Maharawana

Towards a Grammar Checker for Sinahala

N. Katugampala, P. Ambegoda, A. Gunarathna, D. Bandara, G. Dias , S. Jayasena
Department of Computer Science and Engineering,
University of Moratuwa,
Moratuwa, Sri Lanka

Abstract— Sinhala is the main language used in Sri Lanka. With
the increased use of Information Technology, the typical Sri
Lankans tend to use software up to a significant extent in their
day to day operations. A major problem that has occurred was
the lack of software support for Sinhala language. There is no
proper Sinhala Grammar checker implemented yet. In order to
build a grammar checker it is mandatory to have a Parts Of
Speech tagger which would assign tags for the given words. In
this paper, we present a Parts Of Speech tagging approach and
grammar checking algorithm we developed for Sinhala.

Keywords- POS tag (Parts of Speech tag), Sinhala Grammar
Checker, POS tag set for Sinhala

1. INTRODUCTION

Part-of-speech tagging (POS tagging) [1] is assigning
proper POS tags to each word based on both its definition as
well as its context. A POS tag means the grammatical category
of a given word. This assignment can be done manually or
automatically. Different POS tags can be assigned to the same
word depending on the context [2]. As an example consider the
word “g0¢®".In the sentence “c® eves Swows” |, the tag for the
word “¢ ¢©” is NFS, which is a Noun Feminine Singular. But
in the sentence “®y ¢© ¢o @edw”, the tag should be “VNF1”,
which stands for Verb Non Finite. But in a defined context, it
can only be assigned with a definite POS tag. As an example,
in this sentence: “a®® a5 =w»&.”, the POS tagger must be able
to perform the following: “g®@» - NFS, &=f - NNN, ¢w& - VFM”.

Why POS tagging comes first? You may come across that
question. Humans are very clever decoders who can sense of
the characters on the page and can gain extraordinary amount
of inferred knowledge. When compared to human, computer
lacks this knowledge. To take full advantage of the query
potential of a machine readable text we must make it explicit in
at least some of the basics of readably knowledge. If we do so,
we can perform many operations quickly and accurately which
will be difficult or not practicable for human readers to do. We
cannot extract only a list of nouns (or other parts of speech);
we can identify syntactic fragments, such as the sequence of
three adjectives. A variety of enormous opportunities for
inquiry open up with a POS-tagged text. As an example
grammar checking is easier with POS tagging. We just need to
write grammar rules using proper POS tags [3].

We identified several methodologies for grammar checking
process and we analyzed the feasibility of those methods and
selected the most appropriate method for implementing our
Sinhala grammar checker. We analyzed various grammar-
checking approaches such as Syntax based approach, Statistical
based approach, Rule based approach and Sliding window
based approach [4]. Sliding window based approach was
followed when developing the grammar checker.

II. LITERATURE REVIEW

A. Natural Language Processing

Natural Language processing [5] is an emerging discipline
which combines computer science and linguistics. NLP helps
to develop spell checkers, grammar checkers, translators and
etc. Here we use NLP techniques to develop a grammar
checker for Sinhala.

We conducted a fair amount of research on Natural
Language Processing. There we noted that we need to develop
a Part Of Speech tagger before going in to grammar checking.
Parts Of Speech category of a word means whether the word is
a verb, adjective, noun etc. First of all we had the challenge of
coming up with a POS tag set for Sinhala. The way we
achieved it is explained under ‘“Research on Sinhala
Language”. Parts Of Speech tagger assigns POS tags to words
in the text. Then we need to define grammar rules using POS
tags in such a way that grammar patterns using POS tags
would be matched with the text in order to identify the
deviations.

B. POS tag set

We went through numerous sources of Sinhala in order to
get an idea about designing a POS tag set. The design requires
sound grammar knowledge of Sinhala language. We basically
used the books “8.we Bwudenw” [6] and “8cvE wozo
Dvomsens” [7]. We designed a draft POS tag set and got the
feedback from Prof. Rohini Paranawithana of University Of
Colombo, Department of Sinhala. She advised us to use
Vibhakthi (case) approach when designing the tag set. Later it
was further improved with the feedback from Prof. Gihan
Dias, University Of Moratuwa.

C. POS tagging

We did our research on POS tagging. Initially we found
that there are many types of POS tagging algorithms.

1. Rule based [8]: Rule-based taggers use hand-written
rules to distinguish the tag ambiguity.
2. Statistics based [9]: Stochastic taggers are either

HMM based, choosing the tag sequence which maximizes
the product of word likelihood and tag sequence probability,
or cue-based, using decision trees or maximum entropy
models to combine probabilistic features.

3. Pattern based [10] — POS tags are assigned based on
the patterns
4. Manual [11] - We can use a look up table to store

words and tags.

Since our initial task was to develop a POS tagger we
searched on many existing taggers. One alternative was to use
the POS tagger in Language tool; however due to its
complexity of Language tool we had to go for an alternative.
Then we searched about Stanford POS tagger. It is a statistics
based POS tagger. With the limited time, we felt that it is
infeasible to develop a statistics based tagger. Since our
attempt was to develop a manual tagger, finally we decided to

develop a tagger of our own.

D. Research on the database

We investigated several options for developing a
dictionary to store Sinhala dictionary with their corresponding
POS tags. Since we have so many words, we decided to use
SQLite [12], which is a light weight database. It can be
embedded to the application so that user can use the

application directly without worrying much about the database.

It has Java Database Connectivity support, so we can use Java
which has the support for Open Office extensions along with
SQLite.

SQLite is different from most of the other SQL database
engines in its primary design goal of being simple:

. Simple to administer

. Simple to operate

. Simple to embed in a larger program
. Simple to maintain and customize

Many people like SQLite because it is small and fast. Users
also find that SQLite is very reliable which a consequence of
its simplicity is. With less complexity, there is less to go
wrong. So, yes, SQLite is small, fast, and reliable, but first and
foremost, SQL.ite strives to be simple.

Depending on your requirement, simplicity in a database
engine can be either a strength or a weakness. In order to
achieve simplicity, SQLite has had to sacrifice other
characteristics that some wusers require, such as high
concurrency, fine-grained access control, a rich set of built-in
functions, stored procedures, esoteric SQL language features,

XML and/or Java extensions, tera- or peta-byte scalability, and
so on. If you need some of these features and do not mind the
added complexity that they bring, then SQLite is probably not
the database for you. SQLite is not intended to be an
enterprise database engine. It is not designed to compete with
Oracle or PostgreSQL.

The basic rule of thumb to identify the occasions where it is
appropriate to use SQLite is as belows: Use SQLite in
situations where simplicity of administration, implementation,
and maintenance are more important than the countless
complex features that enterprise database engines provide. As
it turns out, situations where simplicity is the better choice are
more common than many people realize.

III. METHODOLOGY

A. Design of the POS tag set

When designing the tags, we tried our level best to obtain
meaningful tags which would summarize the grammatical
meaning of the word. As an example the tag NFS stands for
Common Noun Feminine Singular. Simultaneously we tried to
adhere to conventional tags defined in other POS tag sets. As
an example we used JJ for adjectives which are generally used
in tag sets for other languages [13].
The designed POS tag set is confronted under the section of
Results and Analysis.

B. Manual POS tagging approach.

Our first approach was to develop a manual POS tagger. We
decided to use a look up table which consists of words and
their tags. If the word has multiple tags, then those tags are
also defined in the table.

Table 1: POS tags look-up table

Word Tag
3®® NFS
¢® NFS
¢® VNF1
®e NNS

When the sentence is given as the input, the tagger would
tokenize it and assign tags based on the look up table. If a
word has multiple tags, all the multiple tags are assigned.

Sentence: ¢®wo 5 &

Tagged sentence: START S[stt], ¢®wo [NNM], &= [NNN],
»& [VFM], END S[end]

stt and end stand for Start and End tags respectively in order to
indicate the start and end of sentences.

C. Selection of a data base

We decided to use SQLite as our database to store the tags.
The reason for our decision is that SQLite is a light weight
data base which can be embedded to our product.

D. Automate POS tagging

We automated POS tagging by developing a tool. We need
to give the base word (or stem), then the tagger would
generate all the derivations and assign POS tags automatically
and insert to the database. We analyzed common patterns of
nouns and verbs and implemented the tool using Java.

We analyzed Sinhala grammar and came up with the
following plan.

1. Develop a noun tagger - Assigning tags for the different
derivations of the same noun, this can be adopted with the
knowledge on grammatical cases in Sinhala language. We
analyzed different cases and came up with automated
noun tagger.

2. Develop a verb tagger - Here we analyzed verb patterns,
and identified that there are patterns when conjugating
verbs. Present tense verbs conjugate differently than past
tense verbs. So we implemented two algorithms for each.
And the stem, which is given as input to the tagger also
differs according to the tense.

3. Any word tagger - If we want to tag any word with any
tag, this approach can be used.

4. Tag patterns- This is where we can input tag patterns
easily to the data base, we just have to input a single text
file which contains tag patterns and it would update the
database of tag patterns.

E. Grammar Checking Algorithm

The major problem of conventional syntax based approach is
that they use the user input text directly, without using their
POS tags. But after some researches we were able to
implement a model for Sinhala grammar checking process
using POS tags.

In this model first we assign POS tags for every word in the
sentence. For the words that have multiple tags, all the tags
will be assigned. Following diagrams depict how the words
are assigned with tags.

User Input
Tagged words
T T il i
01 11 21 31 41
i T i
T il
02 12 22 32 »

Figure 1: Tagging process

After this process is done, we retrieve all the possible input
tag sequences as the next step. Some of the possible tag
sequences from this example can be listed as follows.

Tag 01, Tag 11, Tag 21, Tag 31, Tag41

Tag 01, Tag 12, Tag 21, Tag 31, Tag41

Tag 01, Tag 12, Tag 22, Tag 31, Tag41

The total number of sequences can be obtained: 3*2*2*3*2=
72

The next step is to check whether these sequences are
grammatically correct or not. In order to do that we should
have pre defined POS tag graphs. Let’s assume that we have a
graph as below.

a
(98
g
8]
a a

Figure 2: Sample POS tag graph

According to the above graph we can observe that the tag
sequence “Tag 01, Tag 11, Tag 21, Tag 31, Tag 41” is
grammatically correct. In that case we can suggest that the
given sentence is grammatically correct. If we cannot observe
even a single traversable sequence out of all the possible
sequences, the grammar of the given sentence would be
incorrect.

Our approach is a combination of rule based and sliding
window approach and the main steps of the algorithm are
given below.

Step 1: First input sentence will be tokenized in to words.

Step 2: Tokenized words are tagged with corresponding POS
tags. Tags are retrieved from the database.

Step 3: All the Input tag sequences are obtained. Every
sequence contains 3 tags since the grammar rules are defined
by considering 3 consecutive words that can appear in a
sentence.

Tag 01, Tag 11, Tag 21

Tag 11, Tag 21, Tag 31

Tag 21, Tag 31, Tag 41, etc.

Step 4: After matching the possible tag sequences with
defined sequences in the database, impossible sequences are

eliminated. This example is chosen in way that it does not
have a correct sequence. This sentence is incorrect according
to the rules defined in the database.

Wwo Wi w2 w3 W4
T T T
01 11 21 31

T

12

Figure 3: Tag sequences in the database that match with the
sentence

Step 5: Possible suggestion will be produced as mentioned
below,
1. Retrieve all the tags that match with stem of the
“Word 4”
2. Retrieve all the possible sequences match with
“Tag21”, “Tag31”, Tag sl /Tag s2/ Tag s3
3. Retrieve the words which have,
tags: “Tag sl or Tag s2”
Stem: stem of Word4
4. Suggesting the above words as suggestions for

Word4.
Chunk Windows
Senten ing based POS
. tagoing Result
| s

Figure 4: Grammar checking process

As we began developing our system the first requirement
was to develop the Part of Speech tagger. From the knowledge
we got from our research the best approach found was the
sliding window POS tagging algorithm [4]. This approach is
based on probability. There it takes two tags and assign the
probability of occurrence of some other tag after that. These
probabilities have been found by studying tagged sequences
for about million of sentences tagged manually. And due to
the massive amount of works that should be done it has taken
many years to be completed. As our project expands only
about two semesters even though this approach is good we had
to make it possible to do it on time. (More details of the
original sliding window based grammar checking is provided
bellow under Sliding window with probability based POS
tagging)

The difference that we made was removing the probability.
The system will have data regarding three word sequences that
can occur inside a sentence by doing so we have change the
approach from a probability based approach in to a rule based
approach. And a sentence will be checked in the same process
that is the sliding window based approach.

For this approach to be effective we added two words a start
word and an end word to the beginning and to the end of the
sentence. The starting word has the string of “START” and the
tag “stt”. And the end word has the string “END” and the tag
“end”.

E.g.: The sentence “©® =¥ =»8” will be converted to
“START ®® @xf »® END”. By doing so we can check the
sequence “START ®® @9 and the sequence “@=f »® END”
that would not have been checked otherwise.

[START e® | »8 END
START[®@® @ »8| END
START ®® B 8 END

Figure 1: Assigning tag sequences

If all tag sequences are found in this approach then the
sentence is said to be grammatically correct.

Then from this approach we found that this can be enhanced
in to grammar checking. The main purpose of building the
POS tagger was to remove irrelevant tags and to tag the
sentence with relevant tags for the pattern.

But as no patterns are found for incorrect sentences we could
mark those sentences as incorrect sentences.

E.g.: For the incorrect sentence “®® 2= »§”

TART @® Pio g END

START | @@ a5 8 END

o =g END

Figure 6: Assigning tag sequences

START @®

The first pattern will be found in the database. But the next
pattern will not be there in the database tag sequences. But the
next sequence is not there in the database. As the first
seaquake is there the sequence of first two tags for the given
words will be considered to be correct. Thereby we can come
to the assumption that the last word of the incorrect tag
sequence is incorrect. With this approach we can give error
suggestions from another approach.

IV.MAHARAVANA ARCHITECTURE

L

g
A rvagy el

L

wi el S 2.
s Pt 's vy

waar LR P
(g - an

Lianuomba
[

LA Rl
oo

=

Figure 7: Maharawana Architecture

V. RESULTS AND ANALY SIS

We have come up with a POS tag set for Sinhala and a look
up table based POS tagger for Sinhala.

A. POS tag set for Sinhala
The suggested POS tag set is as follows.

Table 2: POS tags for grammar cases nouns

Objective

mma SwdBe NSI — Common | NPI — Common
Noun Singular Noun Plural
Instrumental- Instrumental-
DEE B8y DEE B8y

Dative Case - NSD — Common NPD- Common

0y SwxBe | Noun Singular Noun Plural
Dative Dative BEw»s30
BEwO

Ablative Case - | NSA-Common NPA- Common

308 DB Noun Singular | Noun Plural
Ablative Ablative-
®ee5T ®e3DE5Y

Genitive Case -
®asTw SwBae

NSG — Common
Noun Singular

NPG — Common
Noun Plural

Genitive- Genitive-
DEEed dEEsTes
Locative Case - |NSL — Common |NPL — Common
&oios BwdBw | Noun Singular Noun Plural
Locative- 9> | Locative- sy
IclatcYeto] IclaYcYeto]
Instrumental NSA — Noun NPA -
case- 0 Singular Ablative | @s0esddEsY
BwwlBe-Same as | ©80@60eDnY
Common Noun
Ablative
g SnmBwe- | NSV-Noun NPV- Noun
Vocative Case Singular Plural Vocative-

Vocative- €®wo

€08

Table 3: POS tags for verbs

Neuter Singular-
®e

BwBw -Case Singular Plural

Nominative Case NFS- Noun NFP- Noun

yO® SwwBe | Feminine Feminine Plural
Singular NMP- Noun
NMS- Noun Masculine Plural
Masculine NNP- Noun
Singular Neuter Plural-oes
NNS - Noun

Accusative Case-
2508w B

NFSO- Common
Noun Feminine
Singular
Objective
NMSO- Common
Noun Masculine
Singular
Objective
NNSO- Common
Noun Neuter
Singular

NMPO- Common
Noun Masculine
Plural Objective-
BB eyt

NFPO- Common
Noun Feminine
Plural Objective-
BBEwsy

NNPO- Noun
Neuter Plural
Objective

Present Tense Singular Plural

Masculine VSMP — Verb VPP- Verb Plural
Singular Present-
Masculine 28,5305 0,2
Present — Y50
28, ms3esTw

Feminine VSFP -Verb VPP -Verb Plural
Singular Present
Feminine Present | »8,mz5e5d¢
-8 , 3@

Past Tense Singular Plural

Masculine VSMPT- Verb VPPT -Verb
Singular Plural Past-
Masculine Past- | 2005w
100w

Feminine VSFPT - Verb VPPT- Verb
Singular Plural Past -
Feminine Past - | 200dw
210003

First Person Singular Plural

Present Tense VESP — =8, VFPP- »@
B5Te® , DB

Past Tense VFSPT-%:208 | VFPPT - 00§

Second Person Singular Plural

Present Tense VSSP - msfem8 | VSPP-msiemy

Past Tense

VSSPT-2;008

VSPPT-m00%

Table 4: POS tags for remaining word categories

NR Common Noun &8¢, g
Root - 59®
ymas
PRFS Pronoun First o9
person Singular
- oB® yore
PRFP Pronoun First a8
person Plural -
cFD® yoe
PRSS Pronoun Second e
person Singular
-9s® yore
PRSP Pronoun Second DR
person Plural-
OO yore
QFNUM Number Om, ©¢edA,
Quantifier BCEedB
DET Determiner @®, &, &,
eDewd, 8eG
JJ Adjective - %® e8¢
Sedsem
RB Adverb- Hwo wBewsy
Seodsem
RP1 Particle ¢,
VNF1 Verb Non Finite AC, DO , BB
1
VNF2 Verb Non Finite BIey
2
VNF3 Verb Non Finite DBy
3
VNF4 Verb Non Finite acde
4
VNF5 Verb Non Finite DEems
5
VP1 Verb Participle 1 | dc» acs, aig

VP3 Verb Participle | acsieosy, di1ged
3
VNN Verbal Non 80, EE,
Finite Noun NE®
POST Postpositions | o, e, wewo
CC1 Conjunctionsl @, 80
CC2 Conjunctions2 ol
NVB Noun in Verb
"539®" m»Om»
JVB Adjective in
Verb "5Hy6" @050
UH Interjection qowd, B
FwW Foreign Word Computer
NC Not Classified A4

B. Comparison with existing POS tag sets

We found that University Of Colombo School Of
Computing also has designed a POS tag set for Sinhala [14].
We felt that we can further improve it by adding more tags.

The first thing that we noticed was they have not assigned
tags based on the case of a noun. We were guided by Professor
Rohini Paranawithana on designing the tag set. With her input,
we decided to define tags for all nine cases in Sinhala
language. When analyzing the cases, we noticed that
Instrumental case (mden SwmBw) is similar to ablative case
(208 BwxmBw) in the usage, so we assigned a one tag for
both.

Then we noticed that there are no separate tags for verb
conjugations. Then we added many tags for different
conjugations of verbs based on their tense, gender and singular
or plural.

Then we had the problem of identifying the tags at the first
sight. The tags did not resemble their grammatical properties
directly. As an example the tag we have assigned for singular,
neuter (E.g.: o) is NNN. We wanted to make tags more
meaningful. So we changed the tag set in a manner which
would resemble the grammatical properties. As an example
the tag for a singular, neuter is changed to NNS which stands
for Noun Neuter Singular.

C. Automated Tagger

We developed an automated POS tagger where we can
derive all the POS tags for a given base word. The tool
automatically inserts all the words to the database. So adding a
new word to the database is not difficult as manual tagging.

Our POS tagging tool consist of four main components.

e Noun tagger — When a noun stem is given, it derives
nouns based on 9 cases and assigns the respective tag
accordingly.

e Verb conjugation - When a verb stem is given, it derives
all related verbs and assigns the respective tag
accordingly.

e Tag patterns — We can input a text file consisting of tag
patterns of three POS tags or enter tag patterns manually
and add it in to the database. This is important in adding
new rules to the grammar checker. If the rule is simple,
such that it can be represented through a set of tag
sequences, then it is easy to insert it to the database.

e Other — this helps to enter individual words with
respective tags into the database. If it is neither a verb nor
a noun we can assign the tag manually and insert it to the
database.

POS tagging tool helps to enter Sinhala words with their
respective POS tags into database by just entering stem only.
One stem would help the user to add many words to the
database. It is more comfortable than adding word by word
with respective tags at a time.

D. Noun Tagger

A noun can appear in several forms according to the 9 cases
(“Vibhakthi”) which are defined in Sinhala grammar [7].
Almost all the nouns in Sinhala language can be converted in
to cases by following a similar pattern. All the cases of a
particular noun can be derived using the stem of that noun and
is the key point of our automation of noun tagging process.

Table 5: How nouns are derived according to nine cases

m Caw=

Figure 7: Classification of a noun

After analyzing nouns we understood that we can automate
the tagging process by adding several suffixes at the end of a
noun. These suffixes that need to be added at the end of the
noun do not changed depending on the noun, but the suitable
form of the base word will have to be decided manually. The
example below shows how a singular noun gets converted in
to nine cases. To get nine cases of the plural words of those,
we cannot use the same stem. In that case we have to use
“®Redey” and “DFecd”.

To derive the 9 cases of these plural nouns, we cannot find a
common stem. To handle that we have to enter the proper
form of the noun manually.

Table 6: Derivation of noun “83es1” into nine cases

Base Suffix POS Tag

BB es0 NFS

BB es0 NMSO

BB es0 B8y NSI

BB es0 Q) NSD

B3B3 eosy NSA

B3B3 od NSG

B3B3 Y aTolels) NSL

B3B3 eosy NSA

BB es0 NSV

Table 7: Derivation of noun “@&@s” into nine cases

Cases Example
5O® BBes
»EO® BB es0
mma 8B es0 BBy
80y 8B e300
208 8B enewsy
o A) B8Bwed
&aioS 8Ben emecy
[Dleled 8B wensy
BB 8Ben

Base Suffix POS Tag

DE R NFS
DE NFS
AEE B8y NSI

AEE Q) NSD
AEE Sloka] NSA
AEE od NSG
AEE emeds NSL
AEE cloka] NSA
DE R NSV

For a single case, a noun can again be categorized as below,

Since we cannot find a common stem for all the forms of
nouns to derive 9 cases, the tagging process cannot be fully

automated. We need to analyze some factors of the noun
manually,

e Gender of the noun (masculine /feminine /neutral)

e Singular/Plural

e Correct form of the base word

E. Verb Conjugation

When it comes to verbs in Sinhala also they are derivations
of particular stem according to 9 cases [7, 15]. (We could
understand that though there are 9 cases, when verbs are
considered only 7 cases come into play) When the stem is
given the relevant suffix is appended to the stem considering
tense, gender and Singular/plural and relevant POS tag is
assigned automatically. When tense is considered stem which
we have to enter may be different. As shown below to derive
the present and past tense verbs “z»” and “z;” should be given
separately as stems.

Table 8: Verb Conjugation in Present Tense

Verb POS Tag
8 VESP
)C) VFPP

DB VSSP
»siemy VSPP
Y [Cha o) VSMP
DBIB @ VSFP
& VSFP
& VSFP
7B VPP

D) VP1

©»8sy VNF3

»ee VNF4

DEDBY VNF5
DI BND VPP

Table 9: Verb Conjugation in Past Tense

Verb POS Tag
008 VFSPT
7008 VFPPT
9008 VSSPT
008 VSPPT
7028 VSFPT
270D VSMPT

7005w VPPT

F. Grammar Suggestions

We discovered the possibility of giving error suggestions. In
order to approach giving suggestions we have to make the
assumption that the user has entered a grammatically
inappropriate form of word that he wanted to enter.

E.g.: The user wanted to enter the sentence which will be
giving the meaning that he eats rice. That is “®® 2= »8”.
But he did not know or missed the rule that when the subject
been “®®” the verb should be “»®” and entered the sentence
“@® 9 »§”. This sentence will be detected as an incorrect
sentence from the sliding window based algorithm explained
above.

Now if we can derive the correct word that could come for
the incorrect word based on that word and the three word
seaquake we can give error suggestions.

The approach we took to find the incorrect word from the
incorrect, inappropriate word is based on the base word of any
word. For the first two words of the tag sequence we can find
sequences that are there with those two tags and some other
tag after that.

E.g.: For the tag sequence PRFS, NNPO, VFPP and for the
sentence “®® ax »§” as we did not find it in the database
sequence table it checks for any sequence with starting tags
PRFS and NNPO. And from that it gives] PRFS] [NNPO]
JVESP] is a correct tag sequence. Now we have to find
derived word in VFSP format from the base word of “»&”.

The approach we took is defining a base word for each word
in the database. While we are entering words to the database
we derive from base word. That is a stem. Thereby for a given
word in the database there exist the “word” column to keep the
string format of the word, the “tag” column to keep the
appropriate tags for the relevant word and the “stem” which
keeps the stem of that word.

G. Problems with Sliding Window Grammar Checking

The existing grammar checking algorithm, which is the shift
window algorithm, will not check some of the sentences even
in the simple sentence format. As in a simple sentence for
which we should check grammar there can be several
adjectives and adverbs. In such scenarios the subject and the
verb will not be matched as we are checking with three word
sequences.
E.g.: @® ¢08x7 085 »8
The grammar will be checked for Start ®® ¢08z¥, ©® 08y
eudsY, (087 endsY »8 and for ew®s¥ »& end. Thereby
the object ®® and the verb »& will not be matched. There by
it want show every error.

H. The Solutions for the Problems with Sliding Window
Grammar Checking

One option for this problem is to remove all the words with
adjective and adverb format and then check grammar. This
was our first approach but by doing so there can be other
problems. Adjectives come before nouns and adverbs come
before verbs. But with removing all of them we are not
considering the possession of usage of those adjectives and
adverbs.
E.g.: ©® ewds »c »8 will not be identified as an incorrect
sentence. As “m@” which is in adjective format has been used
as an adverb or a noun, as it has come before “®»&” which is
in verb format.

The best approach for this problem is to use finite automata
that will chunk adjectives and adverbs with their relevant
nouns and verbs.

The approach taken will also cover some other grammar
rules. The sentence as usual will be tagged for each words and
tags sequences will be generated when there are multiple tags
assigned to the same word. For an example if there exists a
word with three tags and another word with two tags then
there exists three into two, that is six tag sequences for that
particular sentence.

E.g.: 1: gg ©® Oy 95 ewdsy »&.The word @2F has two tags
NNP and NNPO. Thereby there are two tag sequences.

E.g. 2: Tag sequences for ¢®®s @ s3I are:

NFS NNP VSFP, NFSO NNPO VSFP, NSV NNP VSFP, NFS
NNPO VSFP, NFSO NNP VSFP, NSV NNPO VSFP

a8 [P »siBe | 1
(NNP) (VSFP) L |
ot Lyl BT Bs N 2
(NNPO (VSFP) L |
a®®o
(NFS) -
o P a3Be | 3
O (NNP) (VSFP) L
(NFSON —
as |p T8 4
a®® (NNPO (VSFP) _’_
(NSWV)
asf DBIB _5
NP P ysEmy >
B>} Iy 3B Ly| 6
(NNPO (VSFP\ ||

Figure 8: Tag assigning

Then each tag sequence is taken in reversed order. This is
done because in Sinhala language we have to match from the
verb for the relevant noun and the verb exists at the end of any
sentence. If a verb is not found then it will directly go to the
error state from state 1 (figure 1). The system is checking
whether it is a verb by keeping the tags that could come for
verbs in the database. Some of the tags that come for verbs are
VSMP, VSFP and VPP, etc.

E.g.:“q¢ ®® o @ will be an incorrect sentence as the
system will identify “@=” is not in verb format. And if it is a
verb then it goes to the second state. Then before verbs there
can be an adverb. For each adverb found, it will remain in the
same state. At the state two if the word is not a noun or not an
adverb at the start of a sentence it will go to the error state.

E.g.: In “ed »8”, “wx©s” is not a noun or not an adverb.
In “e©ds »&” in state two it will get the next input as the
start of the sentence. Tags for adverbs are RB and VNF3.

From state 2 if it is a noun then it will go to the state 3. Then
if a noun or an adjective is found then it will remain in the

state 3. Tags for nouns are NFS, NMS and NNS, etc. The tag
for adjective is JJ. Then if the start of the sentence is reached,
it goes to the final state. E.g.: e3¢ ©® o 25 068z »8.

| RN L rre
g wdeery | ik "tl A J‘.
oy sl diz
woEIce | ol | 152 kvt
lven e | mrs
vl
enc | K. -
Hirlesn
i Lo NIR{AY
I arann

frars raincas

et !
arrte e althe .
N @
retl %

Figure 9: Chuncking Process

FnoLy rounce
ednsbos e kel
gresart

At the state 3 the system has read the word “@= then it
checks for “sz»”, and as it is an adjective it remains in the state
3. Then the word “®®” comes which is a noun. And its
adjective “ggg” comes. Now as it is at the start of the sentence
it goes to the final state.

During this process of checking the sentence when a verb or
a noun is found the system triggers a flag. Then it will remain
until the next noun or the adjective is been found. During that
time all the words are adjectives or adverbs found for the
earlier found verb or the noun. Those adjectives and adverbs
will be chuncked with them.

E.g.: The sentence “g¢ ©® on a5 oudxy »” will be
chunked as shown bellow.

START stt], {eg]lJ], }©®]PRFS],
{@28s7]RB], }»8&]VFPP], END[end],
Words in curly brackets are chuncked for the word after the
curly brackets. “@©8z3” is chuncked for “»®” and is the
adverb of that word. These adjectives and adverbs are been
kept inside the noun and adverb word object.

{cn]l]], }a=INNP],

As there can be several tag sequences there can be several
incorrect sequences. For then they will be eliminated giving
the reasons for the error in the console. If there exists one or
more tag sequences found then those sequences will be sent to
be checked by the pattern matching.

E.g.: When checking for “@®®> »§&” the chunked sequences
will be.

1. START>stt, @a®®>[{NFS}NFS], =»g>[
{VFPP} VFPP], END>end,
2. START>st, @®®>[{NFSOINFSO], =g>[

{VFPP} VFPP], END>end,
3. START>stt, @®®s>{error pos <this should be a
noun>}NSV, =»&>[{VFPP} VFPP], END>end,

The first two tag sequences are correct with respective to the
chunking algorithm as the rules are been satisfied by those
sequences. But in the third sequence is incorrect with respect
to the algorithm.

Thereby only the first two tag sequences will be sent to the
window based grammar checking algorithm.

If no correct tag sequence is found for particular sentence
then it implies that the sentence is completely wrong in the
chunking level. These errors are due to the early mentioned
errors that are been checked for during the chunking process.
E.g.: for the sentence “gg¢ ©®® o A w5y

It will give the error “!!!! Last word of the chunk doesn't
have a verb tag”

Then it will not proceed in to the window base grammar
checking.

1. How Chuncker uses the Database

For the chunking to keep which tags are nouns, verbs,
adjectives and which tags are adverbs we have used a table in
the database. It shows the tag and for which it should be
chunked for.
E.g.: The stem of “»&” and “»&” is “=»”.

00 a5 g
©©]PRFS] &5 |NNPO] =] VFRR]_ |

Correct tag sequence

] PRFS] INNPO]]VFSP;'J |

A

Need VFSP format base word of
“oy”

2]

Thereby the suggestion will be =8
for »8

»®

N

Figure 10: Suggestion Mechanism

Thereby we check the stem of “&” and we can find “»” is
the base word. Now as we want VFSP we search for the word
with the tag VFSP and with the base word “z”. The resulting
one will be “=8”.

For this approach to be effectively used the words should be
added to the database to reflect this format. And there should

be tag sequences in the database for every pattern that can
come. A word stemmer will be ok with English language. But
for Sinhala language with more complex form of word
derivations this approach is more efficient.

This approach is a brute force approach which uses a lookup
table that maps form the existing infected word to the stem
word. The Suffix stripping algorithm does not use a look up
table like in brute force algorithm. Instead, a typically smaller
list of “rules” is stored which provide a path for the algorithm,
given an input word form, to find its root form. The
inappropriateness of this approach has been mentioned above.

J. Future Improvements

We are currently working on Chunking. Chunking is where
two or many POS tags can be assigned a separate tag. Chunks
are normally taken to be a non recursive correlated group of
words. Sinhala has a complex morphological and syntactical
structure. It is a relatively free word order language but in the
phrasal and clausal construction, it behaves like a fixed word
order language. Then it is easy and less complicated to
analyze [16]. There are more grammar rules that can be
implemented further. When implementing more grammar
rules, new POS tags can be introduced.

CONCLUSION

At present there is no grammar checker for Sinhala
language. Our goal was to develop a basic grammar checker
for Sinhala which would remove the barrier of producing a
grammar checker for Sinhala. The methods which we used in
this project can be applied when developing grammar
checkers even for other languages. The best example is the
pattern matching mechanism. The algorithm which we
developed for error suggestions can be applied to any
language. But the rule specific algorithms which we developed
for advanced grammar rules can be used only for Sinhala. But
the logic can be used by other developers. We did not focus on
producing a complete grammar checker. Instead we selected a
certain set of rules and focused on them with the intention that
future developers would contribute to the project Maharavana.

ACKNOWLEDGMENT

We are thankful to the project coordinator Dr.Shantha
Fernando for his guidance and constant supervision. We
would also like to express our gratitude towards all the staff
and the support staff of CSE for all the support they have
extended towards us.

(1]

(2]

(31
(4]

(3]

REFERENCES

“Part of speech - Wikipedia, the free encyclopedia.” [Online].
Available: http://en.wikipedia.org/wiki/Part of speech. [Accessed: 04-
Sep

Sandipan Dandapat, “Part-of-Speech Tagging for Bengali”, Department
of Computer Science and Engineering Indian Institute of Technology,
Kharagpur, January 2009.

Martin Mueller, “A part of speech tag set for written English, from
Chaucer to the present”, November 2009.

Daniel Naber, “A Rule-Based Style and Grammar Checker”, October
2003.

“Natural language processing - Wikipedia, the free encyclopedia.”
[Online]. Available:

http://en.wikipedia.org/wiki/Natural_language_ processing. [Accessed:
04-Sep-2011].

Set 8o Bwdenas, 2nd ed. Wasana Publishers,
2009.
W.S Karunathilaka, 8o woss Dxizdences. Gunasena, 2011.

“Rule Based POS Tagging,” NATURAL LANGUAGE PROCESSING.
[Online]. Available: http://language.worldofcomputing.net/pos-

(9]

[10]

(1]
[12]
[13]

[14]

[15]
[16]

tagging -tagging . [Accessed: 04-Sep-2011].

L. Altunyurt, Z. Orhan, and T. Gungor, “Towards combining rule-base
and statistical part of speech tagging in agglutinative languages,”
Computer Engineering, vol. 1, no. 1, pp. 66-69, 2007.

-base -p

Geunbae Lee, Jeongwon Cha, and Jong Hyeok Lee, “Syllable pattern-
base

of korean,” Computational Linguistics, vol. 28, no. 1, Mar. 2002.

M. Mieskes and M. Strube, “Part-of-speec

speech,” in Pr , 2006, pp. 935-938.

“About SQLite.” [Online]. Available: http://www.sqlite.org/about.html.
[Accessed: 04-Sep-2011].

Dinn Dien, Hoang Kiem, “POS-Tagger for English-Vietnamese
Bilingual Corpus”, vol. 3, pp. 88-95, 2003.

University of Colombo School of Computing, “A Part of Speech Tagset
for Sinhala.”

J. B. Dissanayake, w0 es¢w. Godage, 2008.

Dhanalakshmi , Anand kumar , Rajendran , Soman , “POS Tagger and
Chunker for Tamil Language”

