AN INTEGRATED APPROACH FOR ESTIMATING PROBABLE MAXIMUM PRECIPITATION INCORPORATING THE CONCEPT OF THRESHOLD

By W C D K FERNANDO M Eng., B Sc Eng.

The thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Research supervised

By Professor S S Wickramasuriya

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA JANUARY 2011

DECLARATION

This thesis is a report of research carried out in the Department of Civil Engineering, University of Moratuwa, between March 2006 and December 2010. Except where references are made to other work, the contents of this thesis are original and have been carried out by the undersigned. The work has not been submitted in part or whole to any other university.

W C D K Fernando Department of Civil Engineering University of Moratuwa Sri Lanka

.....

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.....

Supervisor Prof S S Wickramasuriya Department of Civil Engineering University of Moratuwa Sri Lanka

ABSTRACT

Probable maximum precipitation (PMP) is widely used as an input in rainfall-runoff modelling to estimate probable maximum flood (PMF), which is required for the design of spillways of large dams. Two methods for estimating PMP, namely, the hydro-meteorological and statistical techniques which are characteristic of the deterministic and probabilistic approaches are used extensively. International research shows substantial differences in the results obtained by these methods. In this study an integrated approach, which incorporates the concept of threshold, which has not been practiced in the global context is developed to estimate PMP.

This integrated approach modifies Hershfield's statistical procedure to account for the total absence of outliers or presence of multiple outliers by incorporating the concept of threshold. Further, it is coupled with the hydro-meteorological approach to derive realistic values of the frequency factor, K. Thus K is perceived as a factor depending on the mean and coefficient of variation which are statistical characteristics, and on extreme precipitable water and precipitation efficiency, which are hydro-meteorological factors. It is also vital that Hershfield K values should not be directly applied without first ensuring their validity by using a meteorological and statistical analysis of data at the given location. The method is used to estimate 24h, point PMP at 18 rainfall stations in Sri Lanka. The threshold is determined by detecting outliers using the Inter Quartile Range test (IQR). In the presence of multiple outliers, Hershfield's PMP results could be as much as 45% higher than those of the modified method.

While the integrated approach yields valuable results, it is of significant scientific interest to explore what the outcome would have been if the physically based hydrometeorological procedure had been adopted. For this purpose, long series of annual maximum daily rainfall data from seven stations were analysed. The research shows that the maximum moisture and corresponding wind run or the use of maximum moisture alone are two scenarios, which yield results compatible with the modified

ii

statistical PMP. Although globally there is a tendency to exclude wind maximization, this does not automatically apply to a country like Sri Lanka, which experiences cyclonic rainfall and special attention should be paid to precipitation efficiency. These results are further confirmed by a frequency analysis based on the generalized extreme value (GEV) distribution.

Data from 22 meteorological stations from 11 other countries have also been used to develop some useful relationships between PMP, observed maxima, mean, median and threshold, hitherto not published elsewhere. The current practice of using 2.0-3.0 times the observed maxima as an approximation to PMP, can yield very misleading results. In comparison, the relationship between PMP and threshold is a far superior approximation for obtaining a reliable estimate of PMP. It is also found that when the observed maxima approach 2.5 to 3.0 times the threshold, the observed maxima approach PMP values, for all values of K. These relationships are further confirmed by extensive use of simulation.

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertation

The integrated approach yields far more realistic estimates of PMP and offers much potential for design office practice and developing PMP maps for Sri Lanka. Aspects needing further investigation are also mentioned.

ACKNOWLEDGEMENT

- I am indebted to the Board of Management of General Sir John Kotelawala Defence University for their kind permission to complete the research successfully
- I express my sincere thanks to the staff of the Department of Civil Engineering, University of Moratuwa for providing facilities to complete this research
- I am very grateful for my supervisor, Prof. SS Wickramasuriya, for his enthusiastic help and support. The criticisms, suggestions, encouragement and questions enabled me to sharpen and strengthen the analyses and arguments in this study.
- I also wish to thank the staff of the Department of Meteorology, Department of National Archives and Lake House library, who provided the support in collecting data
- I wish to acknowledge the assistance of Dr PR Rakhecha, former Dy. Director of Indian Institute of Tropical Meteorology, who gave the support by sending research papers and for his scientific advice. I must thank Simon Papalexiou, National Technical University of Athens, who provided support in solving problems especially in extreme value analysis.
- I wish to express my gratitude to friends at Hydraulics Division, University of Moratuwa, for sharing many ideas through interaction
- I specially thank Mr. Wajira Kumarasinghe, Technical Officer, Hydraulic Engineering Laboratory for supporting me in various activities for more than three years
- A special thanks goes to Imendra, Thanuja, Bimali and Kithsiri, my colleagues at KDU, for encouraging me when the tasks seemed overwhelming and helping me in various ways
- Thanks also to my mother who helped me in numerous ways to reduce my working load without complaints
- Many thanks also give to my kids Hansi, Mino and Thili for their patience, help and unconditional love during this period
- Finally, I owe an immeasurable debt and deep affection to my loving husband, Rakitha, who helped directly and continuously in writing this thesis. I truly thank him for sticking by my side, even when I was irritable and depressed. Without him this thesis could not have been written.

CONTENTS

Abstra	ct	ii
Acknow	wledgement	iv
Conter	its	v
List of	Figures	ix
List of	Tables	xi
СНАР	TER 1: INTRODUCTION	1
1.1	General	1
1.2	Study area	5
1.2.1	•	6
1.2.2	Selected rainfall stations in global context	7
1.3	Objectives of the study	7
1.4	Relevance of the study	8
		-
СНАР	TER 2: LITERATURE REVIEW	10
2.1	Introduction	10
2.2	Methods of estimating PMP	10
2.2.1	Storm model approach	10
2.2.2	Maximization and transposition of actual storms	11
2.2.3	Statistical analysis of extreme rainfalls uwa, Sri Lanka.	13
2.2.4	Use of generalized data ic Theses & Dissertations	15
2.2.5	Use of empirical formulae ac. Ik	16
2.2.6	Use of empirical relationships	16
2.3	Hydro-meteorological studies	16
2.4	Statistical approaches	20
2.5	Frequency analysis of extreme rainfall	22
2.5.1	Generalized extreme value distribution	23
2.5.2	Lognormal distribution – 3 parameter	24
2.5.3	Pearson type 3 distribution	25
2.5.4	Generalized Pareto distribution	25
2.6	Estimation of parameters	26
2.7	Probability plotting positions	26
2.8	Current research on frequency analysis of extreme rainfall and PMP	27
2.9	Outliers	30
2.9.1	Definition	30
2.9.2	Classification of outliers	31
2.9.3	Outlier detection	31
2.10	Summary	36
	Hydro-meteorological method	36
	Statistical method	36
	Frequency analysis	37
2.10.4	Outliers	37

CHAPTER THREE: EXTREME RAINFALLS IN SRI LANKA		39
3.1	Introduction	39
3.2	Climate of Sri Lanka	39
3.2.1	Introduction	39
3.2.2	Climatic controls	41
3.2.3	Annual rainfall and seasonal variation	43
3.3	A few notable events – Case studies	47
3.3.1	The December 1897 storm – Nedunkerni	47
3.3.2	The December 1911 storm – Mullaitivu	47
3.3.3	The January 1913 storm – St. Martin's Rangala	48
3.3.4	The May 1940 storm – Balangoda	48
3.3.5	The August 1947 storm – Kandy	49
3.3.6	The December 1957 storm – Habarana	49
3.3.7	The November 1978 storm – Batticaloa	50
3.3.8	The June 1992 storm – Colombo	50
3.3.9	The May 2003 storm – Ratnapura	51
3.4	Summary	52

CHAPTER FOUR: METHODOLOGY 54		
4.1	Introduction	54
4.2	Standard procedures for estimating PMP	54
4.2.1	Storm maximization – Hydro-meteorological method	54
4.2.2	Statistical method versity of Moratuwa, Sri Lanka.	62
4.2.3	Detection of outliers onic Theses & Dissertations	65
4.2.4	Frequency analysisy. http://www.ac.lk	67
4.3	Problematic issues	73
4.3.1	Wind maximization	74
4.3.2	Frequency factor	74
4.3.3	Outliers and threshold	74
4.3.4	The ratio of PMP to maximum observed rainfall	74
4.4	The integrated approach	75
CHAPTER FIVE: DATA COLLECTION AND SCREENING		
5.1	Introduction	76
5.2	Sri Lankan data	76
5.2.1	Geographical data	76
5.2.2	Meteorological data	77
5.3	International data	82
5.4	Problems encountered with Sri Lankan data	84
5.5	Tests for randomness	85
5.5.1	Turning points test	86
5.5.2	Runs test	88
5.5.3	The serial correlation coefficient	89
5.6	Tests for trend	91
5.6.1	Spearman's Rho test	91
5.6.2	Mann-Kendall test	93
5.6.3	Linear regression	93

Г 7	Test for stop shappe	05
	Test for step change	95
	The F-test for stability of variance	95
5.7.2		98
5.8	Summary	102
CHAF	PTER SIX: DATA ANALYSIS AND SIMULATION	105
6.1	Introduction	105
6.2	Hydro-meteorological analysis	105
6.2.1	Preparation of a storm catalogue	105
6.2.2	Selection of the extreme event	106
6.2.3	Moisture maximization	106
6.2.4	Wind maximization	108
6.2.5	Precipitation efficiency	110
6.2.6	Composite criteria	111
6.3	Statistical analysis	114
6.3.1	, Modification of frequency factor	114
6.3.2	Increasing sample size	115
6.3.3	Equal sample size	116
6.3.4	A continuous record	117
6.3.5	Comparison of hydro-meteorological method and statistical method	119
6.4	Detection of outliers and thresholds	119
6.5	Frequency analysis	121
6.5.1	Fitting parametric distributions to the data. Sri Lanka.	121
6.5.2		121
6.5.2	Goodness-of-fit testsonic Theses & Dissertations	124
	Plotting of data	
6.6	Simulation of data and analysis	133
6.6.1	•	133
6.6.2	Monte Carlo simulation	133
6.7	Summary	137
CUAT		420
	PTER SEVEN: RESULTS AND DISCUSSION	138
7.1	Introduction	138
7.2	Hydro-meteorological method: Different scenarios	138
7.3	Statistical method: Threshold and outliers	140
7.4	Comparison of statistical method and hydro-meteorological approach	144
7.4.1	Hydro-meteorological interpretation of K factor	144
7.5	Some useful relationships between the statistics of rainfall extremes	147
7.6	Summary	151
<u></u>		<u> </u>
	TER EIGHT: CONCLUSIONS AND RECOMMENDATIONS	152
8.1	Introduction	152
8.2	Main conclusions	153
8.3	Recommendations for further research	155

LIST OF REFERENCES	157
Annex A	166
Annex B	170
Annex C	174
Annex D	177
Annex E	179

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Figure	Description	Page No.
1.1	The application of three methods in PMP estimation	5
1.2	Locations of the selected rainfall stations in Sri Lanka	6
3.1	Global belts of low (L) and high (H) atmospheric pressure	40
3.2	Cyclonic Trajectories during 1845 – 1958	43
3.3	Average annual rainfall (1961 – 1990)	44
3.4	Agro – ecological region of Sri Lanka	45
3.5	Mean monthly rainfall at selected stations during 1961 – 1990	46
4.1	The flow chart for storm maximization	55
4.2	Precipitation efficiency	60
4.3	The flowchart to estimate PMP using Hershfield method	63
4.4	L-skewness and L-kurtosis relationships for 2 and 3-parameter	72
	distributions	
4.5	Schematic representation of the integrated approach for	75
	estimating PMP, lib.mrt.ac.lk	
5.1	Monthly mean of maximum wet-bulb temperature	80
5.2	Selected Countries	83
6.1	Comparison of frequency factors	114
6.2	The variation of PMP with increasing sample size	116
6.3	Comparison of PMP – Equal sample size and continuous record	117
6.4	Comparison of both methods	119
6.5	Results on the number of stations with respect to the best	126
	fitting distribution found based on a) Chi-square test (C-S) b) K-	
	S test c) A-D test	
6.6	L-moment ratio diagram	127
6.7	GEV distributions for the annual maximum daily rainfall series	131
	of all stations	
7.1	Flowchart to estimate PMP using modified statistical method	141
7.2	Estimating a realistic K _M value	146

7.3	Relationship between extreme statistics and PMP – Twelve	148
	Countries	
7.4	Comparison of observed and simulated data	150

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table	Description	Page No.
1.1	Design Flood Criteria & Recommended Safety Standard	3
2.1	Plotting Positions	26
3.1	Main seasons of a climate year in Sri Lanka	40
3.2	Mean seasonal distribution of rainfall at selected stations as a	41
	percentage	
3.3	Maximum daily rainfall recorded at selected meteorological	46
	stations	
4.1	Maximization and Adjustment Factors	61
4.2	Modified K values	65
4.3	A comparison of outlier detection methods	66
4.4	Functions of the selected distributions	68
4.5	Notation for moments y of Moratuwa, Sri Lanka.	69
4.6	Notation for L-moments Theses & Dissertations	69
5.1	Geographical Data	76
5.2	Some Characteristics of selected Meteorological Stations	78
5.3	Daily and 24-hour rainfall values	79
5.4	Dew point temperatures	81
5.5	Wind data	81
5.6	Air temperatures at selected stations	82
5.7	Some characteristics of global rainfall data	83
5.8	Results of turning points test	87
5.9	Results of runs test	88
5.10	Results of serial correlation test	90
5.11	Results of Spearman's rank correlation test	92
5.12	Results of regression test	94
5.13	Computation of F _t for two sub-sets	96
5.14	Computation of F _t for three sub-sets	97
5.15	Computation of t _t for two sub-sets	98

5.16	Computation of t _t for three sub-sets	99
5.17	Results of cumulative deviation tests	101
5.18	Results of statistical tests on data processing	102
6.1	Storm catalogue showing five extreme daily rainfall values	105
6.2	The occurrence of five heaviest rainfalls	106
6.3	Dew point temperatures and air temperature	107
6.4	Storm precipitable water for Hambantota	107
6.5	Moisture maximization factors	108
6.6	Critical wind directions	108
6.7	Wind analysis	109
6.8	Precipitation efficiency for Hambantota	110
6.9	Precipitation efficiency	110
6.10	Estimated PMP values	112
6.11	Selected scenarios and hydro-meteorological PMP values	113
6.12	Summary of statistical analysis of continuous records	118
6.13	Summary of outlier test results oratuwa, Sri Lanka.	120
6.14	Results of estimated parameters	122
6.15	Results of GOF tests	124
6.16	The best fitting distribution based on three GOF tests and L-	128
	moment ratio diagram for all stations	
6.17	AWD values of probability distributions	129
6.18	Return period estimates in years	132
6.19	Statistical properties of historical and simulated data	135
7.1	PMP and return period	139
7.2	Comparison of PMP results using both methods	142
7.3	Modified statistical PMP and return period	143
7.4	PMP results	144
7.5	Comparison of K _{hydro} and K _{mod}	146
7.6	Root mean square of error values	149