UNIVERSITY OF MORATUWA

EVALUATION OF SHEAR DESIGN PROCEDURES ADOPTED IN THE INDUSTRY FOR REINFORCED CONCRETE

By

W.K.H.R.E. WICKRAMAGE

A THESIS

SUBMITTED TO THE FACULTY OF ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE

DEGREE OF MASTER OF PHILOSOPHY

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DECEMBER, 2009

DECLARATION

I hereby, declare, that the work included in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

> W.K.H.R.E.Wickramage (Author)

> > Certified by

Dr. I. R. A. Weerasekera Supervisor/ Senior Lecturer Division of Building & Structural Engineering Department of Civil Engineering University of Moratuwa Sri Lanka

ABSTRACT

Application of reinforced concrete as a construction material was first found in the middle of the 19th century. Over the last one and half centuries it has become a popular and widely accepted construction material. Its applications span from in small domestic structures to large structures like massive dams, bridges, offshore platforms provides evidence for its potential.

Shear design is an important area of the reinforced concrete designing process. This study reviews the shear designing approaches for reinforced concrete beams. From the beginning the shear behaviour of reinforced concrete beams was mysterious. The first analytical model to explain the shear behaviour of a reinforced concrete beam was postulated in 1899 by a Swiss engineer called Ritter and a German engineer called Mörsch (1902). They independently introduced the Truss Model to use in shear design. Since then various theories have been put forward to explain the shear behaviour of reinforced concrete beams. But, still none of them seems to have resolved the issue by producing results relating theory to experiment to a higher degree of accuracy when compared to flexural design.

This study identifies reasons for those theories to deviate from the experimental results. Some of them are conventional parameters used in design equations whereas others are new for these design methods. Also it identifies when these parameters become critical for deviation of the predicted results from the experiment. Ultimately this study identifies when these theories are justifiable for shear designing of reinforced concrete. Also it evaluates the practices followed in design offices in Sri Lanka for shear design and recommends the best practises to ensure adequate safe guard against a premature failure. Results of this study shows that Canadian Code General method and Australian Code method

give most accurate results and can be recommended to use within the limitations specified in the code. Further this study shows that Japanese Code design method can be recommended for conservative shear designing without any restrictions on parameters. But this method is less accurate than the Canadian Code General method and Australian Code method.

ACKNOWLEDGEMENT

First and foremost I would like to express my gratitude and deep appreciation to My supervisor Dr. I.R.A Weerasekera, Senior Lecturer, Department of Civil Engineering, University of Moratuwa for his invaluable assistance, advice and guidance throughout this project. This association has been interesting and rewarding.

My sincere thanks are also due to Prof. W. P. S. Dias, Present Head, Department of Civil Engineering, University of Moratuwa, for making available all resources and facilities for this research work.

I gratefully acknowledge the guidance of Prof. Bandara, Department of Civil Engineering, University of Moratuwa, for proper use of statistical methods in this study.

My sincere thanks should also due to Prof. Nanayakkara and Prof. M.T.R.Jayasinhe, Professors of the Department of Civil Engineering, University of Moratuwa, for making available various codes of practice for my work.

The Senate Research Committee of University of Moratuwa should also be thanked for supporting and financing my research.

I appreciate very much invaluable support, encouragement and understanding shown by my parents.

Finally I would like to acknowledge with fraternal love my colleagues and others who have assisted me in various ways to the successful completion of this thesis.

W.K.H.R.E.Wickramage

DEDICATION

То

my parents

and

all those who are interested and committed in advancement of science

CONTENTS

Declaration	ii
Abstract	iii
Acknowledgement	v
Dedication	vi
List of Figures	x
List of Tables	xiii

1	Introduction	1
	1.1 Background	1
	1.2 Historical Development of Shear Design Procedures	2
	1.3 Overview of Current Design Procedures	5
	1.6 Objectives	5
	1.7 Scope	6
	1.8 Organisation of the Thesis	6
2	Literature Review	7
	2.1 Introduction	7
	2.2 Behaviour of Beams Falling in Shear	7
	2.2.1 Behaviour of Beams without Web Reinforcement	9
	2.2.2 Behaviour of Beams with Web Reinforcement	12
	2.3 Factors Affecting Shear Strength of Beams without Shear	13
	Reinforcement	
	2.4 Shear Design Methods	14
	2.4.1 Empirical Methods	14
	2.4.2 Strut and Tie Approach	16
	2.4.2.1 Truss Approach with Concrete Contribution	19
	2.4.3 Compression Field Approaches	20
	2.4.3.1 Compression Field Theory	20

2.4.3.2 Modified Compression Field Theory	25
2.4.4 Shear Friction Approach	30
2.4.4.1 Shear Friction Method by R.E.Loov	31

 3.2 Database Preparation 3.3 Shear Strength of Slender Beams 3.3.1 ACI Code -Shear Design Provisions (ACI-2002) 3.3.2 BS Code -Shear Design Provisions (BS 8110-1997) 4.3.3 Australian Code -Shear Design Provisions (JSCE-1986) 3.3.5 Canadian Code -Shear Design Provisions (JSCE-1986) 3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001) 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5.1 Introduction 3.5.2 Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3 Methodology	33
3.3 Shear Strength of Slender Beams33.3.1 ACI Code -Shear Design Provisions (ACI- 2002)33.3.2 BS Code -Shear Design Provisions (BS 8110-1997)43.3.3 Australian Code -Shear Design Provisions (JSCE- 1986)53.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986)53.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994)63.3.6 Shear Friction Method -R.E Loov (1998),7A.El Metwally and R.E. Loov(2001)73.4 Shear Strength of Deep Beams83.4.1 Selection of Strut and Tie Model83.4.2 ACI Code -Shear Design Provisions8for Deep Beams (ACI- 2002)33.4.3 Australian Code -Shear Design Provisions9for Deep Beams (ACI- 2002)33.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)33.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression9	3.1 Introduction	33
 3.3.1 ACI Code -Shear Design Provisions (ACI- 2002) 3.3.2 BS Code -Shear Design Provisions (BS 8110-1997) 3.3.3 Australian Code -Shear Design Provisions (AS 3600- 2001) 3.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986) 3.3.5 Canadian Code -Shear Design Provisions (JSCE- 1986) 3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001) 3.4 Shear Strength of Deep Beams 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.2 Database Preparation	33
 3.3.2 BS Code -Shear Design Provisions (BS 8110-1997) 3.3.3 Australian Code -Shear Design Provisions (AS 3600- 2001) 3.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986) 3.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994) 3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001) 3.4 Shear Strength of Deep Beams 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.3 Shear Strength of Slender Beams	38
 3.3.3 Australian Code -Shear Design Provisions (AS 3600- 2001) 5.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986) 5.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994) 6.3.6 Shear Friction Method -R.E Loov (1998), 7 A.El Metwally and R.E. Loov(2001) 3.4 Shear Strength of Deep Beams 8 3.4.1 Selection of Strut and Tie Model 8 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.3.1 ACI Code -Shear Design Provisions (ACI- 2002)	39
 3.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986) 3.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994) 3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001) 3.4 Shear Strength of Deep Beams 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.3.2 BS Code -Shear Design Provisions (BS 8110-1997)	45
 3.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994) 6 3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001) 3.4 Shear Strength of Deep Beams 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.3.3 Australian Code -Shear Design Provisions (AS 3600- 2001)	50
3.3.6 Shear Friction Method -R.E Loov (1998), A.El Metwally and R.E. Loov(2001)73.4 Shear Strength of Deep Beams83.4.1 Selection of Strut and Tie Model83.4.2 ACI Code -Shear Design Provisions8for Deep Beams (ACI- 2002)83.4.3 Australian Code -Shear Design Provisions9for Deep Beams (AS3600 - 2001)93.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)93.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.3.4 Japanese Code -Shear Design Provisions (JSCE- 1986)	56
A.El Metwally and R.E. Loov(2001)3.4 Shear Strength of Deep Beams83.4.1 Selection of Strut and Tie Model83.4.2 ACI Code -Shear Design Provisions8for Deep Beams (ACI- 2002)93.4.3 Australian Code -Shear Design Provisions9for Deep Beams (AS3600 - 2001)93.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)93.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.3.5 Canadian Code -Shear Design Provisions (CAN- A23.3-1994	l) 61
3.4 Shear Strength of Deep Beams83.4.1 Selection of Strut and Tie Model83.4.2 ACI Code -Shear Design Provisions8for Deep Beams (ACI- 2002)83.4.3 Australian Code -Shear Design Provisions9for Deep Beams (AS3600 - 2001)93.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)93.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.3.6 Shear Friction Method -R.E Loov (1998),	78
 3.4.1 Selection of Strut and Tie Model 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.2 Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	A.El Metwally and R.E. Loov(2001)	
 3.4.2 ACI Code -Shear Design Provisions for Deep Beams (ACI- 2002) 3.4.3 Australian Code -Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code -Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code -Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.2 Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 	3.4 Shear Strength of Deep Beams	81
for Deep Beams (ACI- 2002) 3.4.3 Australian Code –Shear Design Provisions for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code –Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code –Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.1 Introduction 9 3.5.2 Multinomial Logistic Regression 9 3.5.3 Application of Multinomial Logistic Regression 1	3.4.1 Selection of Strut and Tie Model	81
3.4.3 Australian Code -Shear Design Provisions9for Deep Beams (AS3600 - 2001)3.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)3.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5 Application of Multinomial Logistic Regression93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.4.2 ACI Code -Shear Design Provisions	85
for Deep Beams (AS3600 - 2001) 3.4.4 Canadian Code –Shear Design Provisions for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code –Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.1 Introduction 3.5.2 Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 1	for Deep Beams (ACI- 2002)	
3.4.4 Canadian Code -Shear Design Provisions9for Deep Beams (CSA A23.3 - 1994)3.4.5 Japanese Code -Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5 Application of Multinomial Logistic Regression93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.4.3 Australian Code - Shear Design Provisions	9(
for Deep Beams (CSA A23.3 - 1994) 3.4.5 Japanese Code –Shear Design Provisions for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 3.5.1 Introduction 3.5.2 Multinomial Logistic Regression 3.5.3 Application of Multinomial Logistic Regression 1	for Deep Beams (AS3600 - 2001)	
3.4.5Japanese Code –Shear Design Provisions9for Deep Beams (JSCE - 1986)93.5Application of Multinomial Logistic Regression93.5.1Introduction93.5.2Multinomial Logistic Regression93.5.3Application of Multinomial Logistic Regression1	3.4.4 Canadian Code -Shear Design Provisions	92
for Deep Beams (JSCE - 1986) 3.5 Application of Multinomial Logistic Regression 9 3.5.1 Introduction 9 3.5.2 Multinomial Logistic Regression 9 3.5.3 Application of Multinomial Logistic Regression 1	for Deep Beams (CSA A23.3 - 1994)	
3.5 Application of Multinomial Logistic Regression93.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.4.5 Japanese Code – Shear Design Provisions	95
3.5.1 Introduction93.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	for Deep Beams (JSCE - 1986)	
3.5.2 Multinomial Logistic Regression93.5.3 Application of Multinomial Logistic Regression1	3.5 Application of Multinomial Logistic Regression	97
3.5.3 Application of Multinomial Logistic Regression 1	3.5.1 Introduction	97
	3.5.2 Multinomial Logistic Regression	97
3.6 Industrial survey1	3.5.3 Application of Multinomial Logistic Regression	10
	3.6 Industrial survey	1(

4 Results & Discussion	107
4.1 Introduction	107
4.2 ACI Code	108
4.2.1 Slender Beams without Shear Reinforcement	108
4.2.2 Slender Beams with Shear Reinforcement	131
4.2.3 Deep Beams	136
4.3 BS Code	138
4.3.1 Slender Beams without Shear Reinforcement	138
4.3.2 Slender Beams with Shear Reinforcement	141
4.4 Australian Code	145
4.4.1 Slender Beams without Shear Reinforcement	145
4.4.2 Slender Beams with Shear Reinforcement	148
4.4.3 Deep Beams	151
4.5 Japanese Code	152
4.5.1 Slender Beams without Shear Reinforcement	152
4.5.2 Slender Beams with Shear Reinforcement	155
4.5.3 Deep Beams	159
4.6 Canadian Code	160
4.6.1 Slender Beams without Shear Reinforcement	160
4.6.1.1 Simplified Method	160
4.6.1.2 General Method	163
4.6.2 Slender Beams with Shear Reinforcement	166
4.6.2.1 Simplified Method	166
4.6.2.2 General Method	168
4.6.3 Deep Beams	172

4.7 Shear Friction Method	175
4.7.1 Slender Beams without Shear Reinforcement	175
4.7.2 Slender Beams with Shear Reinforcement	177
4.8 Results of Industrial Survey	179
4.9 Discussion	181

5 Conclusions and Recommendations	189
5.1 Introduction	189
5.2 Conclusions	189
5.3 Recommendations	193

References	194	ŀ

Appendices A.	197
Appendices B	215
Appendices C	292

LIST OF FIGURES

Figure 2.1 - Shear Flow of a Beam	08
Figure 2.2 - Arch action in a beam	08
Figure 2.3 - Effect of a/d Ratio on the shear strength of beams	10
without stirrups	
Figure 2.4 - Modes of failure of Deep Beams, $a/d = 0.5$ to 2.0	11
Figure 2.5 - Modes of failure of beams with Short Shear Spans,	11
a/d = 1.5 to 2.5	
Figure 2.6 - Truss Model for a Deep Beam (a/d <2.5)	16
Figure 2.7 - Truss Model for the Slender Beam (a/d >2.5)	17
Figure 2.8 - Idealization of Beam in CFT and MCFT	21

Figure 2.9 - Equilibrium conditions of cracked web in	21
Compression Field theory	
Figure 2.10 - Strain Compatibility for cracked web	23
Figure 2.11 - Stress- Strain relationship for cracked Concrete in	24
Compression	
Figure 2.12 - Equilibrium conditions of cracked web in	27
Modified Compression Field Theory	
Figure 2.13 - Forces Transmitting Across Cracks	28
Figure 2.14 – Free-body Diagram of a inclined Plane through a Crack	32
Figure 2.15 - Possible Shear failure plane	32
Figure 3.1 - Elevation Layout for a typical beam in the database	34
Figure 3.2 - Anchorage Properties	34
Figure 3.3 - Cross-sectional details for a typical beam in the database	35
Figure 3.4 - Simplified Truss Model for Slender Beams	40
Figure 3.5 – Strut and Tie models for a deep beam	81
Figure 3.6 - Dimensions of nodes at supports	82
Figure 3.7 - Height of the Hydrostatic Node	83
Figure 3.8 - Elements of a Deep Beam	85
Figure 3.9 - Classification of Nodes	86
Figure 3.10 a - Questionnaire Page 1	105
Figure 3.10 b - Questionnaire Page 2	106
Figure 4.1 - Tested Shear Strength V_tVs Predicted Shear Strength V_n	109
- ACI Equation 11-3 - Beams without Shear r/f	
Figure 4.2 - V_t/V_n Vs V_t Tested Shear Strength - ACI Equation 11-3	110
- Beams without Shear r/f	
Figure 4.3 - Tested Shear Strength V_tVs Predicted Shear Strength Vn	127
- ACI Equation 11-5- Beams without Shear r/f	
Figure 4.4 - V_t/V_n Vs V_t Tested Shear Strength - ACI Equation 11-5	127
- Beams without Shear r/f	

Figure 4.5 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 13	1
- ACI Equation 11-3 - Beams with Shear r/f	
Figure 4.6 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 13	4
- ACI Equation 11-5 - Beams with Shear r/f	
Figure 4.7 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 13	6
- ACI –Deep Beam	
Figure 4.8 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 13	8
- BS 8110 - Beams without Shear r/f	
Figure 4.9 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 14	2
– BS 8110-Beams with Shear r/f	
Figure 4.10 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 14	5
– AS 3600-Beams without Shear r/f	
Figure 4.11 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 14	8
– AS 3600-Beams with Shear r/f	
Figure 4.12 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 15	1
– AS 3600- Deep Beams	
Figure 4.13 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 15	3
– JSCE-Beams without Shear r/f	
Figure 4.14 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 15	6
– JSCE-Beams with Shear r/f	
Figure 4.15 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 15	9
– JSCE- Deep Beams	
Figure 4.16 - Tested Shear Strength Vt Vs Predicted Shear Strength Vn 16	1
- CSA A23.3- Simplified Method- Beams without Shear r/f	
Figure 4.17 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 16	3
- CSA A23.3- General Method- Beams without Shear r/f	
Figure 4.18 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 16	6
- CSA A23.3- Simplified Method-Beams with Shear r/f	
Figure 4.19 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 16	8
- CSA A23.3- General - Method-Beams with Shear r/f	

Figure 4.20 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n	172
- CSA A23.3-Deep Beams	

Figure 4.21 - Tested Shear Strength V_t Vs Predicted Shear Strength V_n 175 – Shear Friction method-Beams without Shear r/f

Figure 4.22 - 7	$\label{eq:stedshear} \mbox{ Frested Shear Strength } V_t \mbox{ Vs Predicted Shear Strength } V_n$	178
	– Shear Friction method-Beams with Shear r/f	
Figuro 1 23 a	Posults of Industrial Survey Page 1	170

Figure 4.23 a - Results of Industrial - Survey Page 1	179
Figure 4.23 b - Results of Industrial - Survey Page 2	180

Figure 4.24 - Variation of Predicted Shear Stress at the Critical Section	182
with the Effective Depth	

Figure 4.25 - Variation of Predicted Shear Stress at the Critical Section 184 with the Compressive Strength of Concrete

LIST OF TABLES	
Table 3.1 - Categories of Shear Strength Predictions	102
Table 4.1 - Descriptive statistics of V_t/V_n – ACI-Equation11-3	110
- Beams without Shear r/f	
Table 4.2 - Case Processing Summary – ACI Eqn 11-3	112
- Beams without Shear r/f	
Table 4.3 - Output of SPSS for ACI 11-3 - Beams without Shear r/f $$	113
a) Model Fitting Information b) Goodness of Fit	
c) Pseudo R-Square	
Table 4.4 - Output of SPSS for ACI 11-3 - Likelihood Ratio Test	115
-Beams without Shear r/f	
Table 4.5a - Output of SPSS for ACI 11-3 - Parameter Estimates	117
-Beams without Shear r/f	
Table 4.5b - Output of SPSS for ACI 11-3 - Parameter Estimates	118
-Beams without Shear r/f	

Table 4.6 - Output of SPSS for ACI 11-3 - Classification Table	119
-Beams without Shear r/f	
Table 4.7 - Case Processing Summary -Nested Model- ACI Eqn 11-3	120
-Beams without Shear r/f	
Table 4.8 - Output of SPSS for ACI 11-3-Nested Model	120
-Beams without Shear r/f	
a) Model Fitting Information b) Goodness of Fit	
c) Pseudo R-Square	
Table 4.9 - Output of SPSS for ACI 11-3 -Beams without Shear r/f	121
- Nested Model - Likelihood Ratio Test	
Table 4.10 - Output of SPSS for ACI 11-3 -Beams without Shear r/f	123
-Nested Model - Parameter Estimates	
Table 4.11 - Output of SPSS for ACI 11-3- Classification Table	125
- Beams without Shear Reinforcement	
Table 4.12 - Descriptive statistics of V_t/V_n – ACI - Equation11-5	128
- Beams without Shear Reinforcement	
Table 4.13 - Parameter Estimates - ACI-Equation11-5	129
- Beams without Shear Reinforcement	
Table 4.14 - Descriptive statistics of V_t/V_n – ACI – Equation 11.3	132
- Beams with Shear Reinforcement	
Table 4.16 - Parameter Estimates – ACI -11.3	133
- Beams with Shear Reinforcement	
Table 4.17 - Descriptive statistics of V_t/V_n – ACI - Equation11-5	134
- Beams with Shear Reinforcement	
Table 4.18 - Parameter Estimates – ACI -11-5	135
- Beams with Shear Reinforcement	
Table 4.19 - Descriptive statistics of V_t/V_n – ACI - Deep Beam	136
Table 4.20 - Parameter Estimates – ACI-Deep Beam	137
Table 4.21 - Descriptive statistics of V_t/V_n	139
-BS 8110-Beams without Shear r/f	

Table 4.22 - Parameter Estimates – BS 8110 -Beams without Shear r/f	140
Table 4.23 - Descriptive statistics of V_t/V_n –BS 8110-Beams with	142
Shear r/f	
Table 4.24 - Likelihood Ratio Test -BS 8110-Beams with Shear r/f	143
Table 4.25 - Parameter Estimates – BS 8110 - Beams with Shear r/f	144
Table 4.26 - Descriptive statistics of V_t/V_n –AS 3600 -Beams	146
without Shear r/f	
Table 4.27 - Parameter Estimates – AS 3600 Beams without Shear r/f $$	146
Table 4.28 - Descriptive statistics of V_t/V_n –AS 3600 - Beams	148
with Shear r/f	
Table 4.29 - Likelihood Ratio Test – AS 3600 Beams with Shear r/f	149
Table 4.30 - Parameter Estimates – AS 3600 Beams with Shear r/f	150
Table 4.31- Descriptive statistics of V_t/V_n -AS 3600 – Deep Beams	151
Table 4.32 - Descriptive statistics of V_t/V_n – JSCE - Beams without	153
Shear r/f	
Table 4.33 - Parameter Estimates - JSCE beams without Shear r/f	154
Table 4.34 - Descriptive statistics of V_t/V_n – JSCE -Beams with Shear r/	f 156
Table 4.35 - Likelihood Ratio Test – JSCE - Beams with Shear r/f	157
Table 4.36 - Parameter Estimates – JSCE Beams with Shear r/f	158
Table 4.37 - Descriptive statistics of V_t/V_n –JSCE- Deep Beams	159
Table 4.38 - Descriptive statistics of V_t/V_n – CSA A23.3 - Simplified	160
Method - Beams with Shear r/f	
Table 4.39 - Parameter Estimates - CSA A23.3 - Simplified Method	162
- Beams without Shear r/f	
Table 4.40 - Descriptive statistics of V_t/V_n – CSA A23.3	163
- General Method - Beams without Shear r/f	
Table 4.41 - Parameter Estimates - CSA A23.3 - General	164
Method - Beams without Shear r/f	
Table 4.42 - Descriptive statistics of V_t/V_n – CSA A23.3	167
- Simplified Method - Beams with Shear r/f	

Table 4.43 - Likelihood Ratio Test – CSA A23.3 - Beams with Shear r/f	167
Table 4.44 - Parameter Estimates - CSA A23.3 - Simplified Method	167
- Beams with Shear r/f	
Table 4.45 - Descriptive statistics of V_t/V_n – CSA A23.3	169
- General Method - Beams with Shear r/f	
Table 4.46 - Likelihood Ratio Test - CSA A23.3	169
- General Method Beams with Shear r/f	
Table 4.47 - Parameter Estimates - CSA A23.3	171
- General Method - Beams with Shear r/f	
Table 4.48 - Descriptive statistics of V_t/V_n – CSA A23.3 - Deep Beams	172
Table 4.49 - Model Fitting Information - CSA A23.3	173
- Deep Beams	
Table 4.50 - Case Processing Summary - CSA A23.3 - Deep Beams	174
Table 4.51 - Descriptive statistics of V_t/V_n –Shear Friction Method	176
-Beams without Shear r/f	
Table 4.52 - Parameter Estimates - Shear Friction Method	176
- Beams without Shear r/f	
Table 4.53 - Descriptive statistics of V_t/V_n –Shear Friction Method	177
-Beams with Shear r/f	
Table 5.1 - Percentage of Predictions Falls into Each Category	191