LIFE CYCLE ASSESSMENT (LCA) ANALYSIS TOWARDS A SUSTAINABLE CEMENT INDUSTRY FOR SRI LANKA : AN ANALYSIS OF THREE PROCESS PATHWAYS

K C A Fernando

(08/8030)

Degree of Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

October 2011

LIFE CYCLE ASSESSMENT (LCA) ANALYSIS TOWARDS A SUSTAINABLE CEMENT INDUSTRY FOR SRI LANKA : AN ANALYSIS OF THREE PROCESS PATHWAYS

K C A Fernando

(08/8030)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science with major component of research

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

October 2011

"Consumers are increasingly interested in the world behind the product they buy. Life cycle thinking implies that everyone in the whole chain of a product's life cycle, from cradle to grave, has a responsibility and a role to play, taking into account all the relevant external effects. The impacts of all life cycle stages need to be considered comprehensively when taking informed decisions on production and consumption patterns, policies and management strategies."

Klaus Toepfer, Former Executive Director, UNEP

Declaration of the candidate & supervisor

"I certify that this thesis does not incorporate without knowledge any material previously submitted for a degree or diploma in any university or higher educational institution in Sri Lanka or abroad and to the best of my knowledge and belief it does not contain any material previously published by another person except where due reference is made in the text."

Signature (K. C. A. Fernando)

Date

"I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the University Libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation."

Signature (K. C. A. Fernando)

Date

Date

"I have supervised and accepted this thesis/dissertation for the award of the degree"

Signature of the Supervisor (Prof Ajith de Alwis)

Abstract

Cement has already become an essential commodity which contributes for global development which also contributes globally $\sim 5\%$ of man-made CO₂ as an adverse environmental impact, during its production phase. Cement manufacturers have already implemented programs aiming to reduce their GHG footprint introducing clinker substituted cement types, utilizing alternative fuels and optimizing the cement manufacturing process. LCA is a tool which can be used to quantify & assess the environmental impacts for a selected scope. Study covers a detail LCA study on different cement manufacturing scenarios selecting GHG emission as the main impact category for a local integrated cement manufacturing facility.

As the scope of the LCA 'cradle to gate' approach was selected and functional unit defined as 'one tonne of cementitious material' in order to compare with different clinker percentage cement types. Holcim (Lanka) Ltd – Puttalam Cement Works was selected for the study as the only operating integrated cement manufacturing facility in Sri Lanka. For the scope inland transportation GHG contributions were also included as an extended scope item.

An author designed simple LCA tool 'Cement LCA Calculator' was introduced and used to life cycle inventorying and analyzing process. This tool is compatible with the cement CO_2 protocol published by the WBCSD (World Business Council for Sustainable Development) aligned with GRI (Global Reporting Initiative) & International Panel for Climate Change (IPCC) guidelines.

LCA analysis was categorized into two process units. More than 90% of GHG generated inside the facility due to calcination and kiln fuel combustion in the baseline scenario where no alternative fuels being used. In year 2007 the thermal substitution rate was 19.9% and average overall clinker factor was 76.5%. Also it has been shown the reduction from 913 to 764 net kgCO₂e/tonne of cementitious material from the baseline year – 2001 to 2007. Reported neutral absolute CO₂ volumes were 39,940 tonnes in year 2007. However a small increase shown in the local transporting area from 0.56 to 1.31 net kgCO₂e/tonne of cementitious material due to increasing alternative fuel transporting activities. The net savings of CO₂ by utilizing waste derived fuels were 3,464 tCO₂e in year 2007 as per the 'Cement LCA Calculator'. Research outcomes also opened a number of LCA based research options as future research areas.

The LCA study has clearly shown the GHG benefits a reduction of 16% by using alternative fuels and clinker substituted products. Both these corporate initiatives are way forward actions towards sustainable cement manufacturing process, which Holcim (Lanka) Ltd is committed by its group strategies. Introduced Cement LCA Calculator can also be used on finding CO_2 minimizing strategies in future cement industry focused ecological improvement studies.

Dedication

To my dearest father

Acknowledgement

I am heartily thankful to my supervisor, Prof Ajith de Alwis, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

Further I wish to extend my gratitude to Head and the all the academic staff of Department of Chemical & Process Engineering of University of Moratuwa for the given academic support. Special gratitude goes to Dr Manisha Gunasekara for the given guidance and critical commenting during the reviews. Also acknowledge the support given by Post Graduate Institute staff for supporting me to ease the administrative work. During the research period the support given by PG coordinators Irosha Kularatne, Dinuka Prasanga and Chamila Wickramasinghe are highly appreciated

I highly extend my gratitude to my work place Holcim (Lanka) Ltd for the given extensive support to initiate this research and carry out it with required resources. Support given by my former supervisors Mr George Nicole, Mr Rathika de Silva are highly appreciated on this regard.

Life Cycle Assessment is still not a popular subject in Sri Lankan context. In order to overcome the faced technical and theoretical constraints given cross boundary support by Dr Rudiger Stenger (Head of Environment) and Dominique Bouchi from Holcim Group Support, Switzerland, Dr. Fredy Dinkel (Carbotech AG in Zurich), Dr. Ir. Joost G. Vogtländer (Associate Professor at the Delft University of Technology) and Dr Rita Schenck (American Center for Life Cycle Assessment - ACLCA) are also highly appreciated.

I thank for the support given by Prof Katupotha – Department of Archeological Science – University of Sri Jayawardenapua on studying the limestone deposits and its archeological importance and Mr Sena Pieris and senior staff of National Cleaner Production Center for technical facilitations.

Last but not least the support and motivation given by my beloved wife Achala Fernando is highly appreciated. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Table of Content

Declaration of the candidate & supervisor		
Abstract		
Dedication		
Acknowledgement	vii	
Table of Content	viii	
List of figures	ix	
List of Tables	xi	
Abbreviations	xiv	
Chapter 1 BACKGROUND AND INTRODUCTION	1	
 1.1 Background 1.2 Introduction to the study 1.3 Research objectives 1.4 Thesis structure Chapter 2 CEMENT INDUSTRY AND ENVIRONMENT 	1 1 2 3 TAL IMPACTS 5	
 2.1 Cement history 2.2 Cement demand 2.3 Cement chemistry 2.4 Sri Lankan cement industry 2.5 Types of cement used in Sri Lanka 2.6 Cement manufacturing process 2.7 Cement manufacturing related environmental impact 2.8 GHG emission and cement industry 2.9 HLL process changes supporting better GHG manage Chapter 3 LIFE CYCLE ASSESSMENT (LCA) 	34	
 3.1 History of LCA 3.2 The LCA Concept 3.3 LCA scope 3.4 LCA and cement Chapter 4 RESEARCH METHODOLOGY 	41 42 44 45 50	
 4.1 ISO standards & GHG accounting guidelines 4.2 Scope and goal of the LCA study 4.3 LCA Scenarios 4.4 Unit processes 4.5 Functional unit 4.6 Life Cycle Inventory (LCI) 4.7 Life Cycle Impact Assessment - LCIA 4.8 LCA software - 'Cement LCA Calculator' 4.9 LCI preperation: Direct GHG (Scope 01) emissions 	50 54 59 60 62 63 72 79 85	
4.10 LCI preperation : Indirect GHG (Scope 02, 03) emis		

4.11 Life cycle interpretation	104
Chapter 5 RESULTS AND DISCUSSION	106
5.1 LCI & LCIA findings : material flow	106
5.2 LCI & LCIA findings: Direct GHG (Scope 01) emissions	109
5.3 LCI & LCIA findings : Indirect GHG (Scope 02, 03) emissions	115
5.4 LCIA Profile - Environmental balance sheet	118
Chapter 6 CONCLUSIONS AND RECOMMENDATIONS	122
6.1 Comparative analysis of different manufacturing scenarios	122
6.2 Limitations	131
6.3 Recommendations / future activities	132
Annexure I – SLS & BSEN standards related to cement	137
Annexure II – Wet kiln and dry kiln processes	139
Annexure III - A brief history of LCA	143
Annexure IV – Bag filter mechanism	146
Annexure V – Non CO_2 emission monitoring	147
Annexure VI – Detail material & energy flow of cement manufacturing process	149
References	150

List of figures

Figure 2-1: Per capita cement demand vs. per capita GDP – USA (L) & India	a(R) 7
Figure 2-2: Cement production and accompanying CO ₂ emissions	8
Figure 2-3: Sri Lankan cement demand -market growth & volumes	8
Figure 2-4: Sketch map of the Carvery basin	12
Figure 2-5: Integrated cement manufacturing process	16
Figure 2-6: Quarrying & mining at HLL Aruwakkalu quarry site	18
Figure 2-7: Hammer type raw material crusher at HLL - PCW	19
Figure 2-8: Raw mill at HLL – PCW	19
Figure 2-9: Homogenizing silos (blending silos) at PCW	20
Figure 2-10: Four stages preheater structure	21
Figure 2-11: Temperature phase diagram - preheater to kiln	21
Figure 2-12: Clinker kilns & pre-heater tower at HLL - PCW	22
Figure 2-13: Coal mill at PCW	24
Figure 2-14: AF - Industrial shredder (R), homogenized bio mass stock (R)	24
Figure 2-15: Multichannel main burner (L), burner flame HLL – PCW (R)	25

Figure 2-16: 'Blue sky' filter bag unit (L), main stacks (R) at HLL – PCW	26
Figure 2-17: Mini dust bag system on blending silos at HLL – PCW	26
Figure 2-18: Cement mill (L), Roller press installation (R) at HLL – PCW	27
Figure 2-19: Dispatching: bulk tankers for industrial use (L), packer (R)	28
Figure 2-20: Specific heat consumption over time – CSI members	35
Figure 2-21: Global anthropogenic CO ₂ production	36
Figure 2-22: Clinker to cement ratio	38
Figure 3-1: Four LCA phases and their relationship	43
Figure 3-2: Two common LCA scopes	44
Figure 4-1: System boundary - scope of the Study	57
Figure 4-2: Two unit processes of the LCA study	61
Figure 4-3: Elements of the LCIA phase	73
Figure 4-4: LCI data grouping structure in 'Cement LCA Calculator'	76
Figure 4-5: Main data input area in 'Cement LCA Calculator'	80
Figure 4-6: LCI data input analysis area - Unit process 01	82
Figure 4-7: LCI data input analysis area - Unit process 02	83
Figure 4-8: LCIA sheet and an output summary data sheet	84
Figure 4-9: Functional unit programming bar	85
Figure 4-10: Specific functional analysis snap shot	85
Figure 4-11: Direct GHG elements in cement manufacturing process	86
Figure 4-12: Direct GHG emission fields in 'Cement LCA Calculator'	86
Figure 4-13: LCI data input in 'Cement LCA Calculator' - CO ₂ from raw mate	rial 87
Figure 4-14: LCI calcination and organic CO ₂ data - Cement LCA Calculator	90
Figure 4-15: LCI data input area - CO ₂ from fuel combustion	92
Figure 4-16: AF biomass GHG reporting as a carbon neutral component	95
Figure 4-17: Fossil AF CO ₂ reporting in Cement LCA Calculator	96
Figure 4-18: Indirect GHG emission in cement manufacturing	98
Figure 4-19: Indirect GHG emission sources	98
Figure 4-20: Grid factor program cell and scope 02 output	100
Figure 4-21: Transport GHG emission model	101
Figure 4-22: LCI input sheet : transport related GHG	102
Figure 5-1: Direct GHG specific emissions	109

Figure 5-2:	Cement LCA Calculator LCI data – scope 1 specific GHG emission	s110
Figure 5-3:	Product related GHG emissions (calcination GHG)	111
Figure 5-4:	Kiln fuel GHG and production	113
Figure 5-5:	LCA output data - AF CO ₂	113
Figure 5-6:	LCA data - Scope 2 GHG emission (grid electricity)	116
Figure 5-7:	LCI results of bought clinker CO ₂	117
Figure 5-8:	LCIA: Transport GHG analysis	118
Figure 5-9:	Environmental balance sheet (current manufacturing scenario)	119
Figure 5-10:	Scope of the LCIA profile (environmental balance sheet)	119
Figure 5-11:	LCI data - Material balance sheet	120
Figure 6-1:	LCA data - GHG absolute & cementitious material	123
Figure 6-2:	LCA data - specific GHG emission	124
Figure 6-3:	GHG - absolute, net and specific	125
Figure 6-4:	LCIA output : GHG emissions unit process analysis	126
Figure 6-5:	LCIA direct GHG emission combustion	128
Figure 6-6:	Calcination GHG scenarios	129
Figure 6-7:	LCA data – local transport related absolute GHG	130
Figure 6-8:	Distribution of average tonnage by road (2007)	131
Figure 6-9:	Clinker volumes by technology	142
Figure 6-10:	Typical bag filter unit in cement plants	146
Figure 6-11:	Material and energy input stages at HLL - PCW	149

List of Tables

Table 2-1:	Main cement types	6
Table 2-2:	Main clinker minerals and chemistry	9
Table 2-3:	Cement types available in Sri Lanka and their applications	13
Table 2-4:	Material composition of available cement types in Sri Lanka	14
Table 2-5:	Identified unit processes	17
Table 2-6:	Fuel preprocessing methods used at PCW	23
Table 2-7:	Significant environmental impacts – unit process 01	30

Table 2-8:	Significant environmental impacts – unit process 02	32
Table 2-9:	Cement manufacturing environmental impact mitigation	33
Table 2-10:	The advantages of co-processing	37
Table 2-11:	HLL product portfolio	40
Table 3-1:	Four different LCA phases	43
Table 3-2:	LCA value to the cement industry	46
Table 3-3:	Cement industry supporting LCA software	49
Table 4-1:	ISO guidelines followed as the research methodology	50
Table 4-2:	LCA supportive ISO technical guidelines	51
Table 4-3:	Direct GHG emission parameters & default values	52
Table 4-4:	Overview of scopes and emissions across a value chain	54
Table 4-5:	LCA scenarios (manufacturing scenarios)	60
Table 4-6:	Overview of the functional unit of the study	62
Table 4-7:	LCI primary data - inputs	65
Table 4-8:	LCI primary output data sources	67
Table 4-9:	Primary data sources – outsourced activities	68
Table 4-10:	Databases used for LCI primary data sourcing	68
Table 4-11:	Secondary data sources	70
Table 4-12:	LCI data validating / verification process	71
Table 4-13:	LCIA definitions and parameters specific for this study	74
Table 4-14:	Indicators defined related to functional unit	76
Table 4-15:	Input sheets and output sheets in mini LCA tool	80
Table 4-16:	Default GHG emission factors used for the study	93
Table 5-1:	Consumed material & fuel sources	106
Table 5-2:	LCI - material inventory	107
Table 5-3:	LCI results of bypass & CKD CO ₂	112
Table 5-4:	LCI results of organic CO ₂	112
Table 5-5:	LCI results of AF biomass CO ₂	114
Table 5-6:	LCI results of AF fossil CO ₂	114
Table 5-7:	LCI results of non kiln fuel CO ₂	115
Table 5-8:	LCI results of total indirect (gross) CO ₂	115
Table 5-9:	LCI results of purchased electricity CO ₂	115

Table 5-10:	LCI results of transport (leakage) CO ₂	117
Table 5-11:	Environmental balance sheet- energy	121
Table 6-1:	LCA output summary	127
Table 6-2:	Physical & chemical properties required by SLSI	137
Table 6-3:	Physical & chemical properties required by BSEN	138
Table 6-4:	Gaseous Emissions parameters monitored through CEMs	147
Table 6-5:	Gaseous parameters monitored and reported annually	148

Abbreviations

Abbreviation	Description
%w/w	Percentage by weight
^{0}C	Degrees Celsius
ABC	Application based cement
AF	Alternative fuels
Al_2O_3	Aluminum oxide
BDP	Best demonstrated performance
BSEN	British Standard European Norm
BSI	British Standard Institute
CaO	Calcium oxide
cem	Cementitious material
CEMs	Continuous emission monitoring systems
CER	Certified emission reductions
CKD	Cement kiln dust
cli	Clinker
CO_2	Carbon dioxide
COD	Chemical Oxygen demand
CSI	Cement sustainability initiative
EH&S	Environmental, health and safety
EIA	Environmental impact assessment
EP	Electrostatic precipitators
EPL	Environmental protection license
ERP	Enterprise resource planning
Fe_2O_3	Ferric oxide
GDP	Gross domestic product
GHG	Greenhouse gas
GRI	Global reporting initiative
Gt	Gigatonnes
HCl	Hydrogen chloride

HFC	Hydrofluorocarbon
HFO	Heavy furnace oil
HLL	Holcim (Lanka) Ltd
IPCC	Intergovernmental Panel on Climate Change
ISO	International Organization for Standardization
K ₂ O	Potassium oxide
kg	Kilogram
kgCO ₂ e	Kilogram carbon dioxide equivalent
KPI	Key performance indicators
kWh	Kilowatt hour
LCA	Life cycle assessment
LCI	Life cycle inventory
LCIA	Life cycle impact assessment
mg/Nm ³	milligram per normal meter cube
MgO	Magnesium oxide
mins	Minutes
MJ	Mega joule
mm	Millimeter
Mn_2O_3	Manganese oxide
MSDS	Material safety data sheet
Ν	Newton
Na ₂ O	Sodium oxide
NIOSH	National institute for occupational health & safety
NO	Nitric oxide
NO_2	Nitrogen dioxide
NOx	Gaseous mixture of NO ₂ and NO
OPC	Ordinary Portland cement
P_2O_5	Phosphorus pentoxide
PCW	Puttalam Cement Works
PEP	Plant environmental performance
PFC	Perfluorocarbon
PLC	

PM	Particulate matter (dust)
ppm	Parts per million
S	Seconds
SETAC	Society for Environmental Toxicology and Chemistry
SF ₆	Sulfur hexafluoride
SiO ₂	Silicon dioxide
SLSI	Sri Lanka Standards Institute
SO_2	Sulfur dioxide
t,ton	Metric ton
tCO ₂ e	Metric ton of carbon dioxide equivalent
TEQ	Toxic equivalent quotient
TiO ₂	Titanium oxide
TSP	Total suspended particles
USEPA	United States Environmental Protection Agency
VOC	Volatile organic compounds
WBCSD	World Business Council for Sustainable Development
WRI	World Resource Initiative
wrt	with respect to
YTD	Year to date