LIFE CYCLE ASSESSMENT (LCA) ANALYSIS TOWARDS A SUSTAINABLE CEMENT INDUSTRY FOR SRI LANKA : AN ANALYSIS OF THREE PROCESS PATHWAYS

K C A Fernando

(08/8030)

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa
Sri Lanka

October 2011
“Consumers are increasingly interested in the world behind the product they buy. Life cycle thinking implies that everyone in the whole chain of a product’s life cycle, from cradle to grave, has a responsibility and a role to play, taking into account all the relevant external effects. The impacts of all life cycle stages need to be considered comprehensively when taking informed decisions on production and consumption patterns, policies and management strategies.”

Klaus Toepfer, Former Executive Director, UNEP
Declaration of the candidate & supervisor

“I certify that this thesis does not incorporate without knowledge any material previously submitted for a degree or diploma in any university or higher educational institution in Sri Lanka or abroad and to the best of my knowledge and belief it does not contain any material previously published by another person except where due reference is made in the text.”

Signature (K. C. A. Fernando) Date

“I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the University Libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.”

Signature (K. C. A. Fernando) Date

“I have supervised and accepted this thesis/dissertation for the award of the degree”

Signature of the Supervisor (Prof Ajith de Alwis) Date
Abstract

Cement has already become an essential commodity which contributes for global development which also contributes globally ~5% of man-made CO₂ as an adverse environmental impact, during its production phase. Cement manufacturers have already implemented programs aiming to reduce their GHG footprint introducing clinker substituted cement types, utilizing alternative fuels and optimizing the cement manufacturing process. LCA is a tool which can be used to quantify & assess the environmental impacts for a selected scope. Study covers a detail LCA study on different cement manufacturing scenarios selecting GHG emission as the main impact category for a local integrated cement manufacturing facility.

As the scope of the LCA ‘cradle to gate’ approach was selected and functional unit defined as ‘one tonne of cementitious material’ in order to compare with different clinker percentage cement types. Holcim (Lanka) Ltd – Puttalam Cement Works was selected for the study as the only operating integrated cement manufacturing facility in Sri Lanka. For the scope inland transportation GHG contributions were also included as an extended scope item.

An author designed simple LCA tool ‘Cement LCA Calculator’ was introduced and used to life cycle inventorying and analyzing process. This tool is compatible with the cement CO₂ protocol published by the WBCSD (World Business Council for Sustainable Development) aligned with GRI (Global Reporting Initiative) & International Panel for Climate Change (IPCC) guidelines.

LCA analysis was categorized into two process units. More than 90% of GHG generated inside the facility due to calcination and kiln fuel combustion in the baseline scenario where no alternative fuels being used. In year 2007 the thermal substitution rate was 19.9% and average overall clinker factor was 76.5%. Also it has been shown the reduction from 913 to 764 net kgCO₂e/tonne of cementitious material from the baseline year – 2001 to 2007. Reported neutral absolute CO₂ volumes were 39,940 tonnes in year 2007. However a small increase shown in the local transporting area from 0.56 to 1.31 net kgCO₂e/tonne of cementitious material due to increasing alternative fuel transporting activities. The net savings of CO₂ by utilizing waste derived fuels were 3,464 tCO₂e in year 2007 as per the ‘Cement LCA Calculator’. Research outcomes also opened a number of LCA based research options as future research areas.

The LCA study has clearly shown the GHG benefits a reduction of 16% by using alternative fuels and clinker substituted products. Both these corporate initiatives are way forward actions towards sustainable cement manufacturing process, which Holcim (Lanka) Ltd is committed by its group strategies. Introduced Cement LCA Calculator can also be used on finding CO₂ minimizing strategies in future cement industry focused ecological improvement studies.
Dedication

To my dearest father
Acknowledgement

I am heartily thankful to my supervisor, Prof Ajith de Alwis, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. Further I wish to extend my gratitude to Head and the all the academic staff of Department of Chemical & Process Engineering of University of Moratuwa for the given academic support. Special gratitude goes to Dr Manisha Gunasekara for the given guidance and critical commenting during the reviews. Also acknowledge the support given by Post Graduate Institute staff for supporting me to ease the administrative work. During the research period the support given by PG coordinators Irosha Kularatne, Dinuka Prasanga and Chamila Wickramasinghe are highly appreciated.

I highly extend my gratitude to my work place Holcim (Lanka) Ltd for the given extensive support to initiate this research and carry out it with required resources. Support given by my former supervisors Mr George Nicole, Mr Rathika de Silva are highly appreciated on this regard.

Life Cycle Assessment is still not a popular subject in Sri Lankan context. In order to overcome the faced technical and theoretical constraints given cross boundary support by Dr Rudiger Stenger (Head of Environment) and Dominique Bouchi from Holcim Group Support, Switzerland, Dr. Fredy Dinkel (Carbotech AG in Zurich), Dr. Ir. Joost G. Vogtländer (Associate Professor at the Delft University of Technology) and Dr Rita Schenck (American Center for Life Cycle Assessment - ACLCA) are also highly appreciated.

I thank for the support given by Prof Katupotha – Department of Archeological Science – University of Sri Jayawardenapua on studying the limestone deposits and its archeological importance and Mr Sena Pieris and senior staff of National Cleaner Production Center for technical facilitations.

Last but not least the support and motivation given by my beloved wife Achala Fernando is highly appreciated. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.
Table of Content

Declaration of the candidate & supervisor iv
Abstract v
Dedication vi
Acknowledgement vii
Table of Content viii
List of figures ix
List of Tables xi
Abbreviations xiv

Chapter 1 BACKGROUND AND INTRODUCTION 1
1.1 Background 1
1.2 Introduction to the study 1
1.3 Research objectives 2
1.4 Thesis structure 3

Chapter 2 CEMENT INDUSTRY AND ENVIRONMENTAL IMPACTS 5
2.1 Cement history 5
2.2 Cement demand 6
2.3 Cement chemistry 9
2.4 Sri Lankan cement industry 10
2.5 Types of cement used in Sri Lanka 13
2.6 Cement manufacturing process 15
2.7 Cement manufacturing related environmental impact management 28
2.8 GHG emission and cement industry 34
2.9 HLL process changes supporting better GHG management 39

Chapter 3 LIFE CYCLE ASSESSMENT (LCA) 41
3.1 History of LCA 41
3.2 The LCA Concept 42
3.3 LCA scope 44
3.4 LCA and cement 45

Chapter 4 RESEARCH METHODOLOGY 50
4.1 ISO standards & GHG accounting guidelines 50
4.2 Scope and goal of the LCA study 54
4.3 LCA Scenarios 59
4.4 Unit processes 60
4.5 Functional unit 62
4.6 Life Cycle Inventory (LCI) 63
4.7 Life Cycle Impact Assessment - LCIA 72
4.8 LCA software - ‘Cement LCA Calculator’ 79
4.9 LCI preparation: Direct GHG (Scope 01) emissions 85
4.10 LCI preparation : Indirect GHG (Scope 02, 03) emissions 97
4.11 Life cycle interpretation 104

Chapter 5 RESULTS AND DISCUSSION 106
5.1 LCI & LCIA findings: material flow 106
5.2 LCI & LCIA findings: Direct GHG (Scope 01) emissions 109
5.3 LCI & LCIA findings: Indirect GHG (Scope 02, 03) emissions 115
5.4 LCIA Profile - Environmental balance sheet 118

Chapter 6 CONCLUSIONS AND RECOMMENDATIONS 122
6.1 Comparative analysis of different manufacturing scenarios 122
6.2 Limitations 131
6.3 Recommendations / future activities 132

Annexure I – SLS & BSEN standards related to cement 137
Annexure II – Wet kiln and dry kiln processes 139
Annexure III - A brief history of LCA 143
Annexure IV – Bag filter mechanism 146
Annexure V – Non CO₂ emission monitoring 147
Annexure VI – Detail material & energy flow of cement manufacturing process 149
References 150

List of figures

Figure 2-1: Per capita cement demand vs. per capita GDP – USA (L) & India (R) 7
Figure 2-2: Cement production and accompanying CO₂ emissions 8
Figure 2-3: Sri Lankan cement demand -market growth & volumes 8
Figure 2-4: Sketch map of the Carvery basin 12
Figure 2-5: Integrated cement manufacturing process 16
Figure 2-6: Quarrying & mining at HLL Aruwakkalu quarry site 18
Figure 2-7: Hammer type raw material crusher at HLL - PCW 19
Figure 2-8: Raw mill at HLL – PCW 19
Figure 2-9: Homogenizing silos (blending silos) at PCW 20
Figure 2-10: Four stages preheater structure 21
Figure 2-11: Temperature phase diagram - preheater to kiln 21
Figure 2-12: Clinker kilns & pre-heater tower at HLL - PCW 22
Figure 2-13: Coal mill at PCW 24
Figure 2-14: AF - Industrial shredder (R), homogenized bio mass stock (R) 24
Figure 2-15: Multichannel main burner (L), burner flame HLL – PCW (R) 25
Figure 5-2: Cement LCA Calculator LCI data – scope 1 specific GHG emissions
Figure 5-3: Product related GHG emissions (calcination GHG)
Figure 5-4: Kiln fuel GHG and production
Figure 5-5: LCA output data - AF CO₂
Figure 5-6: LCA data - Scope 2 GHG emission (grid electricity)
Figure 5-7: LCI results of bought clinker CO₂
Figure 5-8: LCIA: Transport GHG analysis
Figure 5-9: Environmental balance sheet (current manufacturing scenario)
Figure 5-10: Scope of the LCIA profile (environmental balance sheet)
Figure 5-11: LCI data - Material balance sheet
Figure 6-1: LCA data - GHG absolute & cementitious material
Figure 6-2: LCA data - specific GHG emission
Figure 6-3: GHG - absolute, net and specific
Figure 6-4: LCIA output : GHG emissions unit process analysis
Figure 6-5: LCIA direct GHG emission combustion
Figure 6-6: Calcination GHG scenarios
Figure 6-7: LCA data – local transport related absolute GHG
Figure 6-8: Distribution of average tonnage by road (2007)
Figure 6-9: Clinker volumes by technology
Figure 6-10: Typical bag filter unit in cement plants
Figure 6-11: Material and energy input stages at HLL - PCW

List of Tables

Table 2-1: Main cement types
Table 2-2: Main clinker minerals and chemistry
Table 2-3: Cement types available in Sri Lanka and their applications
Table 2-4: Material composition of available cement types in Sri Lanka
Table 2-5: Identified unit processes
Table 2-6: Fuel preprocessing methods used at PCW
Table 2-7: Significant environmental impacts – unit process 01
Table 5-10: LCI results of transport (leakage) CO$_2$ 117
Table 5-11: Environmental balance sheet– energy 121
Table 6-1: LCA output summary 127
Table 6-2: Physical & chemical properties required by SLSI 137
Table 6-3: Physical & chemical properties required by BSEN 138
Table 6-4: Gaseous Emissions parameters monitored through CEMs 147
Table 6-5: Gaseous parameters monitored and reported annually 148
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%w/w</td>
<td>Percentage by weight</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>ABC</td>
<td>Application based cement</td>
</tr>
<tr>
<td>AF</td>
<td>Alternative fuels</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminum oxide</td>
</tr>
<tr>
<td>BDP</td>
<td>Best demonstrated performance</td>
</tr>
<tr>
<td>BSEN</td>
<td>British Standard European Norm</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standard Institute</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>cem</td>
<td>Cementitious material</td>
</tr>
<tr>
<td>CEMs</td>
<td>Continuous emission monitoring systems</td>
</tr>
<tr>
<td>CER</td>
<td>Certified emission reductions</td>
</tr>
<tr>
<td>CKD</td>
<td>Cement kiln dust</td>
</tr>
<tr>
<td>cli</td>
<td>Clinker</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen demand</td>
</tr>
<tr>
<td>CSI</td>
<td>Cement sustainability initiative</td>
</tr>
<tr>
<td>EH&S</td>
<td>Environmental, health and safety</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental impact assessment</td>
</tr>
<tr>
<td>EP</td>
<td>Electrostatic precipitators</td>
</tr>
<tr>
<td>EPL</td>
<td>Environmental protection license</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise resource planning</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Ferric oxide</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GRI</td>
<td>Global reporting initiative</td>
</tr>
<tr>
<td>Gt</td>
<td>Gigatonnes</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter (dust)</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SETAC</td>
<td>Society for Environmental Toxicology and Chemistry</td>
</tr>
<tr>
<td>SF₆</td>
<td>Sulfur hexafluoride</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>SLSI</td>
<td>Sri Lanka Standards Institute</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>t,ton</td>
<td>Metric ton</td>
</tr>
<tr>
<td>tCO₂e</td>
<td>Metric ton of carbon dioxide equivalent</td>
</tr>
<tr>
<td>TEQ</td>
<td>Toxic equivalent quotient</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium oxide</td>
</tr>
<tr>
<td>TSP</td>
<td>Total suspended particles</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compounds</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resource Initiative</td>
</tr>
<tr>
<td>wrt</td>
<td>with respect to</td>
</tr>
<tr>
<td>YTD</td>
<td>Year to date</td>
</tr>
</tbody>
</table>