneously. A
bi-level dispatch strategy is introduced in this section which is
used in order to achieve this task along with the decision space
variables used to optimize dispatch strategy (d 2 Ɗ: set of decision
space variables for system control). Hourly simulation of the sys-
tem based on the dispatch strategy generates the time series of
hourly fuel consumption and SOC which are used to calculate the
costs related to ICG and the life time of battery bank, system reli-
ability and the grid integration levels.

4.1. Primary level dispatch strategy

The dispatch strategy consists of two main steps as explained in
Fig. 4 (marked in blue and green). In the first step, the operating
state (load factor) of the ICG (yt) is determined based on two input
variables x1

t and x2
t representing normalized depth of Discharge

(DoD) of the battery bank and the normalized load mismatch
between demand and the renewable energy generation (Eq. (12)).

x1t ¼ PELD
t � PRE

t

max
8t2T

ðPELD
t � ðPSPV

t þ Pw
t ÞÞ

ð12Þ

The depth of discharge of the battery bank is calculated in a
similar way using the SOC battery bank. Normalized values of
DOD are designated by x2

t similar to Eq. (12).
Takagi-Sugino method [71–73] is used in this study to load fac-

tor of the ICG. Fuzzy implication Rl for lth fuzzy subspace is defined
according to Eq. (13)

Rl : If glðx1
t ; is A1 . . . ::xk

t is AkÞ then yt ¼ hðx1
t ; x

2
t ; . . . x

k
t ; Þ ð13Þ

In this equation, x1
t � xk

t (x 2 v: set of all input variables of the
fuzzy controller) denotes premise input variables for the fuzzy con-
troller for the time interval t (8t 2 T), yt denotes output variable of
the fuzzy logic controller whose value is inferred. Al denotes the
fuzzy sets having a linear membership function representing a
fuzzy subspace where rule Rl can be applied. ytl is calculated for
implication rule Rl using Eq. (14) using the function hl in the
consequence.

yl
t ¼ wl

0 þwl
1x

1
t þwl

2x
2
t . . . ::þwl

kx
k
t ð14Þ

where w0
l , w1

l ((w 2W: set of decision space variable related to
fuzzy controller (W � D)) denotes coefficient determined by the
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Fig. 4. Flow chart of the Dispatch Strategy considering the operation of internal combustion generator, battery bank and grid interactions.
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system designer. yl
t is further simplified considering the two inputs

according to Eq. (15)

yl
t ¼ wl

1x
1
t þwl

2x
2
t

� ��
wl

1 þwl
2

� � ð15Þ
Finally, yt is calculated using center of gravity method according

to Eq. (16) where ll denotes the membership function value for the
corresponding rule Rl.

yt ¼
P
lly

l
tP

ll
ð16Þ

An extended description of this method can be found in Ref.
[74–77]. The weight coefficients corresponding to all the nine sub-
spaces (w 2W) are optimized using the optimization algorithm
considering these as decision space variables. After determining
the ICG operating state, the net power generated in the electrical
hub is determined by combining both the non-dispatchable and
dispatchable energy sources. The mismatch between demand and
power generated is calculated afterwards. Load factor of the ICG
is adjusted whenever the excess power generation is larger than
the available storage capacity of the battery bank and EGLim. In
the case of demand being larger than the generated power, Load
Mismatch (LM) is calculated which is the difference between
demand and power generated. The load mismatch is used to deter-
mine the operating state of secondary level dispatch strategy.
4.2. Secondary level dispatch strategy

Eight main operating system states are identified for the second
stage of the dispatch strategy based on the conditions of the input
variables for the rule based controller as well as curtailments for
grid interactions (Fig. 5). A short description about the critical
parameters (l 2 L: (L � D): set of all decision space variables related
to secondary level controller) used to optimize the state transfer is
presented in Table 1 followed by a graphical presentation in Fig. 6.

The first four operating states corresponds to instances where
generation (combining wind, SPV and ICG) is less than the demand
of the electrical hub. In State 1, corresponds to the instances where
price of electricity in grid is higher (GIIGt (COE for purchasing

electricity from grid)) > LimBD and GIEGt (COE selling electricity to
the grid) < LimBTG) and it is economical to take the mismatch from



Fig. 5. Operating states of the system.

Table 1
Brief description about the variables in the dispatch strategy (l 2 L (L � D)).

Acronym
used

Description

LimBC Critical cost for GCEG(t) above which selling the excess power
generated to the grid is economical compared to battery
charging

LimBD Critical cost for GIIGt below which purchasing power from grid is
economical compared to battery discharging

LimGTB Critical cost for GIIGt below which purchasing power from grid to
charge battery bank is economical

LimBTG Critical cost for GCEG(t) above which selling stored energy to
grid is economical

SOCmin Critical SOC of the battery bank below which discharging is not
economical to cater the load mismatch

SOCMin,G Critical SOC of the battery bank below which it is not
economical to discharge and/or to sell the stored energy to grid

SOCSet Maximum state of charged to be reached when charging the
battery bank using the grid
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battery bank. Discharging the battery bank minimizes its life time,
especially when reaching lower SOC levels. In order to overcome
this problem, a minimal SOC level, which can be reached during
the discharging process (SOCmin), is determined using the opti-
mization algorithm.

When the cost of electricity in the grid increases further, it is
economical to discharge the battery bank (GIIGt > LimBD and

GIEGt > LimBTG) and sell electricity to the grid while supplying the
mismatch between demand and generation. Systemmoves to State
2 in such instances. However, discharging battery bank may lead to
instances where electrical hub needs to purchase electricity at a
larger price from the grid at a later stage. In addition, depth of
discharge of the battery bank needs to be considered since it
reduces the lifetime of the battery bank. Hence, minimal SOC for
the battery discharging process (SOCMin,G) needs to be determined
through the optimization algorithm.

The system operates at State 3, when the price of grid electricity
is cheaper (GIIGt < LimBD and LimGTB < GIIGt ). Load mismatch between
demand and generation is taken from the grid in State 3. When the
price of grid electricity goes down further (GIIGt < LimBD and

LimGTB > GIIGt ), it is economical to charge the battery bank using
the grid electricity. However, as the charging of the battery bank
from the grid reduces their storage capacity for renewable energy,
a set point (SOCSet) is introduced as the maximum limit for charg-
ing (instead of a full charging the battery bank), similar to the set
point in the combined dispatch strategy for hybrid energy systems.
SOCSet is optimized taking upper bound as the maximum state of
charge and lower bound as the SOCMin,G using the optimization
algorithm.

State 5–8 correspond to instances where generation is in excess
compared to the demand. System moves into State 5 when price of
grid electricity is low (GIEGt < LimBC and LimGTB < GIIGt ) where excess
generation is directed to battery bank. When the price of grid elec-
tricity is quite low it is economical to charge the batteries from the
grid after charging the battery bank from excess power generated
(GIEGt < LimBC and LimGTB > GIIGt ). State 7 corresponds to instances
where cost in the grid is competitive compared to charging batter-
ies. In such instances, excess generated will be directed to the grid.
When the price of electricity in the grid increases further, it is eco-
nomical to discharge the battery bank in addition to directing
excess electricity generated (GIEGt > LimBC and GIEGt > LimBTG). How-
ever, all these energy interactions need to take place considering
the storage limitations of battery bank, EGLim and IGLim which
makes the energy interactions more complicated. The logic flow
diagram used in the secondary level dispatch strategy consists of
18 states which are based on the main eight states described.



Fig. 6. Selection of the decision space variables for the battery bank.
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5. Optimization of the system design and dispatch strategy

Designing electric hubs integrated to the grid is challenging due
to a number of reasons as discussed before. A heuristic algorithm
has been amply used in the literature [19,32–34,39,78–80] and
shown to be much efficient when optimizing these systems when
compared to enumerative methods [81] which are used in existing
software such as Homer [82]. A detailed comparison of these meth-
ods can be found in recent reviews on hybrid energy system
designing [79,83]. This study is using a heuristic algorithm to opti-
mize the system design and dispatch strategy which can handle
non-linear objective functions efficiently. This section illustrates
optimization algorithm used in this study along with the decision
space variables considered for the optimization which are intro-
duced in Sections 3 and 4, objective functions considered for the
optimization defined in Section 3 and the constraints.
5.1. Decision space variables

Determining the optimal capacities of the system components
as well as the type of components is the main objectives of the
optimization algorithm. Basic system components are selected
according to Table 2. Corresponding type and capacities of these
system components are also determined using the same optimiza-
tion algorithm. Six decision space variables are used to represent
the whole system configurations.

Optimizing the dispatch strategy is another part of the optimiza-
tion algorithm. The operation of the ICG and the battery bank need
to be optimized together with the grid interaction. Both load mis-
Table 2
Specific ranges of the decision space variables.

Variable Lower bound Upper bound

SPV Type (NTY-SPV) 0 3
# SPV Panels NSPV 0 120
Type of Turbines (NTY-W) 0 2
# Wind Turbines 0 15
# Battery banks 0 20
ICG Capacity (kVA) 0 15
Wi,j (weight matrix) 0% 100%
SOCMin 30% 50%
SOCMin,G SOCMin 70%
SOCset SOCMin,G 100%
LimBC 0% 100%
LimGTB 0% LimBC

LimBD 0% 100%
LimBTG LimBD 100%

a 0.5 kW maximum capacity.
b Maximum capacity considering component selected with maximum capacity.
c Each battery bank having 12 kWh capacity.
match and battery bank SOC are used to determine the state of oper-
ation of the ICG. The weight coefficients defined in Section 4.1 are
optimized using the same algorithm. Three parameters are used
tomanage the energy flow to the battery bank according to its State
of Charge (SOC) as illustrated in Fig. 6. SOCMin is optimized consid-
ering a SOC range of [0.3, 0.5]. Critical parameters for battery charg-
ing and discharging are optimized considering upper and lower
bounds as shown in Fig. 6. Similarly four variables are used to con-
trol the grid interaction as explained in Section 3.3. A. total number
of 19 decision space variables are selected to represent the state
transfer function, with their span is defined according to Table 2.

5.2. Objective functions and constraints considered

The goal of this study is to maximize the autonomy of the sys-
tem in renewable energy integration process while minimizing its
cost. It is a multi-objective optimization task where two objective
functions need to be minimized simultaneously. All three indica-
tors introduced in Section 3.2 are used as the objective functions
along with LEC introduced in Section 3.4. LOLP is considered as a
constraint (defined in Section 3.3) in the optimization algorithm.
List of objective functions considered considering different scenar-
ios are presented in Table 3.

5.3. Optimization algorithm

As discussed in Section 2.3, optimization algorithm is closely
connected with the mathematical model and simulation of the sys-
tem. The computational model and lifecycle simulation which map
Interval Description

1 Mono-crystaline, Polycrystaline and Amorphousa

1 0–30a kW
1 1, 5 kW
1 1–75b kW
1 0–240c kWh
0.5 0–7.5 kVA
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous
Continuous



Table 3
List of Objective functions considered.

Scenarioa Objective Function
1- Objective
Function 2 (F1-F2)

Sensitivity Constraints

A LEC-Grid
Interactions
considering
imports (GIIG)

Not considered Loss of load
probability
(LOLP)

A LEC-Grid
Interactions
considering
Exports (GIEG)

Not considered

A LEC-Grid
Interactions
considering
imports (GIIEG)

Not considered

B LEC-Grid
Interactions
considering
imports (GIIG)

Grid curtailments
considering 30%, 60% and
90% of the peak demand

B LEC-Grid
Interactions
considering
imports (GIIG)

Market price of SPV panels
and wind turbines
considering 10%, 20% and
30% reduction

B LEC-Grid
Interactions
considering
imports (GIIG)

Market price of grid
electricity considering 10%,
20% and 30% reduction

a Pareto fronts in Scenario A corresponds to Section 6.2 and Scenario B corre-
sponds to Section 6.3.
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Fig. 7. Optimization algorithm for electrical Hubs.
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decision space variables into the objective space are described in
detail in Sections 2–4. Fig. 7 presents the simplified flow diagram
of the optimization algorithm used in this study. The optimization
algorithm starts with the random creation of decision vectors
including variables related to system design and operation strategy
which will create the initial population. Subsequently, set of vec-
tors selected as the initial population is mapped to the objective
space through the computational model and the life cycle simula-
tion presented in Sections 3 and 4 which will provide the values for
the objective functions (F 2 Ƒ) and constraints. Initial archive is cre-
ated from the non-dominant set of solutions in the population
according to the criterion defined by Deb et al. [84]. A Steady e-
State Evolutionary Algorithm [85] is used in this study for updating
of archive and reproduction of the population which is proven as a
method to maintain the diversity while reaching the final set of
Pareto solutions within short period of time. Polynomial mutation
operator [86] and simulated binary crossover operator [87] are
used along with differential evolutionary operators [77–79] in
the reproduction of the population [88–90]. Constraints for the
optimization algorithm are handled at two different levels: con-
straint tournament method [86] is used to handle the constraints
in the optimization algorithm and loss of load probability is consid-
ered as a constraint while states of the control systemwere defined
to handle the constraints due to grid curtailments. A computer pro-
gram is written in C++ using Visual studio plat form. Computa-
tional time for the Pareto front depends on the objective
functions selected and the number of generations considered; on
average computational time was two hours for both Scenario A
and B in this study.

5.4. Convergence patterns for the optimization process

Evolutionary algorithm has been amply used in recent past
when optimizing energy systems. When it comes to multi objec-
tive optimization you need to guarantee the diversity of the Pareto
front while guaranteeing that you reach the optimum [91]. Hence,
convergence pattern of the Pareto front is usually presented to get
an understanding of the progress of the optimization with number
of generations in the optimization algorithm. Fig. 8 presents the
convergence pattern for LEC-GIIG Pareto front. It is clear that Pareto
front is well settled when reaching 200000 generations (which is
used for all the other optimization problems).
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6. Results and discussion

Selecting optimum combination of energy technologies, storage
becomes vital in integrating SPV and wind energy into electrical
hubs. Autonomy of the system needs to be maximized in integrat-
ing renewable energy technologies while minimizing the lifecycle
cost of the system. Pareto fronts obtained in Section 5 considering
LEC and grid integration level is useful in this regard. These Pareto
fronts are used in this section to analyze

(1) Sensitivity of imports, exports and both to lifecycle cost,
energy mix and renewable energy utilization of the system.

(2) Sensitivity of grid curtailments and market conditions on
renewable energy integration.

Accordingly, this section is divided into three parts. A brief over-
view about the case study is presented in Section 6.1. The impact of
grid interactions on electrical hub and energy flow is discussed in
Section 6.2. Section 6.3 is devoted to a sensitivity analysis of other
techno-economical parameters impacting the results.
6.1. Overview about the case study

The site of Hambantota, a south coastal city of Sri Lanka, was
considered for this study due to its strong wind and solar energy
potential. All the aforementioned meteorological data are issued
from the corresponding local meteorological station. The demand
of a particular application is highly specific to the latter. In this
study, demand is considered to vary according to the load variation
suggested by the IEEE system reliability committee [92]. Load pro-
files are generated following a summer-weekly demand since sea-
sonal demand variations are trivial in Sri Lanka being located near
to the equator.

The cost of electricity is a function of time in a smart grid,
depending from several factors. A hypothetical cost function is
considered for the hourly electricity prices based on the demand
in the region. Hourly electricity price is assumed to be proportional
to the electricity consumption in the region, a maximal cost of
electricity being reached at the peak hours of the demand. The
price for selling electricity to the grid is considered to be propor-
tional to the purchasing price of electricity from the grid. A sensi-
tivity analysis of the impact of the cost of electricity function on
the optimal solution was subsequently carried out. The effect of
demand curve and the profile of grid cost on optimum system
design are to be presented in future publications.
6.2. Sensitivity of grid interactions and energy mix

The support of the grid is essential to maintain the power sup-
ply reliability of the electrical hub with the integration of renew-
able energy sources, while minimizing the lifecycle costs.
Maximizing the autonomy of the electrical hub is important when
considering the grid. Therefore, the lifecycle cost and the auton-
omy of electrical hub may become conflicting, meaning that it
can be difficult to optimize both of them simultaneously. A Pareto
front presents all the possible combination of solutions, which are
optimal and non-dominant between each other. It helps the sys-
tem designers to better understand the characteristics of the sys-
tem accounting for the changes at the grid integration level.

Three different performance indicators were introduced in this
study to assess the grid integration level, as defined in Section 3.3.
Three Pareto fronts are computed taking levelized energy cost
(LEC) and grid integration (LEC-GI) as objective functions, consid-
ering the import and export limits for the grid interactions as
50% of the peak demand of the hub. The Pareto fronts which are
calculated and plotted in Fig. 9 correspond to the three different
methods for grid interactions with LEC. LEC-GIIG denotes Pareto
front obtained considering LEC and electricity imports from grid
corresponding to Eq. (4) and LEC-GIIG denotes Pareto front
obtained considering LEC and electricity exports (Eq. (5)). Finally,
LEC-GIIEG Pareto front considers interactions in both modes along
with LEC as objective functions.

A significant reduction in the (LEC) is observed when moving
from one Pareto front to the other. The LEC is rather low through-
out LEC-GIEG (exporting) Pareto front compared to the other two.
LEC notably increases in LEC-GIIEG Pareto front when grid interac-
tions are less than 5% which is the same for LEC-GIEG. Set of solu-
tions in LEC-GIIEG Pareto front follows the trend of LEC-GIIG when
grid interactions are greater than 5%. These variations are mainly
due to the differences of power generation mix and modes of grid
interactions which are taken into discussion in next two
paragraphs.

In order to analyze the import, export and both interactions
with the grid simultaneously, GIIG, GIEG and GIIEG are plotted for
three Pareto fronts considering all the modes of interactions with
grid as a percentage of annual demand (Fig. 10). Among the three
Pareto fronts, percentage exports to the grid (GIEG) remains almost
constant in LEC-GIIG Pareto front. Meanwhile, GIIG gradually
reduces in with the increase of grid interactions in LEC-GIEG Pareto
front. However, GIIEG is notably high (above 45%) in LEC-GIEG Par-
eto front when compared to LEC-GIIG Pareto front. This result in
higher LEC in LEC-GIIG Pareto front compared to LEC-GIEG which
is observed in Fig. 9. Energy flows of the LEC-GIIEG Pareto front
reveals that the total interactions with the grid (GIIEG) are notably
lower for the LEC-GIIEG Pareto front compared to the two others
Pareto fronts. A lower GIIEG value indicates less energy interactions
with the grid. This implies that the electrical hub tends accordingly
to operate as a standalone system in this case where variations of
the renewable energy supply and the demand are absorbed by the
system itself resulting higher LEC due to the less interactions with
the energy market through the grid.

Analyzing the power generation within the electrical hub from
SPV panels and the wind turbines is one of the main goals of the
study. Design solutions from LEC-GIIG (System A) and LEC-GIIEG
(System B) Pareto fronts are selected in order to achieve this objec-
tive. The power generation from the non-dispatchable energy
sources (SPV panels and wind turbines), the dispatchable energy
source (ICG) as well as the total electrical power generated are



Fig. 10. Comparison of the energy interactions with the grid (import, export and both) for three Pareto fronts (LEC-GIIG, LEC-GIEG, LEC-GIIEG from left to right) obtained
considering LEC and grid interactions.

LEC- GIIG Pareto Front LEC- GIIEG Pareto Front

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Grid interaction level  GIIG (%)

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
 ICG
 SPV and wind
 Total
 WRE

Grid interaction level  GIIEG (%)

(%
)

de
m

an
d

A
nu

al
n

in
te

ra
ct

io
gr

id
A

nn
ua

l

Fig. 11. Power generation using ICG, SPV panels and wind turbines for optimal systems in the LEC-GIIG and LEC-GIIEG Pareto fronts (left System A and right System B).
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plotted for both systems in Fig. 11 as a fraction of total annual
demand of the electrical hub. From the two Pareto fronts, it can
be argued that the grid integration of wind and solar energy tech-
nologies through the electrical hubs is achieved in a satisfactory
way being more than 60% of the annual demand of the hub. System
B shows annual wind and solar energy contributions larger than
100% (as a percentage of total annual demand). Minimal contribu-
tions from SPV and wind turbines reach 80% for System A in the
corresponding Pareto front. More importantly, there are instances
in which SPV and wind contributions are larger than the annual
electricity demand, the electrical hub operating as an ‘‘Energy plus”
(generating more than the annual demand) system in both cases.
However, it is important to analyze the Wasted Renewable Energy
(WRE) due to limitations in energy storage and grid curtailments
along with the generation to get a proper overview of the system.

When considering the WRE of System A, it is clear that around
30–40% renewable energy generated will be lost due to limitations
in storage and grid interactions which reach up to 20% in System B.
In addition, around 15% of the generation within the system is
exported in System A. Considering the generation, WRE and frac-
tion exported to the grid; around 60–85% of the demand of the
electrical hub is catered using non-dispatchable energy sources.
Considering the economic scenario (lowest LEC) it reaches around
60%. This is a major achievement when compared to the level of
non-dispatchable renewable energy contribution in present cases
which will be around 20–30% [49] in direct integration to grid. This
clearly demonstrates the potential of electrical hub to integrate
non-dispatchable renewable energy sources. Nonetheless, it is
important to highlight that utilizing renewable energy is a major
challenge in electrical Hubs although higher integration levels
can be achieved.

Both plots show that the ICG plays a major role whenever grid
interaction is weak. For System B, a dispatchable energy source is
essential in order to minimize the grid interactions further and
to operate in an autonomous way. An electrical hub based only
on non-dispatchable energy sources and energy storage is not eco-
nomically sound when a perfect autonomy is targeted. Contribu-
tions from the ICG are gradually mitigated with the increase of
grid interaction, reaching a condition where it is economically jus-
tified to operate the system without it.
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6.3. Role of dispatchable source and storage

Eight systems were picked-up at different locations of the two
Pareto fronts showing GIIG close to each other and tabulated in
Table 4. Power generation mix of the electrical hub and interac-
Table 4
Configuration and energy flow analysis for different electrical hub systems from LEC-GIIG

LEC ($) GIIG (%) GIEG (%) SPV (%) Wind

LEC-GIIG Pareto front A-IG 0.188 5.60 16.61 13.56 111.3
B-IG 0.200 1.72 16.65 18.98 111.3
C-IG 0.206 0.61 14.47 28.01 100.2
D-IG 0.213 0.00 16.58 24.40 111.3

LEC-GIIEG Pareto front A-IEG 0.188 5.01 6.26 44.28 55.69
B-IEG 0.192 1.77 7.75 41.57 66.83
C-IEG 0.204 0.62 5.67 46.09 55.69
D-IEG 0.286 0.00 0.01 56.93 11.14
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Fig. 12. LEC-grid integration Pareto front with 30%, 60% and 90% upper bounds for grid
hand side top to bottom 90% to 30% grid curtailments) and energy interactions with gri
tions with the grid are tabulated as the percentage of the annual
demand from the electrical hub. All the design solutions show
SPV and wind energy generation larger than 67% of the annual
demand of the electrical hub, which is a significant figure com-
pared to the current low penetration of renewable energy sources.
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0 5 10 15 20 25 30 35

0.14

0.16

0.18

0.20

0.22
Present Case

10% Reduction
 20% Reduction
 30% Reduction

LE
C

 ($
)

Grid interaction level  GIFG (%)
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Contribution from the ICG does not show a major change in the set
of solutions from LEC-GIIG Pareto front. Nonetheless, power gener-
ation from ICG increases from 11% up to 32% in the case of mini-
mizing the grid interactions in LEC-GIIEG Pareto front.

The two Pareto fronts show a notable difference in the battery
bank size: in LEC-GIIG Pareto front the capacity of battery bank
has increased from 84 to 156 kWh when moving from A-IG to D-
IG while it has increased from 156 to 228 kWh when moving from
A-IEG to D-IEG. In contrast, Renewable Energy Capacity (REC) var-
ies from 52.75 kW to 56.75 KW in the design solutions of LEC-GIIG
Pareto front while it varies from 20.75 kW to 41.5 kW in the LEC-
GIIEG Pareto front. Higher renewable energy integration is taken
place as a result of higher grid integration level which is notably
high in LEC-GIIG Pareto front compared to the other. However,
wasted renewable energy is quite high in solutions of LEC-GIIG Par-
eto front when compared to solutions of LEC-GIIG Pareto front. This
indicates that although grid assists the renewable energy integra-
tion, battery bank play a major role in maximizing utilization of
renewable energy.

A notable increase in energy storage and contribution from ICG
results sudden price increase in LEC when moving from LEC-GIIG
Pareto front to LEC-GIIEG Pareto front. On the other hand, the bat-
tery bank capacity remains comparable for the design solutions
of the LEC-GIIEG Pareto front although a 20% reduction in ICG power
generation is observed with an increase of grid interactions. To
conclude, the battery bank can be economically justified if it
absorbs the fluctuations of renewable energy sources and the
demand providing higher grid interactions occurs, leading to a dif-
ferent role for an ICG integrated in an electrical hub.

6.4. Sensitivity of grid curtailments, energy market and market price of
RE technologies

A Pareto multi-objective optimization is conducted in this sec-
tion, considering LEC and GIIG as objective functions, to evaluate
the sensitivity of grid curtailments of 30%, 60% and 90% of the max-
imal demand for the electrical hub. The optimization is conducted
for both importing and exporting electricity to and from the elec-
trical hub. The Pareto fronts for these grid curtailments are pre-
sented in Fig. 12 (three Pareto fronts corresponding to three
cases are plotted in the same diagram). Generation mix and the
grid interactions of each Pareto front are plotted separately.

The results show that increasing the upper limit for grid curtail-
ments allow tight energy interactions with the energy market
which result in a notable reduction in LEC. GIIG varies from 10–
20% to 60–70% with the increase of upper curtailments for grid
interactions. More importantly, power generation in the electrical
hub, through wind turbines and SPV panels, is notably increased
when considering as a percentage of annual demand. This clearly
demonstrates that the electrical hubs actively participate to the
energy market while playing a role in generating the supply of
the micro-grid with an increase of the grid interaction limits.
Widening the grid curtailments minimizes the role of the ICG, as
shown on the Fig. 12. Finally, it can be concluded that grid curtail-
ments notably influence the energy mix of the electrical hub.

The influence of a reduction in market price for both wind tur-
bines and SPV panels was assessed in this study simultaneously,
instead of conducting a detailed study and considering each com-
ponent separately (Fig. 13). LEC-GIIG Pareto fronts are obtained
considering a 10%, 20% and 30% (taken as P, Q, R respectively) price
reduction in SPV panels and wind turbines. A notable reduction in
LEC is observed with a drop of market prices for both renewable
energy technologies, as shown in Fig. 13. Sensitivity bars are intro-
duced assuming a 10% relative increase or reduction in the analysis
of the Pareto front. Sensitivity bars indicate that uniform reduction
in LEC is observed with 10% (P) price reduction in renewable
energy components. A notable reduction in LEC is observed when
moving from P to Q and subsequently to R which is uniform
throughout the Pareto front.

Finally, Pareto multi objective optimization is conducted con-
sidering LEC-GIIG assuming a 10%, 20% and 30% reduction in the
hourly cost of energy profile. Pareto fronts obtained from the opti-
mization are presented in Fig. 14. It can be observed that the LEC
rises with a reduction of the COE. This looks particularly the case
for a 30% and 20% cost of energy reduction for instances grid inter-
action is lower than 25%. This can be explained by using the energy
interactions with the grid (Fig. 10). The set of optimal systems
located in the LEC-GIIG Pareto front maintains strong interactions
with the grid by selling to the main grid the excessive amount of
renewable energy produced by the electrical hub (refer Fig. 10).
In most of the instances, the power generation within the system
is larger than the demand. Hence, a reduction in the electricity
prices in grid has a negative influence for the investors. However,
with the expected cost reduction of renewable energy technologies
and a larger access to the energy market, these systems can
become attractive in other parts of the world where the energy
market is more competitive.
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7. Conclusions

This focuses on evaluating the potential of electrical hubs in
integrating non-dispatchable renewable energy technologies such
as SPV panels and wind turbines with minimum impact to grid.
A novel optimization algorithm in introduced with the support of
a bi-level dispatch strategy to optimize electrical hubs considering
both real time price and curtailments for import and export in the
grid. A gray model based on fuzzy logic is introduced to control the
operation of ICG in the primary algorithm while finite automata
theory is used to in the secondary algorithm to control the energy
interactions with grid and battery bank. Finally, multi objective
optimization is conducted considering LEC and grid integration
level.

The results obtained from the Pareto analysis shows that elec-
trical hub can help to increase the share of wind and SPV genera-
tion beyond 60% of the annual demand of the electrical hub.
From an economic perspective, the assessment of the energy sys-
tem shows that limitations for purchasing electricity from the grid
are more critical than selling: this is promising when one considers
the present grid architecture. Furthermore, larger grid interaction
curtailments increase the LEC of the system and hinder the integra-
tion of renewable energy sources to the grid. The LEC-GIIG Pareto
front indicates that electrical hubs can actively participate to the
energy market by generating quantities of electricity far larger
than the demand of the electrical hub. However, an autonomous
operation of electrical hubs is not encouraged, as it notably
increases the electrical power generation by the ICG minimizing
the SPV and wind integration. In conclusion, it can be stated that
electrical hub is effective in increasing the non-dispatchable
renewable energy share with minimum impact to the grid when
considering present Sri Lankan context. Nonetheless, limitations
in the initial capital investment need also to be addressed in this
prospect, especially for developing countries like Sri Lanka, which
is a real challenge for solar and wind energy.
References

[1] Blazejczak J, Braun FG, Edler D, Schill W-P. Economic effects of renewable
energy expansion: a model-based analysis for Germany. Renew Sustain Energy
Rev 2014;40(Dec.):1070–80.

[2] Zakeri B, Syri S, Rinne S. Higher renewable energy integration into the existing
energy system of Finland – Is there any maximum limit? Energy 2015;92(Part
3):244–59.

[3] Voumvoulakis E, Asimakopoulou G, Danchev S, Maniatis G, Tsakanikas A. Large
scale integration of intermittent renewable energy sources in the Greek power
sector. Energy Policy 2012;50(Nov.):161–73.

[4] Sfikas EE, Katsigiannis YA, Georgilakis PS. Simultaneous capacity optimization
of distributed generation and storage in medium voltage microgrids. Int J
Electr Power Energy Syst 2015;67(May):101–13.
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