COASTAL AND ENVIRONMENTAL IMPACTS ARISING FROM MAJOR COASTAL INFRASTRUCTURE DEVELOPMENT PROJECTS

V.A.N. Soysa

09/8075

the Degree Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

October 2011

DECLARATION

"I declare that this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

.....

.....

Signature

Date

V.A.N. Soysa University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Department of Civil Engineering mrt. ac.lk

University of Moratuwa

DECLARATION

"I have supervised and accepted this thesis for the submission of the degree"

.....

.....

Date

Signature of the supervisor:

Professor S. S. L. Hettiarachchi

Department of Civil Engineering.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.....

Signature of the supervisor:

Date

.....

Professor S. P. Samarawickrama

Department of Civil Engineering.

ACKNOWLEDGEMENT

First and foremost, I would like to express my appreciation to Professor S.S.L.Hettiarachchi (Research supervisor) and Professor S.P. Samarawickrama (Research co-supervisor) for sacrificing their priceless time of heavily loaded work schedules to guide, direct, advise, comment, correct and criticize me and my works; for allowing me to learn through my own experience.

Further, I want to convey my gratitude to Eng. Heo Chan (Deputy Planning Manager) and Eng. C. Thilakarathna (Environment Team Leader) at Colombo South Port Expansion Project for their kind corporation to issue the data and arrange several site visits to port in order to pursue the research works.

Next, I would like to give my special thanks to the Ministry of Land, Infrastructure and Tourism (MLIT) in Japan, and administrative personnel of Port and Airport Research Institute (PARI) Japan. Specially, Dr. Takashi Tomita, Dr. Seon Yeom and Mr. Daiske Tatsumi are greatly appreciated for the kind assistance, guidance and advices during model development works at PARI.

Senate Research Committee is kindly appreciated for enabling the research project to be pursued by their financial support through the grant.

www.lib.mrt.ac.lk

I am also thankful for the help and assistance, I received from Mr. Harsha Rathnasooriya and Mr. Janaka Bamunawala. I would not forget the co-operation received from my fellow researchers at Civil Engineering department and pleased for the eventful, wonderful and most remembered time spent during the research project period.

I am thankful to all members of the Hydraulic and Water Engineering laboratory of Civil Engineering Department for their support and kind attention regarding my research works. Last but not least, I appreciate each and every person who contributed in no small way to make this research project a success.

ABSTRACT

Sri Lanka being an island state, strategically located in the Indian Ocean, has a high potential for the developments of its economy in the coastal zone. During the reason past, there have been major development projects undertaken by the Government of Sri Lanka including the developments of ports, tourism industry and urban development. At the same time, it must be noted and recognised that the coastal zones are environmentally very sensitive and have to be conserved in order for well-being of unique coastal eco-system, This conflict between development and conservation has raised major issues among the environmental protectionist. Such groups have raised concerns of the impacts of development project on the coastal zone. Although many coastal region development projects have been undertaken, hardly any project has been monitored to study its impact on the environment.

In this respect, planned monitoring of Colombo South Harbour (CSH) project, one of the largest engineering projects to be undertaken in Sri Lanka, provided an excellent opportunity to study the impacts arising from appreciable disturbances to the seabed and neighbouring regions. The analysis of this monitoring, which is the major part of this research study identifies the extent of impact arising from mega coastal projects. Both CSH and associated Loading Out Point (LOP) at Wadduwa have therefore been considered, In addition, it focused on the Kirinda Fishery Harbour project, which failed in the first instances as well as after rehabilitation. The impact on vessels manoeuvring during extreme hazardous condition was investigated via the case study of Shimoda port Japan, undertaken by the researcher during a training programme at Port and Airport Research Institute, Japan.

From this research study, it is concluded that no significant coastal environment impacts are raised due to CSH project as far as sea water quality, air quality and suspended particles levels are concerned. However, threshold values for noise levels were frequently exceeded at quarry site. Further, LOP at Wadduwa indicated severe erosion at northern sections, and significant accumulation at southern sections. Observed data and calculations revealed that with the beach nourishment, for duration of a month, still amount of over 900 m³ of volume for a stretch of 50 m along the coastline, eroded around 0+150 N to 0+500 N and the value decreases to 250 m³ around 0+750 N to 0+900 N.

From the results of numerical simulations for drifting bodies at Shimoda port, specific locations were identified as the safest and most suitable locations to be developed for berth and moor purposes at Shimoda port minimizing the intensity and probability of collision hazard.

It is expected that detailed research studies will high-light the extent of impacts on the coastal zone of large civil engineering projects which interact with coastal water. Such interaction includes dredging, reclamation, construction of major coastal works, and its impact on livelihood of the coastal community during and after construction.

In the absence of detailed monitoring during and after construction, one would only speculate the long term impacts without cross comparison with prevalent condition away from projects.

TABLE OF CONTENTS

Declaration of the candidate	i
Declaration of the supervisor	ii
Acknowledgements	iii
Abstract	iv
Table of Content	v
List of Figures	viii
List of Tables	xi
List of abbreviations	xii

CHA	PTER 1	- INTRODUCTION	01
1.1	Need of	of Coastal Infrastructure Development in Global Context	02
	1.1.1	Sea Transportation	02
	1.1.2	Fishing and Aquaculture	03
	1.1.3	Recreational and Tourism Protection Measurements	03
	1.1.4	Protection Measurements	04
1.2	Coasta	l Environmental Management in Global Context	04
	1.2.1	Natural Impacts b. mrt. ac.lk	05
	1.2.2	Impacts from Population Growth	05
	1.2.3		06
1.3	Need of	of Coastal Infrastructure Development in Local Context	07
	1.3.1	Orientation and positioning of Sri Lanka	07
	1.3.2	Need of capacity extension	07
	1.3.3	Enhancing the preparedness against natural hazards	08
1.4	Coasta	l Environmental Management in Local Context	08
	1.4.1	Current status	09
	1.4.2	Future Challenges	10
СНА	PTER 2	- APPROACH TO THE PROBLEM	11
2.1	Coasta	ll Infrastructure Development in Sri Lanka	11
	2.1.1	Implementation of Policy, Legislations and Management Plan	11
	2.1.2	Coastal Infrastructure Development	14
2.2	Selecte	ed Case Studies	17
	2.2.1	Colombo South Expansion Project (CSH Project)	17
	2.2.2	Pothupitiya Loading Out Point (For CSH Project)	18
	2.2.3	Kirinda Fishery harbor	19
	2.2.4	Shimoda Port	20

2.2.4 Shimoda Port

CHA	APTER 3 - COASTAL ENVIRONMENTAL IMPACTS AND MITIGATOR	Y
MEA	ASURES	21
3.1	Coastal and Environmental Impacts	21
	3.1.1 Coastal Impacts	22
	3.1.2 Environmental Impacts	24
3.2	Mitigatory Systems	26
	3.2.1 Mitigation by Design	26
	3.2.2 Mitigatory Measures	27
3.3	Compliance Monitoring	28
3.4	Impact Monitoring	29
СНА	APTER 4 - COLOMBO SOUTH PORT EXPANSION PROJECT	31
4.1	Design features of the breakwater	31
	4.1.1 Design against Failures	31
	4.1.2 Mitigation by Design	32
4.2	Hydraulic Performances of the break water	34
4.3	Impact Monitoring	36
	4.3.1 Water Quality	36
	4.3.2 Suspended Sediment Levels	37
	4.3.3 Noise Levels	38
	4.3.4 Air Quality	39
	4.3.5 Settlements versity of Moratuwa, Sri Lanka.	39
4.4	Impact Monitoring Data and Analysis & Dissertations	40
	4.4.1 Water Quality	40
	4.4.2 Suspended Sediment Levels	44
	4.4.3 Noise Levels	46
	4.4.4 Air Quality	48
	4.4.5 Settlements	49
4.5	Results	49
СНА	PTER 5 - WADDUWA LOADING OUT POINT AND QUARRY SITE	51
5.1	Impact Monitoring	51
	5.1.1 Water Quality	51
	5.1.2 Noise Levels	52
	5.1.3 Air Quality	53
	5.1.4 Ground Vibration	53
	5.1.5 Shore Profile Variation	54
5.2	Impact Monitoring Data and Analysis	55
	5.2.1 Water Quality	55
	5.2.2 Noise Levels	58
	5.2.3 Air Quality	60
	5.2.4 Ground Vibration	61
	5.2.5 Shore Profile Variation	64
5.3	Results	69

CHAPTER 6 - KIRINDA FISHERY HARBOUR		71
6.1	Background and Rehabilitation	71
6.2	Investigations and Findings	72
6.3	Results	77
СНА	PTER 7 - SHIMODA PORT, JAPAN	78
7.1	Background	78
7.2	Numerical Simulation	79
	7.2.1 Scenario One (I)	80
	7.2.2 Scenario Two (II)	80
7.3	Numerical Model Set up	81
7.4	Simulation Results and Discussion	81
	7.4.1 Scenario One (I) with two parts	81
	7.4.2 Scenario Two (II) with four parts	84
СНА	PTER 8 - DISCUSSION AND CONCLUSIONS	91
8.1	Discussion	91
8.2	Conclusions	92
Refer	ences	94
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	

LIST OF FIGURES

Figure 1.1 - Coastal population and shoreline degradation	5
Figure 1.2 - Coastal Zone Boundaries	9
Figure 1.3 - Legal Boundaries of Sri Lankan Coastal Zone	9
Figure 2.1- Fishery Harbours and Anchorage Points in Sri Lanka	15
Figure 2.2 - Layout of proposed Colombo port south development project	17
Figure 2.3 - Layout of Pothupitiya Loading Out Point	18
Figure 2.4 - Layout of Kirinda Fishery Harbour	19
Figure 2.5 - Port area of Shimoda, Japan	20
Figure 4.1 - Significant failure types of a breakwater	32
Figure 4.2 - Toe and Berm for a breakwater	33
Figure 4.3 - Wave energy components at a breakwater	34
Figure 4.4 - Sampling locations for water quality monitoring	36
Figure 4.5 - Suspended sediment level monitoring locations in Lanka	37
Figure 4.6 - Noise level and air quality monitoring locations	39
Figure 4.7 - Selected structures for settlement monitoring	40
Figure 4.8 - Water Quality Parameters (I) at CSH	41
Figure 4.9 - Water Quality Parameters (II) at CSH	42
Figure 4.10 - Water Quality Parameters (III) at CSH	43
Figure 4.11 - Total Suspended Sediment Levels at monitoring locations in CSH	44
Figure 4.12 - TSS levels variations with respect to the mean values	45
Figure 4.13 - Monitored Noise levels at CSH	47
Figure 4.14 - Air quality measurements at CSH	48
Figure 5.1 - Water Quality Monitoring Locations at LOP	51
Figure 5.2 - Noise levels and Air Quality monitoring locations	52
Figure 5.3 - Ground Vibration monitoring locations	54
Figure 5.4 - Water Quality Parameters (I) at LOP	55
Figure 5.5 - Water Quality Parameters (II) at LOP	56

Figure 5.6 - Water Quality Parameters (III) at LOP	57
Figure 5.7 - Monitored Noise Levels at LOP	58
Figure 5.8 - Monitored Noise Levels at Quarry site	59
Figure 5.9 - Air Quality Measurements at LOP	60
Figure 5.10 - Air Quality Measurements at Quarry site	61
Figure 5.11 - Blasting Monitoring at Quarry site	62
Figure 5.12 - Statistical distribution of Ground Vibration (top) and Air Blast Over Pressur (below)	re 63
Figure 5.13 – Southern part view of LOP at the breakwater, initial beach condition in July (left) and accumulated sediment condition in October (right) 2008.	64
Figure 5.14 - Northern part view of LOP, beach condition in August (left), September (middle) and October (right) 2008.	65
Figure 5.15 - Shoreline changes around LOP	65
Figure 5.16 – Shore profile variation adjacent to Northern section	66
Figure 5.17 - Selected Shoreline profiles during March and April 2009	66
Figure 5.18 - Shore profile variation at Northern LOP	67
Figure 5.19 - Accumulation or Erosion for unit length at each section at 500 m interval.	68
Figure 6.1 - Kirnida Fishery Harbour layout with orientation of structures	71
Figure 6.2 - Contour map at Kirinda Fishery Harbour premises, surveyed in 1994 (top) and 2004 (bottom)	d 74
Figure 6.3 - Siltation volumes and flowering pattern	75
Figure 6.4 - Bathymetry data November 2004 (left), February 2005 (middle), and Novemb 2005 (right)	ber 76
Figure 7.1 – Aerial View on Shimoda Port	79
Figure 7.2 - Positions of floating bodies for Scenario Part 1 (top) and Part 2 (bottom)	80
Figure 7.3 - Topography features at Shimoda Port	81
Figure 7.4 - Selected four locations for Scenario 2 simulation	81
Figure 7.5 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60mi (middle), t=120 min (bottom) S1_PI	n 82
Figure 7.6 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60mi (middle), t=120 min (bottom) S1_PII	n 83

Figure 7.7 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60min (middle), t=120 min (bottom) S2_PI 85

Figure 7.8 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60min (middle), t=120 min (bottom) S2_PII 86

Figure 7.9 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60min (middle), t=120 min (bottom) S2_PIII 87

Figure 7.10 - Position of floating bodies (left), wave details (right) at t=0 min (top), t=60min (middle), t=120 min (bottom) S2_PIV 88

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 2.1 - Length of existing coast protection structures by coastal sector	15
Table 4.1 - Noise level monitoring locations	38
Table 5.1 - Noise Level Monitoring Stations	52
Table 7.1- Details of drifting bodies with major displacements for Scenario Two (II)	89
Table 7.2 - Floating bodies with major displacements	90

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

ABOP	Air Blast Over Pressure
ANECC	Australian and New Zealand Environment and Conservation Council
BOD	Biological Oxygen Demand
BS	British Standards
CCD	Coast Conservation Department
CEA	Central Environmental Authority
COD	Chemical Oxygen Demand
CSH	Colombo South Harbour
CSHP	Colombo South Harbour Project
CZMP	Coastal Zone Management Plan
EIA	Environmental Impact Assessment
ICM	Integrated Coastal Management
ISO	International Organisation for Standards
LOP	Loading Out Point
MPCEM	Master Plan for Coast Erosion Management
NE	North-East
NTU	Net Turbidity Unit
OBS	Optical Back Scatter
PARI	Port and Airport Research Institute
PM	Particle Matter
SAM	Special Area Management
SW	South-West
TSHD	Trailing Suction Hopper Dredger
TSS	Total Suspended Sediment
UDA	Urban Development Authority