
25

Mathematical Expression Input Tool
A user friendly tool to type in LaTeX codes

W. M. Saroad
Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa

Moratuwa, Sri Lanka
melanka.13@cse.mrt.ac.lk

Abstract— LaTeX is a high quality typesetting system, used to
prepare scientific and technical documents. It has its own syntax
and scripting style to produce mathematical and scientific
text/symbols, on any LaTeX interpretable text editor. To use
LaTeX, it is important for the user to strictly adhere to its syntax
and hence be conversant with it, which is quite inconvenient. This
project is focused on producing a user-friendly software tool,
which would take in common mathematical text/symbols based
on natural language as user input, then present a list of matching
suggestions for that input and finally return the LaTeX code
corresponding to the user choice out of the list of suggestions. The
user-friendliness depends on how well both the natural input
processing algorithms and the user input-to-LaTeX mapped
database are tuned and optimized. Hence this project would
always produce new updates and progress would be made as
refinements and optimizations to the algorithms and database is
inevitable.

Keywords—LaTeX; strings; processing; algorithm; user; input;
suggestions

I. INTRODUCTION
LaTeX is a high quality typesetting system, used to prepare

scientific and technical documents. It has its own syntax and
scripting style to produce mathematical and scientific
text/symbols on any LaTeX interpretable text editor. To use
LaTeX, it is important for the user to strictly adhere to its
syntax and hence be conversant with it, which is quite
inconvenient. Hence the focus of this project is to develop a
user-friendly software solution to overcome this inconvenience
encountered in using LaTeX.

As mentioned above the system provides means of a user-
friendly interface between natural language input and the
standard LaTeX styles. This would help users to write LaTeX
codes without being familiar with LaTeX. In addition, this
application would also serve as means of preview, by providing
a set of suggestions for each user input, hence avoiding any
errors at the time of LaTeX interpretation.

The project was then focused on producing a user-friendly
software tool, which would take in common mathematical
text/symbols based on natural language as user input, and then
present a list of matching suggestions for that input and finally
return the correct LaTeX code corresponding to the user choice
out of the list of suggestions. The ‘Google Input Tools’
developed by the google in an open source project, which
provides a user-friendly interface to type in non-English

Unicode characters, served as a model-example for this
software solution.

The remainder of this paper is organized as follows: First,
Section II describes related work and literature. Next, Section
III describes the basic architecture of the system including the
system requirements and design, providing diagrams where
necessary. The details of implementation of the system is
described in Sections IV, along with a brief illustration of the
algorithms. Section V then discusses about system testing and
analysis. Finally, we conclude the paper in Section VI.

II. LITERATURE REVIEW

A. Study on LaTeX
“LaTeX is a high-quality typesetting system; it includes

features designed for the production of technical and scientific
documentation. LaTeX is the de facto standard for the
communication and publication of scientific documents.
LaTeX is available as free software.” – LaTeX project site [1].
According to the LaTeX project site [1], it is a widely used
documentation system, and had been releasing new updates
since its first release by Leslie Lamport in 1994. The latest
release was on the February 11, 2016.

A tutorial by JACEK POLEWCZAK [2] explains the
fundamental and technological aspects of
scientific/mathematical formatting systems including LaTeX. It
describes the first steps to start LaTeX, installation of LaTeX
interpreters and best practices in the use of LaTeX syntax.

Apart from formal mathematical and scientific
documentation, LaTeX is widely used in online
scientific/mathematical forums such as Art of Problem Solving
[3]. Also, there are many user friendly online tools such as
HostMath [4], that help users to easily build up and preview
LaTeX codes.

B. Study on similar existing systems
1) Google Input Tools: Google Input Tools [5] is a tool

that provides a user friendly interface and input method to
type in Unicode characters for over 80 non-English languages
including Sinhala and Tamil. It is installable on Windows
environment, and functions as a background tool. It supports
any Unicode recognizable text area including Notepad,
Microsoft Office applications, online applications such as
Facebook, Gmail, Yahoo etc. on any internet browser and

26

frankly speaking on any known application. This tool is easily
manipulated by the keyboard, hence this tool provides user
friendly and efficient means of typing text allowing the user of
involuntary use of the tool. This tool gets customized to the
user, by remembering the user’s corrections, and maintaining
a custom dictionary according to experience with the user.
Hence it is a smart tool that learns as it continues to work with
the user. This tool was developed in an open source project
initiated by the Google, and is available on GitHub [6]. The
project is still in progress and expects to improve further with
bug fixes and feature addition. The primary motivation and
example for this proposed tool is the Google Input Tools.

2) Microsoft Equation 3.0: The Equation editor freely

available on Microsoft office software applications, is a user-
friendly Math symbol/expression inserter. This editor uses a
markup language called MathML, as its syntax to format and
present mathematical symbols. The user-friendliness of this
editor is due to the availability of a GUI from which the user is
free to choose his/her required forms of symbols/expression.
The use of the cursor in such a GUI is inevitable, hence the
speed, rhythm and consistency of typing declines with
switching between keypad and mouse/touchpad. In this
proposed system such difficulties are reduced immensely. The
use of this proposed system, could entirely be done using the
keyboard, hence continuing consistency while typing. In fact
the user would use this proposed tool with much less effort
and to a certain extent, involuntarily.

3) Texmaker: Is a system that incoperates tools that are
needed to develop documents using LaTeX. It is a separate
document preparation tool and cannot be used for petty LaTeX
editing purposes on other LaTeX interpretable editors. In
contrast, the proposed system functions as a background
service tool with very low usage of resources and supports the
user on minor LaTeX editing purposes on any LaTeX
supported editor. The Texmaker requires the user to be
familiar with LaTeX syntax. But the proposed system do not
expect much user familiarity with LaTeX hence is much more
user friendly and convenient than Texmaker. In fact this tool
could even be used to type in LaTeX scripts on Texmaker,
without being conversant with LaTeX scripting.

III. SYSTEM MODELS

A. System Requirement
A user should be able to activate the tool whenever

necessary through simple means, for example by pressing a
couple of shortcut keys. Once it is activated, the user should
have the option of deactivating it whenever desired at any
stage, by a similarly simple method. Once activated, it should
be able to catch the user keyboard text input on any desired
application text area at real-time. Next, the application should
process the input and propose a list of related suggestions.
Finally, it should replace the user input text by the LaTeX code

corresponding to the user selection from the suggestions list, on
the same text area that the user used to type in the input.

 Figure 2 Usecase Diagram

Smooth communication with the operating system, and
simultaneous operation with any other major applications was a
fundamental requirement in providing smooth and convenient
user experience. Efficient execution of algorithms is required
as it is a real-time application and a considerable amount of
processing is required to be done. A light weight database is
required that could be embedded within the application used to
store simple input-to-LaTeX mappings and hence without
giving special consideration to the capacity of the database.

B. System Design
The basic architecture consists of four main components.

At the top most level or the user end is the User Interface. At
middle level is the Input/Output Manager, responsible for
coordinating and handling the system, and synchronizing the
user interactions with the lower level components. At the
lowest level is the Processer Engine and the Database,
responsible for processing the user input by executing
algorithms accordingly. These components communicate
hierarchically.

The Processer Engine Package consists mainly of three
classes. The DataAccess class is responsible for accessing the
database and loading the data into the program. The
TokenLibrary is responsible for efficient storage, manipulation,
organization and presenting of necessary data (that was
retrieved from the database) for processing. The Expression
class is the most vital in terms of processing. The fundamental
algorithm that understands and maps natural user input to well
defined LaTeX script through efficient processing at real time
is encapsulated in this class. Hence the Expression class can be
considered the core of the application.

The IO_Center is a singleton class which acts as the
coordinator between the user and the core of the application. It
is responsible for handling input/output, directing input for
processing accordingly, handling the GUI and at the same time
maintaining synchronized communication between each

27

component. The ExpressionList class is the one and only
simple GUI, which displays the suggested list of outputs to a

user for each user input.

 Figure 3 Class Diagram

Figure 4 Basic Sequence Diagrams

Figure 2 shows logical class structure and Figure 3
illustrates the basic activity sequences of the application.

The database consists of only one table to store the
mappings between user input strings, the corresponding LaTeX
equivalent script segment and other information vital to process
the user input string.

28

IV. SYSTEM IMPLEMENTATION

A. Implementation Procedure
The main programming language used was C++. Its well-

known efficient processing ability suited well for this purpose.
In addition, the Qt4.8 library [7] which is a C++ based GUI
library was used to implement the user interface. To establish
multi-threading facilities, necessary classes were made to
inherit from the Qt based QThread class [8].

To render LaTeX scripts as Qt supported images, the
KLFBackend library [9] which is based on Qt4.8 was used. Qt
supported images were those that were presented to the user on
the GUI.

SqLite3 [10] was used as the Database Management
System for the database. Its light weight property, ability to be
embedded in the application, and the availability of C-libraries
to conveniently handle SqLite3 made it highly suitable for this
application.

AutoIt [11] which is a windows scripting language was
used, to address the OS and other background applications. It
was mainly involved in user input/output. The main application
based on C++ and the AutoIt application exchange data via an
established TCP connection based on a client-server model
[12], in which the main C++ application acts as the server
while the latter as the client.

The development cycle was divided into two stages, each of
them being completely independent from the other.
Development of the user input/output system and establishing
the database connections were done at the first stage. Mainly,
the development of the GUI, establishing multi-threading
facilities, developing the AutoIt scripts and integrating it with
the main code via TCP connection was done at this stage.
Hence at this stage all the infrastructure needed for the proper
functioning of the system was established.

Secondly, the core of the application, that is the processing
algorithms were developed completely independent from the
first stage. At this stage it was completely focused on
optimized string manipulations, data manipulation and
intelligent programming. Devising algorithms, coding, testing,
refining was seen mainly at this stage. Each vital part of the
main algorithm was broken down into several sub-parts, and
organized under different functions, and each function tested
independent from the others. A separate class with static
methods was created to implement general string applications.
Apart from that, almost all the crucial algorithms were
concentrated within a single class.

At the end of the two independent stages, the two products
were successfully integrated together. Finally finishing touches
on the complete system was done, to produce the concluding
result.

The database was populated with LaTeX script codes and
mapped to expected user input. Expected/predicted common
user input substrings were first listed at the brainstorming
stage. For example, generally a user would type in “2/3” to
indicate 2/3, so “/” could be considered as an expected
substring. Next the corresponding LaTeX code segments were

found by browsing through LaTeX documentation. As for the
above example, the appropriate LaTeX code segment would be
“\frac{2}{3}”, where 2 and 3 are parameters to be evaluated by
analyzing the entire input string.

There may be many variations of expected user inputs,
hence it is a matter of tuning and expanding the database upon
continuous usage by various users. It is evident that the nature
of user inputs has no limit and could vary indefinitely with
various probabilities. Hence the database created and deployed
at the development stage is very primitive and could be
considered as a test database with one table of around 200
records.

Understanding the user input and producing a list of
predicted LaTeX equivalents was viewed as a translation from
the domain of natural language to the domain of logical
language (LaTeX). The main processing algorithm is basically
composed of two main components namely translate1 and
translate2.

Figure 5 Pseudocode - translate1

Figure 6 Pseudocode - translate2

29

To start with, the user input string would be subjected to a
sequence of formatting for the sake of convenience in
processing.

Next the formatted string would be fed as input to
translate1. In which the string would be searched for substrings
suspected to indicate tokens of type ‘letters’ and ‘operators’.
Upon finding of such tokens, they would be replaced by the
corresponding LaTeX equivalent(s). The pseudocode for
translate1 is given in Figure 4.

Each string in the result returned from translate1 is then fed
into the next main component that is the translate2. Each of the
returned list of strings from each call of translate2 is then
appended together to form the final output result of the basic
algorithm.

The translate2 is basically focused on processing those
tokens of type ‘constructs’. Tokens are searched and matched
with corresponding LaTeX equivalents. For each of those
tokens, the string is again analyzed to extract the required
parameters and insert them in the standard LaTeX code. The
LaTeX script segment thus prepared would then replace the
corresponding natural expression segment in the original string.
Pseudocode for translate2 is given in Figure 5.

B. Main Interface
The application consists of only a single simple user

interface. This interface is responsible for displaying the list of
suggestions for each user input. The images are displayed in a
scrollable image list on a QMainWindow (a Qt Widget) [13].
The user is able to move up and down the list of images using
the arrow keys. A particular suggestion can be selected by the
user by selecting Enter key. The following figure shows the
simple interface with a list of suggestions loaded, out of which
three are currently visible and the selected item outlined in
blue.

Figure 7 User Interface

V. SYSTEM TESTING AND ANALYSIS
Unit testing was done using a C++ unit testing framework

module called CppUnit [14]. The most vital functions were unit
tested. For each function, a set of test cases were tested. The
test cases were selected to cover up almost all cases, and
marginal test conditions such as empty strings and null objects.

Performance of the algorithms was tested by measuring the
time taken to process a given input string. This test was
performed repeatedly for varying lengths and complexities of
inputs.

Resource (CPU and memory) usage was monitored through
the Task Manager. This was monitored at different phases of
the application such as the application activating phase, normal
functioning phase, processing phase and the deactivating
phase. Also this test was conducted under different background
conditions (with and without major resource consuming
applications running).

 The unit tests ran with 100% success rate. None of them
ended in failure. This was due to the careful and systematic
procedures adopted at the development phase. Even during
development informal tests were carried out momentarily and
at random, by printing partial results on console. Careful
scrutiny of code at development itself was the main fact behind
the extraordinary success during unit testing.

As mentioned above the performance of algorithms were
tested using time measurements, in milliseconds. The average
time taken to process a given input was found to be 375ms.
The maximum time recorded was 550ms and the minimum
recorded was 125ms. These time recordings are most welcome.
Half second processing time at worst case, for a considerable
amount of string processing is quite appreciable. Use of C++
and optimized algorithms may have contributed to this fine
performance ability of the application. Hence testing for
performance was concluded with appreciable results.

Resource usage was at acceptable level- for a background
tool. The tool would operate without much trouble even when
high resource consuming applications were simultaneously
running with it. During activation a little peak is observed due
to several startup operations, such as loading the database and
initializing objects and other resources within the application.
During process phase no significant change in resource
consumption was recorded. Also during other phases of
operation the application did not show any considerable
increase in resource consumption. Generally, the use of
resources was at a minimized level. Hence the test for resource
utilization concluded with appreciable results.

Failure testing was carried out by performing unexpected
user activity and erroneous inputs. During these tests few
failures were reported. The causes of those failures were
identified and properly handled and remedial procedures were
added to the final product. The tests were carried out again, and
refinements were done based on those results. Also recovery
after failures were at appreciable levels. Since this is a light
weight tool, sudden failures are not expensive, which upon
restart of the tool could be easily recovered. These aspects were
tested out and turned out to be as expected.

30

VI. CONCLUSION
This paper presents the design and development of a user

friendly tool to insert LaTeX script codes in any editable area.
This tool enables users with little or no knowledge on LaTeX
syntax to use LaTeX for documenting purposes with much
convenience. While consuming little resources, it is able to
coexist with other applications and operate as a user assistive
background tool. Hence the tool presented in this paper has
multiple advantages over conventional LaTeX editors that
require extensive knowledge on LaTeX syntax and utilizes
considerable amount of resources and are only focused on
specific text editing environments. In conclusion, this paper
provides proof of a successful application of Semantic Analysis
with high performance and optimization.

In future, considerable improvements in performance are
expected to be achieved through enhanced use of Natural
Language Processing techniques and Semantic Analysis. This
tool can be extended to support MathML in Word processing
software as well. The Tralics Algorithm proposed by Jose
Grimm [15] that converts LaTeX to MathML hints at such
successful extensions.

REFERENCES

[1] "LaTeX – A document preparation system", Latex-project.org, 2016.
[Online]. Available: https://www.latex-project.org/. [Accessed: 19- Jun-
2016]

[2] J. POLEWCZAK, LATEX, MATHML, AND TEX4HT: TOOLS FOR
CREATING ACCESSIBLE DOCUMENTS (A BRIEF TUTORIAL),
1st ed. Northridge: CSUN [Online]. Available:
http://www.csun.edu/~hcmth008/mathml/acc_tutorial.pdf. [Accessed:
24- Jun- 2016]

[3] "Art of Problem Solving", Artofproblemsolving.com, 2016. [Online].
Available: http://www.artofproblemsolving.com/. [Accessed: 24- Jun-
2016]

[4] "HostMath - Online LaTeX formula editor and browser-based math
equation editor", Hostmath.com, 2016. [Online]. Available:
http://www.hostmath.com/. [Accessed: 19- Jun- 2016]

[5] "Google Input Tools", Google.com, 2016. [Online]. Available:
http://www.google.com/inputtools/. [Accessed: 24- Jun- 2016]

[6] "googlei18n/google-input-tools", GitHub, 2016. [Online]. Available:
https://github.com/googlei18n/google-input-tools. [Accessed: 19- Jun-
2016]

[7] "Qt 4.8", Doc.qt.io, 2016. [Online]. Available: http://doc.qt.io/qt-4.8/.
[Accessed: 19- Jun- 2016]

[8] "QThread Class | Qt 4.8", Doc.qt.io, 2016. [Online]. Available:
http://doc.qt.io/qt-4.8/qthread.html. [Accessed: 24- Jun- 2016]

[9] "KLFBackend Library: Main Page", Klatexformula.sourceforge.net,
2016. [Online]. Available:
http://klatexformula.sourceforge.net/doc/apidoc/klfbackend/html/.
[Accessed: 19- Jun- 2016]

[10] "SQLite Home Page", Sqlite.org, 2016. [Online]. Available:
https://www.sqlite.org/. [Accessed: 24- Jun- 2016]

[11] "AutoIt - AutoIt", AutoIt, 2016. [Online]. Available:
https://www.autoitscript.com/site/autoit/. [Accessed: 19- Jun- 2016]

[12] "Programming Windows TCP Sockets in C++ for the Beginner -
CodeProject", Codeproject.com, 2007. [Online]. Available:

http://www.codeproject.com/Articles/13071/Programming-Windows-
TCP-Sockets-in-C-for-the-Begin. [Accessed: 24- Jun- 2016]

[13] "QMainWindow Class | Qt 4.8", Doc.qt.io, 2016. [Online]. Available:
http://doc.qt.io/qt-4.8/qmainwindow.html. [Accessed: 24- Jun- 2016]

[14] "CppUnit - The Unit Testing Library", Cppunit.sourceforge.net, 2016.
[Online]. Available:
http://cppunit.sourceforge.net/doc/cvs/cppunit_cookbook.html.
[Accessed: 24- Jun- 2016]

[15] J. Grimm, Tralics, a LATEX to XML Translator, 1st ed. 06902 Sophia
Antipolis CEDEX, 2002 [Online]. Available:
https://www.tug.org/TUGboat/tb24-3/grimm.pdf. [Accessed: 24- Jun-
2016]

