PET ANIMAL IDENTIFICATION AND VERIFICATION USING EAR VEIN BIOMETRICS

Dulaj Viduranga Athapaththu Disanayaka 179316K

Degree of Master of Science/ Master of Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2021

PET ANIMAL IDENTIFICATION AND VERIFICATION USING EAR VEIN BIOMETRICS

Dulaj Viduranga Athapaththu Disanayaka 179316K

This dissertation submitted in partial fulfillment of the requirements for the Degree of MSc in Computer Science specializing in Data Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2021

DECLARATION

I declare that this is my own work, and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Date: 31/07/2021

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision.

Name of the supervisor:

UOM Verified Signature

Signature of the supervisor:

Date : 31/07/2021

ABSTRACT

With the current technological advances in almost all the fields across the world, humankind has never been more connected and affiliated to the global society. Part of this advancement has led to transpire a number of social issues that was obscured from our view in the history. Along with racial, gender, and religious issues that came to light, animal wellbeing is also being discussed hugely and improved rapidly in the past couple of years.

This research is intended to provide a novel approach to tackle two issues the society have related to animal wellbeing. Namely, pet insurance fraud and pet theft.

Both of these problems arise due to the fact that there is no solid and well standardized method to identify and validate the identity of pet animals. Almost all the situations that a pet's identity needs to be validated, the owner's statement alone is considered as confirmation. This not only is invalid; but also, it has led to a huge number of insurance fraud and also theft.

We provide a method to capture and validate the identity of any animal using ear vein imaging biometrics. Due to the fact that vein patters of any individual are unique; and the ear vein capturing method can be extremely simple and fast, the expected solution will provide a versatile and practical solution to the aforementioned problems.

ACKNOWLEDGEMENT

My utmost gratitude towards my advisor, Dr. Charith Chithraranjan helping me scoping out the thesis and his supervision and advices throughout the research. I would also like to thank my friends as well as my wonderful wife giving me support and encouragement finalizing the work.

TABLE OF CONTENTS

DECLARA	TION	i
ABSTRAC	Т	ii
ACKNOW	LEDGEMENT	iii
TABLE OF CONTENTS		iv
LIST OF F	IGURES	vi
LIST OF T	ABLES	vii
LIST OF A	BBREVIATIONS	viii
Chapter 1	Introduction	1
1.1	Biometrics	2
1.2	Machine Learning	7
1.2.1	Convolutional Neural Networks	8
1.2.2	Siamese Neural Networks	9
1.2.3	Transfer Learning	9
1.3	The Problem/Opportunity	10
1.4	Objectives	12
1.5	Prior Work	12
Chapter 2	Literature Review	14
2.1	Vein based Biometrics	15
2.1.1	Comparison on security	15
2.1.2	Comparison on Usability	17
2.1.3	Ear vein biometrics	19
2.2	Authentication for Pet Animals	21
2.2.1	Biometric authentication for pets	23
2.3	Machine Learning for Biometrics	25
2.3.1	Usage of Siamese Convolutional Neural Networks for vein biometric	26
Chapter 3	Methodology	28
3.1	Data gathering	29
3.1.1	Data preprocessing	31
3.1.2	Addressing the limitation of datapoints	34
3.2	Model Architecture	36
3.3	Implementation	40
3.4	Training and Testing	40
3.5	Results and Evaluation	42
3.5.1	Pretraining	43
3.5.2	Model Evaluation	46

Chapter 4 Conclusion REFERENCES

LIST OF FIGURES

Figure 1.1:	Face Biometrics - How Does It Work?	4
Figure 1.2:	Fingerprint Biometrics	5
Figure 1.3:	Iris Biometrics	6
Figure 1.4:	Vein Biometrics	6
Figure 1.5:	Voice Biometrics - Voice Spectrogram	7
Figure 1.6:	Convolutional Neural Network	8
Figure 1.7:	North America Pet Insurance Market Size, By Products, 2014-2028 (Usd Million)	11
Figure 1.8:	Lost Pet Statistics United States	11
Figure 2.1:	Arterial Supply of the Ear	20
Figure 2.2:	Most stolen dog breeds and total number of dogs stolen by regions of England and Wales in 2017 and associated changes since 2016	21
Figure 2.3:	Cat Thefts in 2020 by type of Cat	22
Figure 3.1:	Cat Ear Image From Reddit	29
Figure 3.2:	Example 1 - Cat Ear Vein Images	30
Figure 3.3:	Example 2 - Cat Ear Vein Images	30
Figure 3.4:	Example 3 - Cat Ear Vein Images	30
Figure 3.5:	Example 4 - Cat Ear Vein Images	30
Figure 3.6:	Data Preprocessing – 1. Original	33
Figure 3.7:	Data Preprocessing – 2. Crop And Rotation	33
Figure 3.8:	Data Preprocessing – 3. Background Removal	33
Figure 3.9:	Data Preprocessing - 4. Sampling	33
Figure 3.10:	Data Preprocessing – 5. Grayscale Conversion	34
Figure 3.11:	Data Preprocessing – 6. Gaussian Blur	34
Figure 3.12:	Data Preprocessing – 7. Histogram Equalization	34
Figure 3.13:	Neural Network Architecture	40
Figure 3.14:	Resnet50 [1-38]	40
Figure 3.15:	Pre-Training - Siamese Output - Auc Vs Iterations (Lower Is Better)	43
Figure 3.16:	Pre-Training - Cnn Output - Categorical Accuracy Vs Iterations (Closer To 1 Is Bet	ter) 43
Figure 3.17:	Pre-Training - Model Loss Vs Iterations (Lower Is Better)	44
Figure 3.18:	Pre-Training - Frr And Far Vs Threshold	45
Figure 3.19:	Final - Siamese Output - Auc Vs Iterations (Lower Is Better)	47
Figure 3.20:	Final - Model Loss Vs Iterations (Lower Is Better)	47
Figure 3.21:	Final - FRR And FAR Vs Threshold	48

LIST OF TABLES

Table 2.2.1:	Biometric Methods Accuracies	17
Table 3.1:	Training Step 2	41
Table 3.2:	Training Step 3	42
Table 3.3:	Pre-Training Confusion Matrix	45
Table 3.4:	Final Confusion Matrix	48

LIST OF ABBREVIATIONS

. 1 .	1	•	•
Λh	hrei	7101	101
ΛU	\mathbf{u}	viai	non

Description

2D	2 Dimensional
2FA	2 Factor Authentication
3D	3 Dimensional
AUC	Area Under the Curve
CLAHE	Contrast Limited Adaptive Histogram Equalization
CMOS	Complementary metal-oxide-semiconductor
CNN	Convolutional Neural Networks
DHS	Department of Homeland Security
DNN	Deep Neural Networks
FAR	False Acceptance Rate
FBI	Federal Bureau of Investigation
FIR	Far-Infrared
FPS	Frames Per Second
FRR	False Rejection Rate
ICA	Independent Component Analysis
ID	Identification
IR	Infrared
ISO	International Organization for Standardization
LDA	Local Discriminant Analysis
LED	Light Emitting Diode
MIR	Mid-Infrared
ML	Machine Learning
MP	Mega Pixel
NBIS	NIST Biometric Image Software
NIR	Near-Infrared
NIST	National Institute of Standards and Technology
NN	Neural Networks
OTP	One Time Password
PCA	Principal Component Analysis
RELU	Rectified Linear Unit
RGB	Red-Green-Blue
ROC	Receiver Operating Characteristic
SVM	Support Vector Matching

UK	United Kingdoms
USA	United States of America