PREDICTION OF CRITICAL PARAMETERS FOR AUTOMATION OF KILN PROCESS USING DNN REGRESSION

Warnakulasuriya Kalugamage Cashiyan Pramod Primalka Fernando

188662R

Degree of Master of Science in Industrial Automation

Department of Electrical Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

January 2022

PREDICTION OF CRITICAL PARAMETERS FOR AUTOMATION OF KILN PROCESS USING DNN REGRESSION

Warnakulasuriya Kalugamage Cashiyan Pramod Primalka Fernando

188662R

Thesis submitted in fulfillment of the requirements for the degree of Master of Science in Industrial Automation

Department of Electrical Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

January 2022

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the PhD/MPhil/Masters thesis/dissertation under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the supervisor 1:

Name of the supervisor 2:

Signature of the supervisor 1:

Date:

Signature of the supervisor 2:

Date:

Abstract

Cement kiln, the most energy consuming unit of a cement factory, carries out the clinker manufacturing process, which must be operational with stable conditions to achieve consistent clinker quality and maximum production rate.

In order to maintain smooth and stable conditions inside the rotary kiln system (RKS), some process control parameters should vary within their desired ranges. This is achieved by doing some adjustments to the kiln control variables. In most of the cement plants, this overall control can only be achieved by manual control by operators.

The physicochemical and thermochemical reactions of the RKSs are not yet well understood due to their complexity. Therefore, the behavioral patterns inside the kiln cannot be determined exactly by the operators. Sometimes they end up with wrong decisions for control variables, which can cause the RKS to become unstable and cause huge losses to the cement company.

Few automation research studies have been conducted for continuous prediction of control variables for kiln process. However, not all of them address the actual inefficiencies that occur in processes, equipment, and the entire system by recognizing kiln behavioral patterns. Therefore, the automation of clinker production processes with proper prediction model is necessary and it helps to increase production, improve product quality, reduce production costs and operator interventions.

This research study is to predict critical control variables such as fuel rate, kiln speed and waste gas fan speed for given RKS parameters to maintain desired process condition inside the RKS. The RKS of Siam City Cement Lanka Limited is used as the case study. A regression based DDN model is implemented and trained for the best accuracy by adjusting hyperparameters. Model evaluation is done until obtaining a minimum error. The results of the model validation in real time scenario are also presented and discussed.

Keywords— Clinker Manufacturing; Rotary Kiln System; Deep Neural Network; Regression Model; Machine Learning; Kiln Behavioral Patterns; Kiln Process Automation

ACKNOWLEDGEMENT

Foremost, I am deeply indebted to my supervisors Professor Chandima Pathirana and Professor Buddhika Jayasekara of the Department of Electrical Engineering, University of Moratuwa for their constant guidance, encouragement and support from the beginning to the end. It is my pleasure to acknowledge all the other academic staff members of Department of Electrical Engineering of the University of Moratuwa for their valuable suggestions, comments and assistance which were beneficial to achieve the project objectives.

I thank to the production, process, quality assurance, maintenance departments, specially my supervisor Mr. Prasad Maduranga and other staff members of the Siam City Cement (Lanka) Limited for the assistance and support they have given continuously.

Moreover, I would like to extend my gratitude to my family for their encouragement, understanding and patience throughout my academic pursuit. Finally, I am grateful to my colleagues and friends for showing interest in my work and giving constructive ideas towards the success of the research.

TABLE OF CONTENT

DECLARATION
Abstractii
ACKNOWLEDGEMENTiii
TABLE OF CONTENT iv
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS
1. INTRODUCTION
1.1 Problem Statement
1.2 Research Objective and Approach
1.3 Thesis Outline
2. BACKGROUND AND RELATED WORKS
2.1 Background
2.2 Kiln Process
2.3 Process Parameters
2.3.1 Control Parameters
2.3.2 Control Variables
2.4 Control Strategy 12
2.5 Applications of ML Algorithms for Industrial Process Control Systems 12
2.5.1 Model Predictive Control (MPC)12
2.5.2 Linear Regression
2.5.3 Artificial Neural Network and Industrial Usage
2.6 Related Works
2.6.1 A Neuro-Fuzzy Controller (NFC) for Rotary Cement Kilns
2.6.2 Internet and Fuzzy Based Control System for Rotary Kiln in Cement Manufacturing Plant
2.6.3 Intelligent Control for the Cement Industry
2.6.4 An Expert System Application for Lime Kiln Automation
2.7 Literature Review Summary
3. MODEL IMPLEMENTATION FOR PREDICTION OF CRITICAL PARAMETERS OF KILN PROCESS
3.1 Feature Identification and Extraction

3.2	Dat	aset Preparation	. 19
3.2	2.1	Data Collection	. 19
3.3	Dat	a Analyzing	.25
3.4	Dat	a Pre-processing	.26
3.4	1.1	Data Cleaning	.26
3.4	.2	Data Scaling	. 27
3.4	1.3	Dataset Finalizing	. 28
3.5	Alg	orithm Selection and Model Design	. 28
3.5	5.1	Multivariate Regression	. 28
3.5	5.2	DNN neural network for regression	. 28
3.5	5.3	Estimator API in TensorFlow for DNN Regression	. 29
3.6	Mo	del Implementation	31
3.6	5.1	Prediction Model	. 32
3.7	Mo	del Accuracy Calculation	.34
3.7	7.1	Mean Absolute Error (MAE)	.34
3.7	7.2	Mean Squared Error (MSE)	.34
3.7	7.3	Root Mean Squared Error (RMSE)	.34
3.7	7.4	R Squared (R2)	.35
4. RE	ESUL	TS AND VALIDATION	.36
4.1	Pre	dictor Evaluation Results	.36
4.1	.1	Fuel Rate Prediction Results	.36
4.1	.2	Kiln Speed Prediction Results	. 39
4.1	.3	Waste Gas Fan Speed Prediction Results	41
4.2	Mo	del Testing in Real Time	. 44
4.2	2.1	Model Predicted Values During the Real Time Testing	.45
4.3	Mo	del Validation	.47
4.3	8.1	RKS Process Performance Validation	.47
4.3	3.2	Clinker Quality Analysis	. 52
4.3	3.3	Pyrometer Measurement	. 53
4.4	Effi	ciency and Energy Consumption Improvement	. 53
4.4	l.1	Efficiency Improvement Calculation	. 53
4.4	1.2	Energy Consumption Improvement Calculation	. 57
4.5	Mo	del Training and Analysis with Optimum Quality Performance Data	60

5. C	ONCLUSION AND FUTURE WORKS	62
5.1	Conclusion	62
5.2	Future Work	63
REFE	RENCES	64
APPE	NDIX A - Standard Operation and Quality Targets for the RKS	67
APPE	NDIX B - Laboratory Report	68
APPE Kiln C	NDIX C - Typical Values Used for Waste Gas Fan Speed and Setpoint by the perators	he 69
APPE Noven	NDIX D – Operator Setpoints and Model Predicted Setpoints on Month nber 2021	of 71

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	Diagram of Rotary Kiln System	6
Figure 2.2	Pyrometer Snapshot of Inside the Kiln	8
Figure 2.3	Torque of a Hot and a Cold Kiln	9
Figure 2.4	Subsets of Artificial Intelligence	13
Figure 2.5	Linear Regression Modelling in ML	13
Figure 3.1	Five Phases of the Research Work	17
Figure 3.2	Siemens MIS Interface	19
Figure 3.3	Existing Process Tags of MIS & SCADA System	20
Figure 3.4	Tag Creation for 10s Interval Data Collection	22
Figure 3.5	Tags Assigning to Excel Sheet to Data Archiving	23
Figure 3.6	Attribute Data Merged in One Dataset	24
Figure 3.7	Kiln Stoppages during Data Collection Period	25
Figure 3.8	Before and After the Data Scaling	27
Figure 3.9	Structure of a DNN Model Inside DNNRegressor Estimator	29
Figure 3.10	Design of the Proposed Model	30
Figure 3.11	Implementation Architecture of the Overall Model	31
Figure 3.12	Real time Prediction of Three Control Variables	32
Figure 4.1	R2 Results while Training the Fuel Prediction Model	37
Figure 4.2	MAE Results while Training the Fuel Prediction Model	37
Figure 4.3	RMSE Results while Training the Fuel Prediction Model	38
Figure 4.4	Actual Fuel Rate vs Predicted Fuel Rate	38
Figure 4.5	R2 Results while Training the Kiln Speed Prediction Model	39
Figure 4.6	MAE Results while Training the Kiln Speed Prediction Model	40

Figure 4.7	MAE Results while Training the Kiln Speed Prediction Model	40
Figure 4.8	Actual Kiln Rotational Speed vs Predicted Kiln Rotational Speed	41
Figure 4.9	R2 Results while Training the Waste Gas Fan Speed Prediction Model	42
Figure 4.10	MAE Results while Training the Waste Gas Fan Speed Prediction Model	42
Figure 4.11	RMSE Results while Training the Waste Gas Fan Speed Prediction Model	43
Figure 4.12	Actual Waste Gas Speed vs Predicted Kiln Rotational Speed	43
Figure 4.13	Steps of Real Time Model Testing	44
Figure 4.14	Model Predicted Output for Fuel Rate	46
Figure 4.15	Model Predicted Output for Kiln Rotational Speed	46
Figure 4.16	Model Predicted Output for Waste Gas Fan Speed	47
Figure 4.17	Preheater CO Variation while Real Time Model Testing	48
Figure 4.18	Preheater O2 Variation while Real Time Model Testing	48
Figure 4.19	3rd Cyclone Pressure Variation while Real Time Model Testing	49
Figure 4.20	3rd Cyclone Temperature Variation while Real Time Model Testing	49
Figure 4.21	4th Cyclone Pressure Variation while Real Time Model Testing	50
Figure 4.22	4th Cyclone Temperature Variation while Real Time Model Testing	50
Figure 4.23	Kiln Inlet Pressure Variation while Real Time Model Testing	51
Figure 4.24	Kiln Ampere Variation while Real Time Model Testing	51
Figure 4.25	Pyrometer Snapshot while Testing the Model in Real Time	53

Figure 4.26	Model Predicted Values and Typical Setpoint for 62 t/h feed rate	54
Figure 4.27	Waste Gas Fan Speed Setpoints by Kiln Operator	54
Figure 4.28	Waste Gas Fan Setpoints by Kiln Operators at 62 t/h on 23rd November	55
Figure 4.29	Waste Gas Fan Setpoints by Kiln Operators at 65 t/h on 23rd November	56
Figure 4.30	Waste Gas Fan Setpoints by Kiln Operators at 67 t/h on 23rd November	56
Figure 4.31	Model Predicted Values and Typical Setpoint for Fuel at 62 t/h feed rate	57
Figure 4.32	Fuel Setpoints by Kiln Operator	57
Figure 4.33	Fuel Setpoints by Kiln Operators vs model prediction at 65 t/h in 22 nd of November	58
Figure 4.34	Fuel Setpoints by Kiln Operators vs model prediction at 67 t/h in 08 th of November	59
Figure 4.35	Fuel Setpoints by Kiln Operators vs model prediction at 69 t/h in 10 th of November	59
Figure 4.36	Original and New Predictions for the Kiln Rotational Speed	60
Figure 4.37	Original and New Predictions for the Waste Gas Fan Speed	61
Figure 5.1	Hardware Implementation of the Research Work	61

LIST OF TABLES

Table	Description	Page
Table 2.1	A Rough Temperature and Colour correlation	7
Table 2.2	Generally Used Oxygen Targets at the Kiln Inlet (dry gas)	10
Table 3.1	Two Types of Kiln Operation Features	18
Table 3.2	Standard Optimum Ranges for the Stable Operation of RKS	18
Table 3.3	Sensors and Equipment Used to Collect Data	21
Table 3.4	Kiln Stoppage Report during the Data Collection Period	25
Table 4.1	Hyperparameter Adjustment for Fuel Rate Prediction	36
Table 4.2	Hyperparameter Adjustment for Kiln Speed Prediction	39
Table 4.3	Hyperparameter Adjustment for Waste Gas Fan Speed Prediction	41
Table 4.4	Predicted Values from the Model while Testing Real Time	45
Table 4.5	Hourly Lab Test Results During the Model Testing in Real Time	52
Table 4.6	Hyperparameter Adjustment for Fuel Rate Prediction	60

LIST OF ABBREVIATIONS

Abbreviation	Description
RKS	Rotary Kiln System
AI	Artificiel Intelligence
DNN	Deep Neural Network
PLC	Programmable Logic Controller
SCADA	Supervisory Control and Data Acquisition
ML	Machine Learning
BZT	Burning Zone Temperature
LSF	Lime Saturation Factor
SR	Silica Ratio
NOx	NO and NO ₂
DC	Direct Current
AC	Alternative Current
SAT	Secondary Air Temperature
BET	Back End Temperature
HFO	Heavy Fuel Oil
AFR	Alternative Fuel Resources
MPC	Model predictive control
PID	Proportional, Integrative and Derivative
ANN	Artificial Neural Network
NN	Neural Network
TSK	Takagi Sugeno Kang
NFC	Neural fuzzy controller
SOP	Standard Operation Procedure
MIS	Management Information Server

СТ	Current Transformer
CSV	Comma Separated Values
KNN	K - Nearest Neighbor
API	Application Programming Interface
MAE	Mean Absolute Error
MSE	Mean Squared Error
R2	R - Squared Error
RMSE	Root Mean Squared Error
SSR	Squared Sum Error of Regression Line
SSM	Squared Sum Error of Mean Line