
Levi – The Native BPMN 2.0 Execution Engine
A Workflow Engine based on Apache ODE‟s JACOB Framework

E. Sooriyabandara,

I. Jayawardena, K. Gallaba,

U. Pavalanathan, V. Nanayakkara
Department of Computer Science

and Engineering,

University of Moratuwa.

Moratuwa, Sri Lanka

M. Pathirage
Indiana University

Bloomington, Indiana, USA

S. Perera
WSO2 Inc.

 Mountain View, CA, USA

Abstract— In today's enterprise world, as more and more

importance is placed on process automation and IT based

governance, organizations tend to model and manage their

business processes to achieve increased efficiency and

productivity. The proper use of process modeling concepts in

business scenarios enables designers to specify process

requirements in terms of interactions enacted by human agents.

Although Business Process Modeling is possible with languages

like Business Process Execution Language (BPEL), they use more

of a programing oriented view as oppose to human oriented view.

Standardization of the Business Process Model and Notation

version 2.0 (BPMN 2.0) provide a way to support inter-operation

of business processes at human user level, rather than at the

software engine. Although BPMN has being standardized, its

wide adoption is limited by the lack of runtimes supporting

BPMN. Although there are several BPMN implementations, they

convert the BPMN to BPEL or another intermediate

representation, which will yield mix results. In this paper, we

discuss the design of Levi, a BPMN 2.0 runtime build using the

underline constructs of ODE (Orchestration Director Engine),

Apache based open source process engine. Unlike most other

approaches, Levi supports BPMN natively using a concurrent
runtime that supports Join pattern.

Keywords- Business process; business process modeling;

BPMN 2.0; business process execution; workflow engine; business-

IT gap Introduction

I. INTRODUCTION

In today's enterprise world, as more and more importance is
placed on process automation and IT based governance,
organizations tend to model and manage their business
processes to achieve increased efficiency and productivity. The
proper use of process modeling concepts in business scenarios
enables designers to specify process requirements in terms of
interactions enacted by human agents. Although Business
Process Modeling is possible with languages like Business
Process Execution Language (BPEL), they use more of a
programming oriented view as oppose to human oriented view.
Standardization of the Business Process Model and Notation
version 2.0 (BPMN 2.0) provide a way to support inter-
operation of business processes at human user level, rather than
at the software engine. Although BPMN has being
standardized, its wide adoption is limited by the lack of
runtimes supporting BPMN. Although there are several BPMN
implementations, they convert the BPMN to BPEL or another
intermediate representation, which has yield mix results. In this
paper, we discuss the design of Levi, a BPMN 2.0 runtime
build using the underline constructs of ODE (Orchestration

Director Engine), Apache based open source process engine.
Unlike most other approaches, Levi supports BPMN natively
using a concurrent runtime that supports Join pattern. Business
Process Management (BPM) is a management approach
focused on aligning all aspects of an organization with the
requirements of its clients. A BPM system can be viewed as a
type of Process-Aware Information System (PAIS), which
helps an organization make greater profits by improving the
way they do business [1]. The efficiency and productivity
enhancement of BPM systems make those useful for any type
of organization [2]. BPM primarily focuses on the
comprehensive management and transformation of operations
presented in the processes of an organization [3]. A typical
organization would have deployed hundreds or thousands of
processes most of which controls the main sources of their
revenue. Therefore, these processes must be constantly
examined and managed on an ongoing basis to assure that they
remain as efficient and effective as possible [2]. The
performance of these processes must be evaluated to ensure
that they meet the organization's business targets, which are
based on critical metrics that relate to customer needs and
organizational requirements [3].

The concept of BPM has been growing since the last two
decades. In 2006, Zur Muehlen introduced a Business Process
Management life cycle [4] which can be used to improve the
way a company conducts its business in the long and short
term. BPM is the follow up to Business Process Re-engineering
and before that Total Quality Management philosophy.
Business Process Re-engineering is a radical and revolutionary
approach to improve business process. The Total Quality
Management is incremental, evolutionary and continuous in
nature. Concisely, it can be described that BPM integrates
Business Process Re-engineering and Total Quality
Management by using re-engineering approach to improve
business quality.

To manage business processes, they have to be modeled
and documented. One of the essential parts of business process
modeling is choosing the most suitable modeling approach.
Among the existing graphical modeling notations prominent
modeling approaches are, Petri Nets, UML Activity Diagrams,
Role Activity Diagrams (RAD), Data Flow Diagrams (DFDs),
State-Transition Diagrams (STDs) [4-6]. Notations like UML
and DFDs are focused on the informational perspective of a
process (information flow involved in a process) while
notations like RADs and STDs are focused on the behavioral
aspect (the behavior of the activities and the actors) of a

process. But none of these are complete solutions which mean
that using a model from one perspective will have an
opportunity cost of not using the others. In the recent past,
there have been efforts in developing web service-based XML
execution languages for BPM systems, such as Web Services
Business Process Execution Language (WSBPEL/BPEL). But
these languages, which were designed for software operations,
were not meant for direct humans use. Therefore, only very
experienced programmers could work with such languages.
Business people who do the initial development, management
and the monitoring of processes could not take the advantage
of these languages. This business-IT gap in the current BPM
software does not enable business users to easily model and
execute business processes. The reason is the approaches used
in building business process engines.

Since business people are more comfortable with
visualizing business processes in a flow-chart format there is a
human level of "inter-operability" or "portability" that is not
addressed by XML execution languages such as WSBPEL. To
address this, Business Process Model and Notation (BPMN)
were standardized to yield the inter-operation of business
processes at the human level, rather than at the software engine
level. The first goal of BPMN is to provide a notation that is
readily understandable by all business users from the business
analysts who create the initial drafts of the processes to the
technical developers responsible for implementing the
technology that will perform those processes [7].

BPMN provides a standard visualization mechanism for
business processes defined in an execution optimized business
process language. Thus, BPMN creates a standardized bridge
for the gap between the business process design and process
implementation [8]. An ontological analysis of BPMN 1.0
confirms the relatively high maturity of BPMN and identifies
few potential shortcomings which are improved in future
versions [9]. BPMN enables businesses to model their internal
business procedures in a graphical notation and communicate
these procedures in a standard manner. It follows the tradition
of flowcharting notations for readability and flexibility. The
Object Management Group (OMG) is using the experience of
the business process notations that have preceded BPMN to
create the next generation notation that combines readability,
flexibility and expandability. BPMN advances the capabilities
of traditional business process notations by inherently handling
Business-to-Business (B2B) business process concepts, such as
public and private processes and choreographies, as well as
advanced modeling concepts, such as exception handling,
transactions, and compensation [10-11].

BPMN 2.0 is a step forward for the whole business process
management community because it introduces not only a
standard graphical notation, but also concise execution
semantics for process execution that can be used to enable the
real execution of business processes that are modeled using it
[11]. BPMN 2.0 provides a commonly agreed upon formal
execution semantics by introducing concise execution
semantics, thus overcoming the major drawback in the earlier
versions such as BPMN 1.2 [1]. In addition to that BPMN 2.0
provides a notation and a model for business processes and an
interchange format that can be used to exchange BPMN
process definitions between different tools. Diagram
interchange format facilitates the exchange of diagrams where
as XML schema interchange allows easy sharing of model and
its attributes. The goal of BPMN 2.0 is to enable portability of
process definitions, so that users can take process definitions

created in one vendor‟s environment and use them in another
vendor‟s environment.

By providing a visual modeling language for business
processes, BPMN 2.0 enables non-IT experts to communicate
and mutually understand their business models. This progress
in the area of business process management has resulted in
widespread use of BPMN 2.0 as a modeling language [12].

This paper presents Levi, a highly concurrent BPMN 2.0
compatible process runtime. Although BPMN has achieve
reasonable popularity, BPMN yet does not have wide runtime
support.

Although there are several BPMN implementations, they
convert the BPMN to BPEL or another intermediate
representation, which has yield mix results. In this paper, we
discuss the design of Levi, a BPMN 2.0 runtime build using the
underline constructs of ODE, Apache based opensources
process engine. Unlike most other approaches, Levi supports
BPMN natively using a concurrent runtime that supports Join
pattern.

Apache ODE, which is among the most influential open
source process engines, provides a BPEL based process
execution runtime. Since concurrency and join pattern is one of
the key considerations while building a processes execution
framework, ODE defines a runtime called JACOB (Java
Concurrent Objects), a highly concurrent implementation of
join pattern, which support persistent executions. This layer is
independent from BPEL, and Levi implements support for
BPMN 2.0 on top of JACOB runtime. One of the main
challenges of building Levi was mapping BPMN constructs to
underline JACOB runtime. We will discuss challenges, design,
and solutions we encountered while building Levi, and
critically analyze its effectiveness.

Section 2 of this paper describes the existing approaches of
implementing the BPMN runtime and the merits and demerits
of mapping BPMN 2.0 into different intermediate exchange
formats. The reasons for building Levi is explained in section
3. Section 4 discusses the design of Levi and section 5 explains
the implementation of BPMN 2.0 runtime in Levi. Section VI
describes the outcome of the work and we explain the future
work in section VII.

II. RELATED WORK

The effort of building BPMN 2.0 execution engines has

started since the initial release of the BPMN 2.0 beta
specification in August 2009. Many vendors considered

BPMN as a visual notation to BPEL and started creating

BPMN 2.0 execution engines that runs the processes in their

existing BPEL engines. Consequently, they tried to map

BPMN 2.0 semantics to BPEL semantics which is not straight

forward, as we shall discuss this later in this section. Some

other vendors used other intermediate exchange formats such

as jPDL and XPDL to convert the BPMN 2.0 processes and

then execute in their engines that does not support BPMN 2.0

process execution natively. At present, with the release of the

final version of BPMN 2.0 specification in January 2011, there
are several BPMN 2.0 implementers [13]. But almost all of

them convert BPMN 2.0 processes into some intermediate

form even though they claim native execution. Next sections

highlight merits and demerits of mapping BPMN 2.0 to

various intermediate exchange formats.

A. BPMN Runtime through BPEL

Most of the current BPMN 2.0 engine vendors use a BPMN
2.0 to BPEL mapping, which enables user to first model
business processes using BPMN 2.0 constructs. However, at
the runtime those implementations convert the BPMN 2.0
business process into one or more BPEL processes, and
execute them using a BPEL engine. The use of such mapping
has created many debates among BPM experts. Implementers
of the ActiveVOS BPM suite [14] argued that native execution
of BPMN 2.0 processes is complex, and that it is simpler to
map BPMN processes to BPEL[15].

However, several publications [16-19] have pointed out that
the conceptual mismatch between BPMN 2.0 and BPEL, and
discussed the pitfalls of mapping BPMN 2.0 into BPEL. When
converting a language to a different language, it is required to
measure the feasibility of doing that conversion. Mainly the
conversion should minimize, if not avoid loss of semantic
representation of information. That means the transition
between languages should establish a high extent of matching
of main representation capabilities between the two languages
and a matching of control flow support. When converting
BPMN 2.0 to BPEL, there exists a significant mismatch of
domain representation capability and control flow support.

Domain representation mismatch occurs when there is
construct deficit within languages, which inhibits from stating
certain domain aspects. This means that when a more
expressive modeling language is converted into a less
expressive modeling language, the translation will be at the
cost of losing expressive power and thus, semantic information
about the represented domain. BPMN 2.0 is more expressive
than BPEL and hence the conversion will result in loss of
details. There are a number of potential domain representation
capability mismatches like state, events and system mismatches
in these two languages. State mismatch occurs because BPMN
has more expressive power than BPEL. i.e. BPMN keeps more
properties of a process than BPEL do. When translating BPMN
to BPEL, these additional properties will be neglected. Event
mismatch occurs because BPMN has more event subtypes. i.e.
several event types of BPMN maps to one BPEL event. When
translating BPMN to BPEL it is required to provide additional
information to convert BPMN events to BPEL events. System
mismatch occurs due to the concepts like Pools and Lanes in
BPMN which are not in BPEL. When translating BPMN to
BPEL it is required to pay more attention to the semantics of
BPMN Pools and Lanes in order to describe the process in
BPEL, which can be costly [18].

Control flow support mismatch occurs when different
languages support different workflow patterns. When
converting one language into another, these workflow patterns
need to be considered. There are number of mismatches
between BPMN 2.0 and BPEL with regards to the support for
various control flow concepts, which cause problems when
converting BPMN 2.0 to BPEL such as translating advance
synchronization patterns, structural patterns, and multiple
instances patterns which are present in BPMN 2.0 and not
present in BPEL [18].

Limitations of this mapping have been discussed in
academia in a comprehensive manner. Most of the researchers
in this field support the argument that BPEL is inherently block
oriented like a computer program, while BPMN is inherently
graph oriented like a flowchart, even though there are minor
confusions about the structure of BPEL and BPMN 2.0 [20-
21]. As pointed out by Weidlich et al. [19] this structural

incompatibility is the key reason for the pitfalls of the mapping.
It further discusses about the reasons for the pitfalls of the
mapping and the myth of a straight-forward mapping.

Beside these reasons, the BPMN 2.0 specification itself
describes that only a small subset of the BPMN 2.0 constructs
are isomorphic with BPEL and can be mapped to BPEL
directly. The specification further says that not all BPMN 2.0
processes can be mapped to BPEL in a straightforward manner.
Because BPMN allows the modeler to draw almost arbitrary
graphs to model the controls flow, whereas in BPEL, there are
certain restrictions such as control-flow being either block-
structured or not containing cycles. The specification [15]
essentially says in the “extended mapping” section that engine
vendors are on their own, noting “in many cases there is no
preferred single mapping of a particular block, but rather,
multiple WS-BPEL patterns are possible to map that block to”.
This contradicts with the argument that this mapping is simpler
than native BPMN 2.0 execution.

Guo et al. [16] and Indulska et al. [17] argue for the need
bi-directional transformation between BPMN 2.0 and BPEL for
a complete such mapping and the limitations of achieving it.
[17] It uses the Bunge-Wand-Weber representation model to
analyze the representational capabilities of BPMN 2.0 and
BPEL4WS, and on that basis, argues that the translation
between BPMN and BPEL4WS is prone to difficulties due to
inconsistent representational capabilities. They also claim that
their work serves as a theoretical cornerstone on which the
development of better mapping support for BPMN 2.0 and
BPEL4WS can be based on.

B. BPMN Runtime through jPDL

Similar to the mapping of BPMN 2.0 to BPEL, some argue
that BPMN 2.0 to jPDL mapping is suitable for BPMN 2.0
execution engines. jPDL [22] is the jBPM Process Definition
Language (JPDL) for jBPM [23], a Business Process
Management Suite from the JBoss community. Even though
jBPM claims that it support BPMN 2.0 process execution
natively, it internally converts the BPMN 2.0 process definition
in to jPDL definitions before executing the business process in
the existing engine. jBPM implements BPMN 2.0 process
execution on top of the jBPM Process Virtual Machine (PVM),
which was originally built for executing jPDL processes hence
requires a conversion [24]. More over jPDL is not an industry
wide standard; it is just the language used only in the jBPM
suite and can only be used by it. Hence this conversion is far
from being accepted as a standard for executing BPMN 2.0
processes [25].

C. BPMN Runtime through XPDL

Some vendors use XPDL (XML Process Definition
Language) as the intermediate format to run BPMN 2.0
processes. XPDL [26] is designed to exchange the process
definition, both the graphics and the semantics of a workflow
business process, among different workflow products [27].
Hence this conversion does not result in native execution of
BPMN 2.0 processes.

III. WHY LEVI?

With the introduction the operational semantics for BPMN
2.0, it is now possible to build an engine that directly supports
BPMN 2.0 - without the intermediate step of generating BPEL.
As explained by Leymann [12], no BPEL at all is required to
execute process models specified in BPMN 2.0. Levi is
designed to be a native BPMN 2.0 execution engine, which can

be used to execute business process models that conform to the
BPMN 2.0 specification.

Implementing a workflow engine is tantalizing and yet a
daunting task. There are many non-functional requirements like
robustness, efficiency and scalability expected from an
enterprise level workflow engine. Open Source WS-BPEL 2.0
implementation like Apache ODE [28] has mechanisms to
ensure concurrency, durable continuation, reliability, and
recovery. It uses a framework called JACOB, which is a
practical combination of ideas from the actor model and
process algebra approaches to concurrency and continuation.
The implementation of the BPEL constructs is simplified by
limiting itself to implementing the BPEL logic and not the
infrastructure necessary to support it [29].

Without reinventing the wheel, as ODE's BPEL
implementation relies on JACOB framework to implement the
BPEL constructs, Levi uses JACOB to implement BPMN 2.0
constructs. Most importantly, it serves as a proof of concept for
exploring the possibilities of using Apache ODE and JACOB
to execute BPMN 2.0 processes consisting of core BPMN
constructs.

IV. ARCHITECTURE OF LEVI

A. Overall Architecture

Figure 1 shows the major building blocks of a BPMN
execution engine. Users first describe their processes using
BPMN and then deploy them in Levi, and it stores them in the
process database. The process engine executes the process. Our
discussion on Levi will focus on the execution engine that
handles the runtime, compared to the build time of a BPMN
model. This is due to the fact that for a given BPMN model,
the build time occurs only once, whereas the runtime is
expected to be functional each time that model is executed or
managed/monitored through the administrator‟s or any other
user‟s console.

1) Build time
This is when the user creates a BPMN model for a business

scenario to fulfill his requirement. To model a BPMN process,
a modeling tool such as BPMN2 Visual Editor for Eclipse [30]
can be used. A typical modeling tool supports creating BPMN
diagrams in a visual editor and generates the corresponding
XML representation of that process model. After modeling the
basic model in BPMN, the model must be made in to a process
archive that can be deployed in Levi. To do this, additional
artifacts such as the user input forms, WSDL files, process

diagrams etc. must be bundled together with the created BPMN
file. Once the process archive is deployed, it is stored in the
Process Database of Levi.

2) BPMN Process Model
A BPMN process model is essentially an XML document

that corresponds to the standard BPMN XML Schema
document proposed by OMG. The Levi engine expects all the
BPMN files to have a „.bpmn‟ extension and these BPMN files
are validated when those are deployed to the system in the
form of a business archive.

3) Format of a Process Archive
 The process archive type identified by Levi is called the

“Levi Process Archive” type, which is a zip archive renamed to
have a .lar extension. A valid archive must have a single top
most directory in which all the sub directories, BPMN files and
other artifacts are included.

4) Runtime
This refers to two concepts both related to BPMN process

execution, depending on the context where those are referred.
The first concept is the actual execution time of a deployed
business process within the execution engine. The other
concept is the subsystem of the execution engine which
handles the execution, management, and monitoring of
deployed business processes. This is also referred as the
backend of Levi. The frontend of Levi and/or a third party
application (web/desktop/mobile) can connect to the backend
as shown in the Fig. 1, and manage business process via a
customized user interface.

B. Major Components of Levi

For better understanding of the architecture, Levi engine
can be partitioned into four functional components: runtime
service module, storage service module, user management
module and utility module.

1) Runtime Service Module
The BPMN runtime of Levi is the component that handles

the basic execution of the engine. It acts as the backend for the
web user interface where the users interact to deploy, execute,
and manage their business processes. Next section will discuss
this in detail.

2) Storage Service Module
The StorageService implementation handles the persistence

of process states and process variables in Levi engine. Process
states and variables are persisted to the database whenever a
new value is available or a value in the database gets modified.
The execution engine retrieves the data from the database via
the storage service module and uses it for further execution.
The requirement to update the database to the latest state is due
to the uncertainty of consistent communication between the
backend database and the process engine. Especially when a
process is paused or when an asynchronous task such as a user
task get executed, the engine writes data to the storage
expecting to retrieve them when the process resumes or when
the asynchronous task ends. Also at the end of each task the
engine does a storage update. In case of any kind of
communication or server failures, the process engine can be
restored to the latest running state by retrieving these process
states and variables from the database. Since the
StorageService component is a crucial part of the process
engine, a considerable effort was required to build a standard
storage service component.

Figure 1: Major Building Blocks of the Levi Process

Engine

3) User Management Module
The purpose of the user management module is to represent

the concept of users (employees) and groups (departments) in a
typical business environment. Groups are given different
access levels and according to that members of that group can
claim and complete business tasks.

The purpose of the user management component is to
represent the concept of employees and departments in a
typical real world business environment. A real world business
process consists of different business tasks. These tasks can be
divided into two major categories– tasks performed by human
users and tasks done by machines/automated systems. In the
BPMN 2.0 world, tasks done by human users are named as
User Tasks. Hence user management component handles the
non-execution part of the user tasks; execution part is handled
by the runtime component.

4) Utility Module
Utility module consists of utility features such as process

visualization and web form generation using template engine.

C. Deployment and Execution Architecture

Figure 2 shows the high-level deployment and execution
architecture of the business process execution engine Levi.
When a business process archive is given as the input, a
„deployment‟ is created out of it. „Deployment‟ is the runtime
representation of the business process definition contained in
the business archive. These process definition details and
representation are stored in the Process Engine Database when
the business archive is deployed.

There are two concepts to be clarified at this point –
process deployment and process instance. A process
deployment is a runtime representation of a business process,
bundled in a .lar file. It is connected with the concept of
process definition. Once a .lar file is deployed into the engine,
only this process deployment is created. When a user wants to
execute the business operations in that process, a process
instance is created using the object model of the process
definition. There can be multiples of process instances created
from a single process deployment.

When a user wants to execute a business process, the
process definition and object model of that particular process
deployment is retrieved from the process engine database and a
process instance is created in the runtime, as shown in figure 2.
Properties of the process instance will be persisted in the
database. When executing the process, the engine navigates
through each BPMN 2.0 element in the process instance, until

it reaches the end event. Process instance states are persisted in
the database and retrieved when required.

D. Building Applications using Levi

The architecture of Levi engine is designed in such a way
that real world business applications can be built on top of it
with minimum effort. The major building blocks of the engine
such as the RuntimeService, StorageService and
UserManagmentService are exposed as APIs (Application
Program Interfaces), which enables users of the engine to build
a customized front end layer according to their business needs.
This enables users to build different applications with less
effort.

V. IMPLEMENTATION OF BPMN RUNTIME

The BPMN runtime component handles the execution of
BPMN logic within the Levi engine. It acts as the backend for
the web user interface where the users interact to deploy,
execute, and manage their business processes. The runtime is
mainly composed of the runtime abstraction of a BPMN
process; the ProcessInstance class, and the data types that
represent the set of BPMN 2.0 constructs currently supported
by Levi. All these types derive from a single type, called
BPMNJacobRunnable and this class, in turn, derives from the
JacobRunnable class of Apache ODE. This type hierarchy
makes it possible to execute the Levi's representation of BPMN
constructs and the process instances on the JacobVPU. Further,
XMLBeans was used as the data binding tool to generate Java
types from the XML representation of BPMN constructs and
these types were used to bring in the definition of elements of
the input BPMN documents to the context of the runtime. Each
of the BPMN construct types acts as a wrapper for the
corresponding XMLBeans generated type. Currently, Levi
supports all of the simple BPMN 2.0 constructs as well as
UserTask, SendTask and ServiceTask from the descriptive
category as shown in figure 3.

BPMNJacobRunnable defines some common methods
related to all construct types and are used by the runtime.
JacobRunnable defines an abstract method; run, which must be
implemented by all of its derivatives. This method is executed
by the JacobVPU and the construct related implementation is
written in the run method of each construct type. For example,
when implementing the ExclusiveGateway construct, the
gateway related logic was written in its run method. Also it has
a reference to an object of the type generated by XMLBeans;
TExclusiveGateway. This instance brings in all the data present
in the original XML element to the scope of the runtime.

Consider the following XML excerpt from a BPMN
document which corresponds to an outgoing sequence flow

Figure 3: BPMN 2.0 Constructs

 Figure 2: Deployment and Execution Architecture

Figure 5: Comparison of Sequential Vs Parallel Orientation

of Tasks

Figure 4: Sequential and Parallel Orientation of Constructs

from an exclusive gateway element. This sequence flow
contains the condition upon which is satisfied, the flow takes
the path by referring to its target reference. The Levi's
implementation of ExclusiveGateway can access the data such
as the condition expression "i < 100000" only through the
method getConditionExpression of instance of
TSequenceFlow.

<sequenceFlow id="flow5"

 sourceRef="exclusiveGw2"

 targetRef="exclusiveGw1">

 <conditionExpression>

 <![CDATA[i < 100000]]>

 </conditionExpression>

</sequenceFlow>

Similarly, the implementation of ScriptTask accesses the
script defined in the BPMN document's ScriptTask element by
invoking the getScript method of the instance of TScriptTask.
In the run method, it evaluates this script by using the context
details of the current process instance, such as the process
variables and the script type.

When a process is deployed to the engine in the form of a
.lar, the runtime constructs the corresponding process
definition by parsing and validating the BPMN document
together with other dependent entities such as WSDL
documents. The process definition
(org.levi.engine.impl.bpmn.parser-.ProcessDefinition.java) is
the static abstraction of a BPMN process inside the Levi
engine. It is a data type that aggregates the
BPMNJacobRunnable objects which correspond to the BPMN
elements of the input BPMN document. When a process
instance is created, it is passed with a reference to an instance
of the corresponding process definition. The internal design of
the process definition has been optimized for efficient
navigation of BPMN elements to be used in constructing the
process flow during the execution of the process instance.

At the initial stages of the design of the process definition,
the iterator pattern was used to navigate the elements of a
process instance. This decision was highly influenced by the
linear arrangement of BPMN flow elements inside a BPMN
document. This lead to incorrect runtime behavior when
BPMN documents with elements arranged in a different order
other than the order in which the process flow must occur were
processed. From this, it was identified that the order of the
elements of a BPMN document does not necessarily mimic the
actual order of the process flow. BPMN uses an elegant
solution to construct the process flow by using sequence flows
and setting their source and target reference identifiers.
Therefore, after considering all these factors, it was required to
come up with a design which had the structure and
characteristics similar to those of a graph which enables faster
navigation compared to the linear iteration approach. As a
solution, the previously described design was proposed in
which the sequence flows are grouped into sets of sequence
flows based on their target and the source reference IDs
separately. These groupings are used as the major data
structure in navigating the process elements by the runtime.

Execution of process instances includes starting, pausing,
and stopping of process instances of deployed business
processes. All these functions are executed when an authorized
user gives corresponding command in the frontend. These
commands are dispatched to the backend to be executed based

on the process parameters. There are two types of executions.
First type is executing multiple instances of a same process
definition. In this, users can instantiate as many process
instances as they wish from a given process definition and the
engine is capable of isolating instances from one another and
manage the execution. The second type is executing many
process instances of different process definitions. The Levi
engine supports these two types of process execution. The
engine manages multiple instances of the different/same
process definitions by resolving the relationship mappings
among the users, tasks, process details and other process
parameters of the instances accordingly.

VI. RESULTS

We have conducted a performance test for Levi with few
process scenarios that use the script task construct. We used the
following configuration for this purpose: Intel(R) Core(TM)2
Duo CPU T6670 2.20GHz processor with 2.00GB memory, on
32-bit Ubuntu 10.10 operating system.

Figure 4 shows the test scenario where the top process
diagram shows sequential orientation of n ScriptTasks and
bottom part shows the same process oriented in parallel. Figure
5 shows the comparison of running n ScriptTasks oriented
sequential and parallel orientation.

As the graph suggests, the sequential approach involves
more cost than the parallel approach. The running time of the
parallel approach is almost lesser than that of the sequential
approach. We get this behavior due to the difference of the
parallelism involved in each approach. Parallel gateways are
used to execute parallel tasks with the help of JacobVPU, in
Levi engine. In the meantime for the parallel orientation, the
running time is not constant since there is a considerable time
delay involved when creating each ScriptTask construct.

Figure 6 shows the test scenario where a business process
of n ScriptTasks is oriented sequentially in the top process
diagram and same process is modeled using a loop orientation
in the bottom process diagram. Figure 7 shows the comparison
of running time using the sequential and loop orientations as
shown in figure 6.

According to the results, the loop model always takes less
time than the sequential model. This is because creating a new
object for each ScriptTask in the sequential orientation is an
expensive operation to the JVM compared to evaluating
conditional expressions in the loop orientation.

VII. FUTUTRE WORK

We were successful at implementing the basic BPMN 2.0
constructs in the Levi engine. Since we have designed our
engine in such way that addition of new constructs are much
simpler, and involves minimum amount of changes, any
additional construct can be developed individually as a separate
module and integrate to the runtime with less effort. We are
working on expanding the set of supported standard BPMN
constructs in future together with improvements to the
implementations to the existing constructs. Further we are
planning to add SOAP web services support for the Service
Task and WS-HumanTask support for the User Task.

When we expose Levi engine as a product, performance is
one of the most compelling factors to be successful among the
competitors in the industry. A proper benchmark does not exist
to test the performance of a BPMN engine. Therefore, creating
a comprehensive benchmark for Levi is one of our major goals,
which will also help to improve the industrial value of our
project.

A BPMN2 Eclipse plugin [12] is under development to
support the full BPMN 2.0 specification. The graphical editor
can be integrated with Levi engine to design the processes and
can be further improved to support deploying the designed
processes through the IDE.

VIII. CONCLUSION

We have implemented Levi, a native BPMN 2.0 execution
engine by using Apache ODE‟s JACOB framework. Levi is
capable of deploying, persisting, navigating, and executing
business processes claiming BPMN 2.0 execution
conformance. It serves as a proof of concept for exploring the
possibilities of using Apache ODE and JACOB framework to
execute processes that consist of core BPMN 2.0 constructs.
The implementation of BPMN 2.0 runtime in Levi proves that
it is possible to build a BPMN 2.0 execution engine natively
without converting into another intermediate representation
such as BPEL or jPDL. It also contradicts the debate that
converting BPMN 2.0 semantics into BPEL is the simpler way
for building a BPMN 2.0 runtime. Further the native BPMN
2.0 runtime feature of Levi enables the rapid support for future
expansion of BPMN 2.0 constructs set.

In this paper we have discussed the suitability of BPMN 2.0
to build a business process engine which fulfills both the
requirements of business and IT people. The design and
implementation of such an engine Levi is described in detail.

REFERENCES

[1] P. Wohed, W. M. P. V. D. Aalst, M. Dumas, A. H. M. Hofstede, and N.

Russell, “On the Suitability of BPMN for Business Process Modelling,”
in Proceedings of the 4th International Conference on Business Process

Management, 2006.

[2] P. Harmon, Business process change: a guide for business managers and
BPM and six sigma professionals, 2nd ed. Morgan Kaufmann, 2007, p.

i-21.

[3] J. R. vom Brocke and Michael, Handbook on Business Process
Management Volume 1, 1st ed. Springer, 2010.

[4] H. M. El-Bakry and N. Mastorakis, “Business process modeling

languages for information system development,” pp. 249-252, Aug.
2009.

[5] A. Arkin, Business Process Modeling Language. 2003.

[6] R. Cull and T. Eldabi, “A hybrid approach to workflow modelling,”
Journal of Enterprise Information Management, vol. 23, no. 3, pp. 268-

281, 2010.

[7] B. M. Owen and J. Raj, BPMN and Business Process Management -
Introduction to the New Business Process Modeling Standard. 2003.

[8] C. Badica and A. Badica, “Businss process modelling using role activity

diagrams.”

[9] J. Recker, M. Indulska, M. Rosemann, and P. Green, “Do Process
Modelling Techniques Get Better ? A Comparative Ontological Analysis

of BPMN,” 16th Australasian Conference on Information Systems,
2005.

[10] T. Allweyer, BPMN 2.0 Introduction to the Standard for Business

Process Modeling. 2010.

[11] Object Management Group, Business Process Model and Notation (

BPMN), January. 2011.

[12] F. Leymann, “BPEL vs. BPMN 2.0: Should You Care?,” in 2nd
International Workshop on BPMN, 2010, pp. 8-13.

[13] “BPMN Supporters - Current Implementations Of BPMN.” [Online].

Available: http://www.omg.org/bpmn/BPMN_Supporters.htm.
[Accessed: 01-Oct-2011].

[14] “BPM, Business Process Management Software, Business Process

Management Suite | ActiveVOS BPMS from Active Endpoints.”
[Online]. Available: http://www.activevos.com/. [Accessed: 01-Oct-

2011].

[15] “BPMN or BPEL: which is simpler to understand? | VOSibilities.”
[Online]. Available: http://www.activevos.com/blog/bpel/bpmn-or-bpel-

which-is-simpler/2009/11/19/. [Accessed: 01-Oct-2011].

[16] Y. Gao, BPMN - BPEL Transformation and Round Trip Engineering.
2008.

[17] M. Indulska, P. Green, J. Recker, and M. Rosemann, “Are we there yet?
Seamless Mapping of BPMN to BPEL4WS,” in 13th Americas

Conference on Information Systems, 2007, pp. 1-11.

Figure 6: Sequential and Loop Orientation of Constructs

Figure 7: Comparison of Sequential Vs Loop Orientation of

Tasks

[18] J. Recker and J. Mendling, “On the Translation between BPMN and

BPEL : Conceptual Mismatch between Process Modeling Languages,”
in The 18th International Conference on Advanced Information Systems

Engineering. Proceedings of Workshops and Doctoral Consortium,
2006, pp. 521-532.

[19] M. Weidlich, G. Decker, A. Großkopf, and M. Weske, “BPEL to BPMN
: The Myth of a Straight-Forward Mapping,” in Proceedings of the OTM

2008 Confederated International Conferences.

[20] “BPMN vs BPEL: Are We Still Debating This? BPMS Watch.”
[Online]. Available: http://www.brsilver.com/2009/11/19/bpmn-vs-bpel-

are-we-still-debating-this/. [Accessed: 01-Oct-2011].

[21] M. Dumas and L. Garc, “Unraveling Unstructured Process Models,” in
Proceedings of BPMN, 2010, pp. 1-7.

[22] “Chapter 18.jBPM Process Definition Language (JPDL).” [Online].

Available: http://docs.jboss.org/jbpm/v3/userguide/jpdl.html. [Accessed:
01-Oct-2011].

[23] “jBPM - JBoss Community.” [Online]. Available:

http://www.jboss.org/jbpm. [Accessed: 01-Oct-2011].

[24] “jBPM BPMN | JBoss Community.” [Online]. Available:

http://community.jboss.org/wiki/JBPMBPMN. [Accessed: 01-Oct-
2011].

[25] “What‟s in the Architecture?: XPDL,BEPL,JPDL,BPMNS,BPDM et al..
Standards and More Standards.” [Online]. Available:

http://rabisblog.blogspot.com/2007/04/xpdlbepljpdlbpmnsbpdm-et-al-
standards.html. [Accessed: 01-Oct-2011].

[26] “XPDL.” [Online]. Available: http://www.xpdl.org/. [Accessed: 01-Oct-

2011].

[27] S. A. White and U. States, “XPDL and BPMN,” Management, pp. 221-
238.

[28] “Apache ODE.” [Online]. Available: http://ode.apache.org/. [Accessed:

01-Oct-2011].

[29] “InfoQ: An Introduction to Apache ODE.” [Online]. Available:
http://www.infoq.com/articles/paul-brown-ode. [Accessed: 01-Oct-

2011].

[30] “Eclipse Modeling - BPMN2 Eclipse Plugin.” [Online]. Available:
http://www.eclipse.org/modeling/mdt/?project=bpmn2. [Accessed: 01-

Oct-2011].

