INVESTIGATION OF ZINC REMOVAL CAPACITIES OF DIFFERENT SORBENT MATERIALS TO BE USED IN CONSTRUCTED WETLANDS

MASTER OF SCIENCE

W.A.U. WITHARANA

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
SRI LANKA

DECEMBER 2010
INVESTIGATION OF ZINC REMOVAL CAPACITIES OF DIFFERENT SORBENT MATERIALS TO BE USED IN CONSTRUCTED WETLANDS

W.A.U. Witharana

(08/8018)

University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ac.lk

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Civil Engineering

University of Moratuwa
Sri Lanka

December 2010
Declaration

I hereby declare that this submission is my own work and that to the best of my knowledge and belief, it contains neither materials previously published or written by another person, nor material, which to a substantial extent has been accepted for the award of any other degree or diploma of an university or other institute of higher studies, except where an acknowledgement is made in the text.

W.A.U. Witharana
Date:

This is to certify that this thesis submitted by W.A.U. Witharana is a record of candidate's own work carried out by her under our supervision. The matter embodied in this thesis is original and has not been submitted for the award of any other degree.

Research Supervisors

Dr. M.W. Jayaweera Dr. J.M.A. Manatunge
Senior Lecturer Senior Lecturer
Department of Civil Engineering Department of Civil Engineering
University of Moratuwa University of Moratuwa
Sri Lanka Sri Lanka

Date: Date:
Decayed is this body, a frail nest of diseases. This foul mass breaks up. Indeed, the life ends in death.

Dedication
To
All teachers
who have profoundly changed
the our lives
Acknowledgement

I owe my deepest gratitude to all the teachers who have guided me towards the success of my academic achievements.

Firstly, I am most grateful to Dr. Mahesh Jayaweera and Dr. J.M.A. Manatunge, who gave me the opportunity to pursue higher studies. This thesis would not have been a possibility unless my supervisors who have been very helpful in providing good guidance, advice and critical remarks during the period of Master's thesis. I would like to thank Prof. (Mrs). Ratnayake for her invaluable support and advises. It is my pleasure to thank external examination committee, Dr.(Mrs). Banduni Laiyanage, Prof. Suren Wijekoon and Dr. Udeni Nawagamuwa who has made available his support in numerous of ways.

I wish to extend my thanks to Sida, for granting financial support through ARRPET Phase II project. A major part of my work has been done in the Environmental Engineering Laboratory. I am indebted to the lab staff: Ms. Nilanthi Gunathilake, Mr. Justin Silva, Ms. Inoka Udayangani, Ms. Sulochana Boteju and Ms. Priyashani Cooray for their kind assistance. I would like to express my heartiest gratitude to Ms. Manjula Ranasinghe and Mr. Gayan Gunarathe for being available during hard times.

I would also like to express my sincere gratitude to Mr. C.H. Manoratne at Industrial Technology Institute, for assisting me in analyzing results.

I would like to show my deepest gratitude to my mother for her eternal love and to my brother and sister, who have been the strength in my life. Last but not least, I should thank to Nuwan, my beloved husband, for all the love and caring.
Abstract

There is an increasing demand for better water quality in order to safeguard public health, the social security and accomplish environmental integrity. It has been found over the past couple of years that health hazards associated with heavy metal have been on the rise, particularly the chronic health problems due to the ingestion or consumption of even low doses of heavy metal-rich waters. Accumulation of such metals is reported mainly due to non-treatment or poor treatment of industrial wastewaters. Lack of tertiary treatment may have attributed to this growing problem and hence the environmental pollution. Constructed wetlands have therefore received great attention in the recent past as a tertiary treatment method or a polishing technique due to low construction and operation costs, minimum maintenance and also as an environmental friendly system. However, finding a low-cost sorbent material which can be used as an alternative to activated carbon has been a problem for decades in wastewater treatment industry, especially in developing countries. Therefore, the present study focuses on the applicability of low-cost sorbent materials that can be used in constructed wetlands as a filter medium. The focus was on four sorbent materials: tile, brick, saw dust and rice husks, which were selected based on their local availability. Laboratory-scale experiments were performed to investigate their maximum adsorption capacity and removal efficiency with a synthetic Zinc solution. The Results revealed that tile material has the highest adsorption capacity (47.6 mg/g) and removal efficiency, (98%) while brick (37.0 mg/g, 86%), sawdust (20.4 mg/g, 80%) and rice husks (15.8 mg/g, 64%) have relatively low adsorption capacities and removal efficiencies, respectively. The percentage removal of Zinc by all the four sorbent materials increased with an increase of contact time. The kinetics of adsorption were relatively fast for all tested low-cost materials. The equilibrium data were correlated with both Langmuir and Freundlich isotherms. Adsorption isotherms are well-described by Langmuir isotherms. The separation factor of equilibrium (R_L) indicates favourable isotherms ($0 < R_L > 1$) for all tested materials. Characterization of four sorbent materials was done by undertaking SEM, XRD and FTIR analyses. It can be concluded from the results that, the low-cost sorbent materials that were tested can be an attractive substitute for activated carbon in removing Zn from industrial wastewaters.

Keywords: adsorption isotherms, constructed wetlands, sorbent material, Zinc
Table of Contents

Acknowledgement ... i
Abstract ... ii
List of Tables .. v
List of Figures ... vi
Abbreviations and Acronyms .. vii

CHAPTER 1 ... 1
1 Introduction ... 1
 1.1 Background .. 1
 1.2 Problem definition .. 2
 1.3 Objectives ... 3
 1.4 Scope and outline of the report 3

CHAPTER 2 ... 5
2 Literature Review .. 5
 2.1 Zinc ... 5
 2.1.1 Zinc related industries ... 5
 2.1.2 Biological role and Zinc toxicity 5
 2.2 Constructed wetlands .. 6
 2.2.1 Types of wetlands and their mechanism of removing pollutants 6
 2.3 Sorbent material and their adsorption mechanism 10
 2.3.1 Adsorption isotherms/kinetics 11
 2.3.2 Characteristics of adsorbent which determine the adsorption 11
 2.4 Low-cost sorbent materials ... 12
 2.4.1 Uses of low-cost sorbent materials for remediation of wastewater 12
 2.4.2 Uses of low-cost materials in remediation of industrial wastewaters 12
 2.4.3 Sorbent materials used in constructed wetlands 17
 2.4.4 Low cost sorbent materials used in constructed wetlands in remediation of wastewaters 17

CHAPTER 3 ... 24
3 Materials and Methods ... 24
 3.1 Adsorbent materials, instruments and equipment 24
 3.2 Characterization of adsorbent materials 25
 3.3 Batch adsorption experiments 25
 3.4 Adsorption isotherms ... 26
 3.4.1 Langmuir adsorption isotherms 26
 3.4.2 Freundlich adsorption isotherm 27
 3.5 Adsorption kinetics .. 27
 3.6 Thermodynamics parameters 28

CHAPTER 4 ... 30
4 Results and Discussion .. 30
 4.1 Characterization of adsorbent materials 30
 4.1.1 SEM analysis ... 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2 XRD analysis</td>
<td>31</td>
</tr>
<tr>
<td>4.1.3 FTIR analysis</td>
<td>38</td>
</tr>
<tr>
<td>4.2 Equilibrium studies and removal efficiency</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Isotherm Studies</td>
<td>44</td>
</tr>
<tr>
<td>4.4 Adsorption kinetics and thermodynamics parameter</td>
<td>47</td>
</tr>
</tbody>
</table>

CHAPTER 5 ... 49

5 Conclusion .. 49

CHAPTER 6 ... 51

6 Recommendations .. 51

References .. 52

Annexes .. 58
List of Tables

Table 1: Uses of constructed wetlands for pollutants removal by different wastewater producing industries 8
Table 2: Industrial wastewaters (actual or synthetic) remediation by low cost material in laboratory scale 13
Table 3: Pilot and full scale investigations for filter/sorbent material wastewater remediation 19
Table 4: XRD analysis for clay tile 32
Table 5: XRD analysis for brick 34
Table 6: Summary of Characterization tests 42
Table 7: Langmuir and Freundlich isotherm constant for clay tile, brick, sawdust, rice husks and activated carbon in Zinc solution 44
Table 8: The comparison of maximum adsorption capacity between experimental values and Langmuir values 44
Table 9: Adsorption kinetics for clay tile, brick, sawdust, rice husks and activated carbon 47
Table 10: Thermodynamic equilibrium constant (Kc) and Gibbs free energy (ΔG) at for adsorption of Zn (II) on different materials 47
Table 11: Summary of Experimental values 48
Table 12: Summary of all test parameters 49
List of Figures

Figure 1: SEM images at 1000× for a) clay tile, c) brick, e) sawdust and g) rice husk as a raw material before treatment with Zn (II) and SEM images at 1000× for b) clay tile, d) brick, f) sawdust and h) rice husk after the experiment being treated with synthetic Zn solution

Figure 2: XRD graph for a) clay tile before treatment and b) after treatment with Zn (II) solution

Figure 3: XRD graph for a) brick before treatment and b) after treatment with Zn (II) solution

Figure 4: XRD graph for a) sawdust before treatment and b) after treatment with Zn

Figure 5: XRD graph for a) rice husks before treatment and b) after treatment with Zn

Figure 6: FTIR analysis for clay a) before treatment and b) after treatment with Zn

Figure 7: FTIR analysis for brick a) before treatment and b) after treatment with Zn

Figure 8: FTIR analysis for sawdust a) before treatment and b) after treatment with Zn

Figure 9: FTIR analysis for rice husks a) before treatment and b) after treatment with Zn

Figure 10: The effect of contact time on amount adsorbed a) and removal efficiency b) (Initial concentration - 100 mg/l of Zn, particle size - 415 um, dose - 1 g/100 ml, pH - 6.5)

Figure 11: Langmuir Isotherms for a) activated carbon, b) brick, c) clay tile d) sawdust and e) rice husks at room temperature (28 ± 3 ºC)

Figure 12: Freundlich Isotherms for a) clay tile, b) sawdust, c) activated carbon d) brick and rice husks e) at room temperature (28 ± 3 ºC).
Abbreviations and Acronyms

AAS Atomic Adsorption Spectrometer
BOD Biological Oxygen Demand
BOI Board of Investment of Sri Lanka
CAC Commercially available Activated Carbon
CEA Central Environmental Authority
CEC Cation Exchange Capacity
CWs Constructed Wetlands
FIAM Free Ion Activity Model
FTIR Fourier Transformation Infra-Red
FWS CWs Free Water Surface Constructed Wetlands
FWS Free Water Surface
HSSF Horizontal Subsurface Flow
IAA Indole Acetic Acid
IDB Industrial Development Board
MoID Ministry of Industrial Development
NEA National Environment Act
N Nitrogen
P Phosphorus
SEM Scanning Electron Microscope
SSHF CWs Subsurface Horizontal Flow Constructed Wetlands
SSVF CWs Sub-Surface Vertical Flow Constructed Wetlands
TOC Total Organic Carbon
TON Total Organic Nitrogen
TRP Total Reactive Phosphorus
TSS Total Suspended Solids
XRD X-Ray Diffraction