Synthesis and characterization of alkyd resins using blend of soya bean oil and karawila seed oil

S.H. U .1. de Silva

thesis was submitted to the Department of Chemical and Process Engineering at the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science in Polymer Technology

Department of Chemical and Process Engineering
University of Moratuwa
Sri Lanka
February, 2010

Abstract

This research is based on synthesizing an air drying long oil alkyd resin using a blend of semi drying soya bean (*Glycine max* -Pb I) oil and fast drying karawila (*Momodica charantia* -MC43) seed oil. The alkyd resin was synthesized with the aim of obtaining a varnish without standing film properties, especially drying characteristics enhance by significant amount of a-eleostetic acid (ctt,9,11,13-18:3), where is having conjugated double bonds, presence in karawila seed oil.

A series of alkyd resins were prepared maintaining 65% oil length by changing the ratio of karawila seed oil from 0-50% (by w/w%). The other constituents of alkyd resins were pentaerythritol, phthalic anhydride, xylene and sodium methoxide as catalyst. Due to the lowacid values of the seed oils monoglyceride process was selected and obtained accept able standard for transesterification and polye sterification reactions and 240°C temperature was maintained at transesterification and esterification stages. Patton constant and the ratio of OH:COOH groups were maintained closer to 1.00 when preparing alkyd resins. In addition, the alkydresins were prepared by maintaining final acici. value below 20 mg/g to make sure the extent of polymerization was in the range of 90 % to 95 %. Physicochemical properties of these alkydresin solutions were examined to see the effect with the increase of karawila seed oil in the resin. The solid content was adjusted to 50% and cobalt octate with lead octate were used as driers to prepare varnish from these alkyd resins. The film properties of the alkyd resins were examined to find the optimum ratio of karawila oil to soya bean oil. Mechanical properties, chemical resistant properties and drying properties of these films were examined and evaluated in this regard

The alkyd resin blended with 30% karawila seed oil showed the best film properties in the oil blended series and it also render lower set to touch drying time and dry to touch drying time, better scratch hardness, adhesion and better gloss. In addition, better resistance to water, acid, solvent and corrosion was observed

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for any degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference is made the test.

UOM Verified Signature

Signature of the candidate .

Umanga de Silva

"To the best of my knowledge, above particulars are correct"

Supervisors

UOM Verified Signature

Dr. A.D.U.S. Amarasinghe

Senior Lecturer

Department of Chemical & Process Engineering

University of Moratuwa

Sri Lanka

UOM Verified Signature

Dr. B.A.J.K. Premachandra

Senior Lecturer (Head of the Department)

Department of Chemical & Process Engineering

University of Moratuwa

Sri Lanka

Acknowledgement

ish to express my deepest and sincere gratitude to my supervisors, to whom I am deeply obted Dr. Shantha Amarasinghe and Dr. Jagath Premachandra Department of Chemical & cess Engineering, University of Moratuwa. Their attentiveness and interest in this study, intable assistance, advices and criticism have motivated me immensely and guided me on the tway to the successful completion of this work within period.

orrecting several drafts of my thesis and providing a critical review of the entire thesis. His dance was a grand enlightenment for the success of this research project.

ould like to express my deepest gratitude to MSc Course Coordinator Dr. Shantha Walpolage or arranged this opportunity for me.

Mali Bandara of Lanka Salt Ltd Hambantota, sanctioning me leaves to carry out the carch work and theory classes.

xpress my deep gratitude to Lankem Robbialac paint factory Mr Ruwan Weerasinghe Sunil Fernando and Mr L.A.S. Kodikara and laboratory staff for their help and facilities on to me for carrying out testing of film properties of alkyd resins.

onvey my sincere thanks to Mr. Rangith Ganemulla, Mr Ananda Ebuldeniya and Weerasooriya and his laboratory staff at ICI paints, Ratmalana for their willing help given to for carrying out testing of physicochemical properties using their laboratory facilities.

the set up used for the synthesis process. I would also like to thank Ms. Amali Wahalathanthri and all the laboratory staff of Department of Chemical and Process Engineering and Department of Materials Engineering at the University of Moratuwa for their support for my lab works which tend to the success of this work. I wish to extend my special thanks to technical officer A. K. Somanath Premadasa for giving me the facilities to carry out the research. I wish to thank library staff of University of Moratuwa and library staff at ITI for their support for the

success of this work. In addition I also thank to Mr. N.A.C. Narangoda who contributed for making the soft copy of my thesis.

Latso give my grateful thanks to my colleagues Ms. M.D.Y. Milani, Mr. K. Vitharana and Mr. L. A. S. Kodikara for their kind cooperation given to me throughout this research project. Lwish to thank for Mr. Mohamed Dilshan who helped me during my research work. My special thanks to all post graduate friends for their dedication to support me in the hour of need.

I would like to mention the generosity of Mr. K. Sundaralingum who helped me in numerous ways to compile the thesis.

Leonvey my thanks to my teachers, friends, relations and all others who directly or indirectly contributed me during my research work.

I healty yet importantly, I acknowledge with heartiest gratitude for my parents, brothers, M Jayantha Peris and especially Rasika Liyanage who helped me in all the way at the beginning to end of this research work. Lectronic Theses & Dissertations

www.lib.mrt.ac.lk

Content

vostract		i
v∢knowledg	gement	ii
⊖ntent		iv
st of figur	res	vi
tist of table	S	ix
. hamtar 1		
Chapter 1		
introducti	on	1
	Introduction	2
	Scope and objective.	5
	Justification of objective.	5
	Outline of thesis. University Moratuwa, Sri Lanka.	6
(hapter 2	Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Literature		7
	Drying oils.	8
1	Oxidative drying mechanism	9
	Oil extraction	14
· •	Biological diversity of Momodica charantia	18
<u>.</u> .]	Extent and production of karawila in Sri Lanka	19
	Chemical nature of the karawila seed	22
)	Biological diversity of <i>Glycine max</i>	23
2 - 1	Extent and production of soya bean in Sri Lanka	25
2.52	Chemical nature of the soya bean	27
2. 1	Alkyd resin	29
2,64	Historical development of alkyd resin.	29
2.6.2	Chemical nature of alkyd resin.	31
2.7	Classification of the alkyd resins	32

2.8	Raw materials of alkyd resin	35
2.8.1	Polyhydric alcohols	35
2.8.2	Polybasic acids	37
2.8.3	Fatty acids and oils	39
2.9	Oil based alkyd resins manufacturing	46
2.9.1	Fatty acid process	47
2.9.2	Monoglyceride process	48
2.9.3	Acidolysis process	53
2.9.4	Fatty acid and oil process	54
2.10	Applications of modified alkyd resins in surface coatings	54
2.10.1	Influence of oil length in alkyd resin	55
2.10.2	Modification of alkyd resins with nitrocellulose	55
2.10.3	Amino resin modification	56
2.10.4	Chlorinated rubber modification	56
2.10.5	Phenolic resins modification Moratuwa Sri Lanka	56
2.10.6	Modification of acrylated compounds	57
2.10.7	Polyisocyanate and epoxy resins modification	57
2.10.8	Silicon modification.	57
2.10.9	Styrene modification	58
2.10.10	Polyamides modifications	58
2.10.11	Modification with vinyl resins	59
2.11	Drying process of alkyd resins.	59
2.11.1	Drying mechanism of non drying alkyd resins	60
2.11.2	Drying mechanism of air drying alkyd resins	60
2.11.3	Driers	61
2.12	Theoretical parameters used in alkyd resins	63
2.12.1	Average functionality	63
2.12.2	Extent of reaction	64
2.12.3	Number average degree of polymerization and degree of polymerization	65
2.12.4	Ratio between hydroxyl groups and carboxylic groups	66

2.12.5	Branching coefficient.	67
2.12.6	Alkyd constant	67
2.13	Gelation	69
Chapter 3		
Materials a	and methodology	73
3.1	Work plan	74
3.2	Raw materials, equipments and experimental setups	75
3.3	Formulation of raw materials	76
3.4	Experimental works	81
3.4.1	Extraction of seed oils	81
3.4.2	Characterization of physical properties of seed	82
3.4.3	Determination of physicochemical properties of oils	83
3.4.4	Synthesis of alkyd resins.	84
3.4.5	Determination of physicochemical properties of alkyd resin solutions	85
3.4.6	Determination of film properties of dried films	87
Chapter 4	www.lib.mrt.ac.lk	
Results an	d discussion	91
4.1	Physical properties of seed materials	92
4.2	Physicochemical properties of oils	92
4.3	Synthesis and characterization of alkyd resins	94
4.4	Characterization of film properties	101
Chapter 5		
Conclusion	n and future work	105
5.1	Conclusion.	106
5.2	Future work	106
5.3	References	107
Appendix		110

List of figures

Chapter 2

Figure	2.1	Yala, Maha and annual extent of cultivated areas of karawila	21
Figure	2.2	Yala, Maha and annual production of karawila	21
Figure	2.3	Production density of Yala ,Maha seasons and annual of karawila	21
Figure	2.4	Production, imports and consumption of soya bean	25
Figure	2.5	Yala, Maha and annual extent of cultivated areas of soya bean	26
Figure	2.6	Yala, Maha and annual production of soya bean	26
Figure	2.7	Production density of Yala, Maha seasons and annual of soya bean	26
Figure	2.8	Formation of glyptal by reaction of glycerol and phthalic anhydride	30
Figure	2.9	Reaction between ethylene glycol and phthalic anhydride	30
Figure	2.10	The monoglyceride formation by triglyceride in fatty oil and glycerol	31
Figure	2.11	The reaction between monoglyceride and phthalic anhydride	32
Figure	2.12	Polyol used in the alkyd resin preparation.	35
Figure	2.13	Polyol used in the alkyd resin preparation	36
Figure	2.14	Reaction between pentaerythritol and formaldehyde	37
Figure	2.15	Polybasic acids used in the alkyd resin preparation	38
Figure	2.16	The correlation between acid value and viscosity with processing time	47
Figure	2.17	Reaction between fatty oil and glycerol	49
Figure	2.18	Reaction between triglyceride of oil and pentaerythritol	49
Figure	2.19	Etherification of glycerol.	52
Figure	2.20	Etherification of pentaerythritol.	52
Figure	2.21	Esterification between monoglyceride and phthalic anhydride	53
Figure	2.22	Reaction between isophthalic acid and triglyceride	53
Figure	2.23	Push – pull catalytic mechanism of cobalt drier	62
Figure	2.24	Chain growth and cross- link formation of free hydroxyl in polymer backbone	71
Figure	2.25	Variation of extent of polymerization, viscosity, number average	
		degree of polymerization and branching coefficient at the gel point	71
Figure	2.26	General picture of part of alkyd molecule	72

Chapter 3

Figure 3.1	Work plan	74
Figure 3.2	Experimental set up of alkyd resin synthesis	76
	Chapter 4	
Figure 4.1	Temperature profile of K0S100	94
Figure 4.2	Transesterification and esterification time vs. weight percentage of	
	karawila seed oil	95
Figure 4.3	Extent of polymerization and acid value vs. weight percentage of	
	karawila seed oil	96
Figure 4.4	Number average degree of polymerization vs. weight percentage of	
	karawila seed oil	98
Figure 4.5	Viscosity vs. weight percentage of karawila seed oil	99
Figure 4.6	Specific gravity vs. weight percentage of karawila seed oil	100
	University Moratuwa, Sri Lanka.	

List of Tables

Chapter 1

Table 1.1	The importation of alkyd resins in Sri Lanka	4
Table 1.2	Uses of fats and oil in surface coatings	6
	Chapter 2	
Table 2.1	Major uses of karawila plant	19
Table 2.2	Medicinal applications of some countries	19
Table 2.3	Extent and production in most abundant cultivated areas in Sri Lanka in 2006	20
Table 2.4	Chemical Composition of the karawila seed	22
Table 2.5	Global soya bean producers in 2006.	23
Table 2.6	Major uses of soya bean in the world	24
Table 2.7	The general analysis of soya bean	28
Table 2.8	Alkyd resin classifications. University Moratuwa, Sri Lanka.	33
Table 2.9	The general applications of drying and non drying alkyd resin	34
Table 2.10	Structural formula of unsaturated fatty acids and its sources	40
Table 2.11	Fatty acid composition of some fatty oils	41
Table 2.12	Physicochemical data of some fatty oils	43
Table 2.13	Influence oil properties on alkyd resin preparation	45
Table 2.14	Order of catalytic activity of catalyst	50
Table 2.15	Functionality of monomers contributed in the polyesterification reactions in alkyd resin synthesis	69
	Chapter 3	
Table 3.1	Symbols used in calculation	77
Table 3.2	Recipe formula and theoretical parameters of alkyd series	80
Table 3.3	Fatty acid composition of the each oil blends	81
	Chapter 4	
Table 4.1	The physical properties of karawila and soya bean seeds	92
Table 4.2	The analysis of karawila seed and soya bean oils	93
Table 4.3	Physicochemical properties of alkyd resins solution series	98
Table 4.4	Film properties of dried films	103