Mining social sentiments for demand analysis in Footwear industry

A.M.A.N.P.W.M.R.P.D.B. Athurupane 198742X

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka, for the partial fulfilment of the requirements of the Degree of Master of Science in Information Technology.

Declaration

We declare that this thesis is our own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text, and a list of references is given.

Name of Student	Signature of Student
A.M.A.N.P.W.M.R.P.D.B. Athurupane	UOM Verified Signature
	Date: 30/07/2022
Supervised by	
Name of Supervisor	Signature of Supervisor
Dr. Saminda Premaratne	UOM Verified Signature

Date: 30/07/2022

Acknowledgment

This dissertation would have been impossible without the tremendous support and motivation of those who assisted me throughout this journey. First and foremost, my heartfelt gratitude goes to my supervisor and Programme coordinator, Dr. Saminda Premaratne, who took responsibility for supervising me without hesitation. I am eternally grateful for him, for always being patient, flexible and empathetic. Also, I am thankful for his expertise, encouragement, moral support and guidance which he provided with generosity to facilitate my task.

Next, my heartfelt gratitude is extended to my friend Ms. S. N. Rambukkanage for the immeasurable support provided to me through these two years of period.

It is with great pleasure I thank the University of Moratuwa, Sri Lanka, for all its efforts and facilities that it has taken to contribute towards this postgraduate Programme. Specially, I would like to thank my colleagues for their support to complete this research in many ways.

Finally, all my thanks and respect go to my family and friends for all the unceasing love and support they provided me.

Abstract

The public tends to express their thoughts about particular goods and or services through popular social media networks such as Twitter and Facebook, while the firms also use social media to communicate with their consumers. As a result, this beneficial information can be used to make marketing and business decisions. However, due to the vast, noisy, and dynamic nature of these information, capturing the true public opinion has become a key challenge. Sentiment analysis is one of the methods that is employed to extract positive or negative attitudes from this social media information and thus, it has drawn the attention of the scholars during last decade. Different scholars have used a variety of techniques and methods to capture accurate results. Data mining is one of the recent approaches adopted by them to obtain better results from sentiment data. Moreover, some scholars have extended their studies to gain more insights from different topics. Such studies conducted to predict future results, analyze trends, detect anomalies etc. It can be beneficial for massive industries like footwear to understand their market through these approaches and streamline their product and service catalogs to meet the needs of their customers. This research aims to analyze previous studies conducted on this area, identify their contribution, challenges and limitations, and build a new comprehensive demand prediction model for footwear industry using data mining techniques.

Key words: Sentiment Analysis, Data Mining, Demand prediction, Footwear Industry, Polarity detection, Lexicon, CrowdTangle, Twitter API, Postman, RapidMiner

Table of Contents

		Page
Decla	ratio	ni
Ackn	owled	lgmentii
Abstı	ract	iii
Table	e of C	ontentsiv
List o	of Fig	uresvii
List o	of Tab	olesvii
1. Int	trodu	ction1
1.1	Bac	kground of the study1
1.2	Prob	olem Statement
1.3	Ain	and Objectives4
1.3	3.1	Aim4
1.3	3.2	Objectives4
1.4	Prop	posed solution4
1.5	Sun	nmary5
2. Lit	teratu	re Review6
2.1	Intro	oduction6
2.2	Data	a mining in online social media6
2.3	Soc	ial sentiment analysis7
2.4	Den	nand analysis using social media sentiments8
2.5	Sun	nmary9
3. Te	chnol	ogy adopted10
3.1	Intro	oduction
3.2	Too	ls and software used
3.2	2.1	RapidMiner Studio 9.1010
3.2	2.2	CrowdTangle10
3.2	2.3	Upscene Advanced Data Generator 4
3.2	2.4	Twitter API
3.2	2.5	Postman API
3.2	2.6	Microsoft Excel
3.3	Data	a mining algorithms and other techniques used13
3.3	3.1	Naïve Bayes classification
3.3	3.2	K-NN Algorithm
3.3	3.3	Random forest

3.3	.4	Deep learning	15
3.3	.5	Rule induction	15
3.3	.6	Decision tree	15
3.3	.7	SentiWordNet	16
3.4	Sun	nmary	16
4. Ap	proa	ch for mining social sentiments for demand analysis in Fo	otwear
ind	lustry	y	17
4.1	Intr	oduction	17
4.2	Inp	uts to the model	17
4.3	Out	put from the model	17
4.4	Pro	cess in brief	17
4.5	Plat	tform selection	18
4.6	Dat	a collection	18
4.6	.1	Collection of Facebook post reactions data	19
4.6	.2	Collection of Twitter post data (Tweets)	20
4.7	Sun	nmary	23
5. An	alysi	s and Design	24
5.1	Intr	oduction	24
5.2	Ana	alysis of the study	24
5.3	Des	sign of the study	25
5.3	.1	Attribute selection	25
5.3	.2	Text mining	26
5.3	.3	Sentiment Analysis	26
5.3	.4	Prediction models	30
5.4	Fina	al design of the study	30
5.5	Sun	nmary	31
6. Im	plem	entation of the model	32
6.1	Intr	oduction	32
6.2	Dat	a preprocessing and Text mining	32
6.2	.1	Facebook post reaction data	32
6.2	.2	Twitter post data (Tweets)	35
6.3	Sen	timent analysis	35
6.3	.1	Sentiment analysis in Facebook post reaction	35
6.3	.2	Sentiment analysis in Tweets	35
6.4	Pro	cess of creating aggregated dataset	37

6.5	Ser	ntiment prediction	38
6.6	Ide	ntifying trend patterns and predict demand	40
6.7	Sui	nmary	40
7. Ev	alua	tion	41
7.1	Inti	roduction	41
7.2	Eva	aluation of the Sentiment predictions	41
7.2	2.1	Decision Tree algorithm	41
7.2	2.2	Random Forest algorithm	42
7.2	2.3	Naïve Bayes algorithm	42
7.2	2.4	Deep learning algorithm	42
7.2	2.5	Rule induction algorithm	43
7.3	Eva	aluation of identifying trend patterns and predict demand	45
7.4	Sur	nmary	46
8. Co	nclu	sion and Future work	47
8.1	Co	nclusion of the study	47
8.2	Lin	nitations of the study	48
8.3	Fut	ure work	49
9. Re	ferei	nce	50
Appe	ndix	A	52
Appe	ndix	В	53
Anne	ndix	C	54

List of Figures

	Page
Figure 3-1: CrowdTangle Dashboard	11
Figure 3-2: Upscene Advanced Data Generator	11
Figure 3-3: Postman dashboard	12
Figure 4-1: Raw data collected from CrowdTangle	22
Figure 4-2: Raw data collected from Twitter	22
Figure 5-1: Proposed design of the model	25
Figure 5-2: Actual design of the model	31
Figure 6-1: Process of extracting attribute values from FB data	33
Figure 6-2: RapidMiner Operators used to analyse sentiment in Tweets	36
Figure 6-3: Parameter setting in Extract Sentiment operator	36
Figure 6-4: Example of the Final Dataset	38
Figure 6-5: Process of Predicting Sentiments	39
Figure 6-6: Field configuration of Pivot table	40
Figure 7-1: Sentiment trend for Flip Flops	45
Figure 7-2: Sentiment trend for Sandals	45
List of Tables	
	Page
Table 4-1: Additional Attributes and values	19
Table 4-2: Filters used in CrowdTangle	20
Table 4-3: Query parameters used in Postman API	21
Table 5-1: Sentiment score of Facebook reactions (Source: [21])	29
Table 6-1: Tasks performed by RapidMiner Operator in attribute value extracti	on34
Table 6-2: Tasks performed by RapidMiner operators in sentiment prediction	39
Table 7-1: Accuracy percentages of Decision Tree algorithm	41
Table 7-2: Accuracy percentages of Random Forest algorithm	42
Table 7-3: Accuracy percentages of Naive Bayes algorithm	42
Table 7-4: Accuracy percentages of Deep Learning algorithm	42
Table 7-5: Accuracy percentages of Rule Induction algorithm	43
Table 7-6: Suitable ML algorithms for Predict Sentiments	43