EVALUATION OF PARAMETERS INFLUENCING DELAY FOR THE ROAD USERS AT RAILWAY LEVEL CROSSINGS IN SRI LANKA

K. R. D. Jennifer Kumudika Weerakoon

08/8844 H

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

January 2011

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and do the best of my knowledge and belief it does not contain any material previously published or written by another person except here the acknowledgement is made in the text.

Signature:

Date:

"I have supervised and excepted this is thesis for the submission of the degree"

Signature of the Supervisor:

Date:

ACKNOWLEDGEMENT

I express my highest gratitude to Prof. J.M.S.J. Bandara, Research Supervisor and Dr. W.K. Mampearchchri, Course Coordinator, M. Eng. in Highway & Traffic Engineering, Department of Civil Engineering, University of Moratuwa for guiding me in carrying out the project and preparing this report.

I wish to thank Road Development Authority Chairman, Director General and the Project Director, Asian Development Bank Funded Projects for sponsoring me for this post graduate programme and granting me leave and also thank the retired General Manager- SLR Mr. Priyal De Silva, the Chief Station Master and his technical staff of Sri Lanka Railways for supporting me to collect data. Further to this I shall be thankful to the staff of Traffic and Planning Division of RDA for facilitating me relevant requirements in order to make my survey works successful and also the staff of Asian Development Bank Funded Projects office of RDA for assisting me in preparation of this report.

ABSTRACT

Design, construction and maintenance of railway level crossings are responsibilities of Sri Lanka Railways. The funding agency in this regard is the Ministry of Finance where allocations are provided from the annual budget for above targets.

The additional time consumption born by the road users at level crossing is a current issue to be addressed at the earliest possible in order to minimize the delay and inconvenience. According to the SLR the reason behind in this issue is the poor maintenance due to inadequacy of budgetary allocations provided by the Central Government. Also the officials of SLR highlighted that they do not have sufficiently equipped laboratories or skilled technical staff for doing research and also the application of advance high tech equipment such as sensors and replaceable surface materials. One of the main reasons behind in this issue is the high capital cost of implementation of said needful.

Under this research around 125 locations of level crossings were visited all over the country where the faults and weaknesses influenced for delay was carefully observed. A random sample of 42 numbers of crossings (including good and bad sections) was selected for evaluation. The prominent causes detected were categorized for quantitative analysis. The locations contributed with high gravity on delay and safety such as Yangalmodara, Kolathenna, and Kapuwatta were taken as case studies and compared with the level crossing at Bentota which can be considered as the best out of 125 level crossings observed. Since the comparison was not that easy as the parameters such as number of rail tracks, traffic flows, type of crossings etc. defers from place to place it was decided to compare the delay per vehicle for 100m distance (50m distance from either sides of centre lines of the tracks) with the time taken by an average vehicle to travel the same distance in the particular area.

The parameters mostly influenced for delay were cross tabulated. The correlations were checked among the parameters. The gravity of causes was assessed by giving a rating (1-3) at different locations.

Furthermore this discussions were made with the responsible officers of Sri Lanka Railways and Road Development Authority.

With the help of the information gathered from the two organizations and also with the data collection and the evaluations carried out during the research it was able to forward some improvement proposals/ mitigation measures in order to minimize the delay at level crossings in Sri Lanka. It is suggested that based on rough quantitative and acceptable qualitative analysis given in this dissertation the designers and responsibility bearers of relevant authorities would be able to carry out their designs or construction/ maintenance activities successfully.

It was found that the main parameters causing for this delay are visibility, surface defects and poor vertical alignment in approaches and in between tracks due to settlement or in proper designs implemented at level crossings.

ABBREVIATIONS

- SLR Sri Lanka Railway
- RDA Road Development Authority
- ITS Intelligent Transport Systems
- ADT Average Daily Traffic
- UK United Kingdom
- AWD Automatic Warning Devices
- FIG Figure

CONTENTS

Chapter 1 BACKGROUND INFORMATION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives	2

Chapter 2 LITERATURE SURVEY

2.1	History of Railway and level crossing development	4
2.2	Railway crossings and design standards	6
2.3	Crossings around the world	
	2.3.1 Australia	8
	2.3.2 United Kingdom Sity of Moratuwa, Sri Lanka.	8
	2.3.2.1 Pedestrian crossings in UK Ses & Dissertations	10
	2.3.3 United States	10
	2.3.4 Belgium	13
	2.3.5 Canada	13
	2.3.6 New Zealand	14
	2.3.7 Sweden	14
	2.3.8 East and South Asia	15
	2.3.9 Taiwan	15
2.4	Innovations	16
2.5	Different types of crossing and related appliances	17

Chapter 3 DATA COLLECTION

3.1	Rail Network in Sri Lanka	
	3.1.1 The systems adopted for data collection	24
3.2	Types of level crossings in Sri Lanka	25
3.3	Details of surveys and data collection	27
	3.3.1 Surveys for delay issue	27

	3.3.2	Surveys for risk of safety	28
		3.3.2.1 Selection of the crossing type	29
		3.3.2.2 Occupational level crossings	30
		3.3.2.3 Construction of parallel road sections	
		In place of direct right angle crossings	31
		3.3.2.4 Replacing unprotected crossings by signal	
		Lights and gates	32
		3.3.2.5 Implementation of ITS applications	33
		3.3.2.6 Safety assurance of pedestrians	33
3.4	Obser	vations Gathered during Inspection	33
	3.4.1	Common causes for delay at level crossings	33
	3.4.2	Demand for crossings	36
	3.4.3	Demand for railway Vs road transport	36

Chapter 4 DATA ANALYSIS

4.1	Introd	luction	38	
4.2	Identification of reasons causes of delay		42	
	4.2.1	Use of SPSS & excel packages for Analysis	42	
	4.2.2	Analysis of combined effects	42	
	4.2.3	Cross tabulation and Correlation Analysis	42	
	4.2.4	Calculation of time taken for different causes of delay	44	
4.3	Samp	le Calculation	44	
4.4	Findiı	Findings and General Comments		
	4.4.1	Most effective causes for delay	46	
	4.4.2	Absence of pedestrian and cycle paths at crossings	47	
	4.4.3	Delay effect during peak hours	47	
	4.4.4	Compression of delay at controlled level crossings with		
		Uncontrolled crossings	48	
	4.4.5	Comparison of Estimated Delay with the Total Rates	48	
		Electronic Theses & Dissertations		
Chap	oter 5	PROPOSALS FOR IMPROVEMENTS		
5.1	Const	ruction of level crossing surface jointly with the		
5.1		Development Authority	55	
5.2		cation of concrete or high tech materials on surface area	56	
5.3		mentation of proper designs for construction of approaches	56	
5.4	-	lucing ITS applications	58	
5.5		Introducing level crossing management systems in place of		
0.0		Periodic maintenance 58		
5.6	Improvements to the Alignment			
5.0	5.6.1	New construction	59 59	
	5.6.2	Improvements to the Existing level crossings	59	
5.7		cing of regulations on unauthorized construction	59	
5.8		mentation and maintenance of proper drainage system	60	
5.8 5.9	-	deration of correlations among parameters for design	61	
5.7	COUSI	deration of correlations among parameters for design	01	

List of Tables

Table 3.1	Summary of existing rail network	24
Table 3.2	Risk of Safety	37
Table 4.1	Causes for Delay	51
Table 4.2	Analysis by Nos. of Causes Affected	52
Table 4.3	Estimated delay	53
Table 4.4	Value of Delay for Road Users	54

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Page No.

List of Figure		Page No.
Fig. 2.1	A Railroad crossing in Belton	17
Fig. 2.2	A Rail crossing with road gates	17
Fig. 2.3	A Traditional mechanical crossing bell	18
Fig. 2.4	An Electronic crossing bell in Kalamazoo	18
Fig. 2.5	An Electronic crossing bell made by general signal inc	19
Fig. 2.6	A Car crossing the railroad in North Carolina	19
Fig, 2.7	A New inexpensive warning sign at Loimaa	20
Fig. 2.8	"Railroad Crossing" appearing on warning sign in	
	North America	20
Fig. 2.9	An advance warning of the crossing in USA	21
Fig. 2.10	A chicane preventing pedestrians crossing the track	21
Fig. 2.11	Dublin level crossing in Latvia	22
Fig. 2.12	A Level crossing in Japan	22
Fig. 2.13	AAWS(advance active warning signal) in Australia	23
Fig. 3.1	Pictures of a manually operated rail crossing at Kapuwatta	28
Fig. 3.2	An Occupational level crossing at Kandana SSCILATIONS	31
Fig. 3.3	Construction of parallel road section for road user safety	32
Fig. 3.4	Newly installed signal lights at Peralanda	32
Fig. 3.5	Surface defects at China bay	34
Fig. 3.6	Surface defects at Kantale	34
Fig. 3.7	Poor visibility at Yangalmodara	35
Fig. 3.8	Poor visibility at Kolathenna	35
Fig. 3.9	Poor vertical alignment at Kolathenna	36
Fig. 3.10	Settlement of approaches at Boys Town	36
Fig. 4.1	Controlled crossings with good section	40
Fig. 4.2	Controlled crossing with bad sections at Kolathenna & Ragama	40
Fig. 4.3	Uncontrolled crossing with good section at Kandana	41
Fig. 4.4	Uncontrolled crossings with bad sections at Kapuwatta	41
Fig. 4.5	Visibility issue at Yangalmodara & Kolathenna	47
Fig. 4.6	A chart for analysis of individual & combined effects	50
Fig. 5.1	A Cross section related to base design	57
Fig. 5.2	Installation of the check rail	57
Fig. 5.3	Standard dimension for approach	58
Fig.5.4	Visibility/ Sight Clearance	60

List of Annexes

Annex 1 - Cross tabulations

Annex 2 - Corerelations

