

ASSESSING TSUNAMI HAZARD AND MITIGATION MEASURES

By

A.V.A.U. Karunathilaka

A thesis submitted to University of Moratuwa for the Degree in Master of Science

> Supervised by Prof S. S. L. Hettiarachchi Prof S. P. Samarawickrama

Department of Civil Engineering University of Moratuwa Sri Lanka

2010

94858

Abstract

The Indian Ocean Tsunami in 2004 caused widespread damage in the coastal regions of Sri Lanka. The extent of inundation and the associated damage varied significantly with the local near shore wave height, topography and the resistance offered to the overland flow. This study is concerned on a methodology to calculate and record the wave heights around Sri Lanka by a tsunami generated in Indu- Andaman region or Sunda trench and the mitigation measures which could be implement within the coastal region. As Sri Lanka is exposed to tsunamis, as indicated by the Indian Ocean Tsunami in 2004 and subsequent alerts in 2005 and 2007, it will be important to assess the risk of tsunamis for Sri Lanka in terms of tsunami arrival time, nearshore wave height, extent of inundation, period of risk etc. Online Software named ComMIT developed by the Indian Ocean Tsunami Warning System was used to calculate the tsunami wave heights along the coastal belt of Sri Lanka and it was selected after consideration of input parameters and the given output of some available tsunami software. Taking into consideration of the tsunami generation, deep water propagation and shallow water transformation, it is expected by this study to simulate various scenarios to arrive at an outcome which can be finally used to develop a database containing information to be effectively utilized by a tsunami early warning system. As part of the research, large scale physical modelling was developed to simulate tsunamis and testing was done by generating waves in the 2D flume of the Lanka Hydraulic Institute. Physical tests were carried out to assess the effectiveness of breakwaters and coastal vegetation as a tsunami impact mitigation measure and results on the effect of wave steepness and the porosity of the vegetation in reducing the tsunami wave heights were presented.

Acknowledgment

I wish to express my deepest gratitude to my research supervisors Prof S. S. L. Hettiarachchi and Prof S. P. Samarawickrama, who suggested this research problem and offered the most valuable guidance and encouragement through every phase of this study. My sincere gratitude goes to Mr. A. H. R. Ratnasooriya for his valuable criticism, advice, comments and encouragement given. I am also grateful for him for introducing me to the ComMIT tsunami model and giving me necessary advice.

I am also thankful to Prof Pattiarachchi for giving me a fruitful guidance on ComMIT model and Mr. Mohammad Heidarzadeh for providing me very important reference material without hesitation.

I am thankful to all the staff members of the Hydraulic and Water Engineering laboratory and Computer laboratory of the department of Civil Engineering for helping me in every technical difficulty. I wish to thank the management and staff of Lanka Hydraulic Institute (LHI) for their utmost corporation and making available their facilities for some test series of this research. My thank goes to colleagues Mr. Shrimal Bandara and Mr. Kasun De Silva for the support given in conducting test series and working with the ComMIT model. I thank all my colleagues for the numerous supports they have given me for the fulfillment of this challenging task.

I am thankful to National Science Foundation (NSF) for providing financial support, which enable me to pursue my study in the University of Moratuwa.

I thank my parents, my sister and my brother for the encouragement given and standing by me throughout. My warm gratitude is for my husband who always stood by me during difficult moments and for nourishing my mind with hope.

A. V. A. U. Karunathilaka

n

Declaration

This thesis is a report of research carried out in the Department of Civil Engineering, University of Moratuwa, between January 2008 and April 2010. Except where references are made to other work, the contents of this thesis are original and have been carried out by the undersigned. The work has not been submitted in part or whole to any other university. This thesis contains 118 pages.

the co

A. V. A. U. Karunathilaka,
Department of Civil Engineering,
University of Moratuwa.

UOM Verified Signature

UOM Verified Signature

Supervisor

Supervisor

Prof S. S. L. Hettiarachchi,

Department of Civil Engineering,

Prof S.P. Samarawickrama,

Department of Civil Engineering,

4°

iπ

Contents

Abstract	i
Acknowledgement	ii
Declaration	iii
Content	iv
List Of Figures	vii
List Of Tables	ix
List Of Graphs	xi
List of Abbreviations	xii

Chapte	er l	:	Introduction	1
Chapte	er 2	:	Earthquake and Tsunamis Critical Parameters	6
Chapte	er 3		Strategic Approach to Mitigation	
	3.1 Le	ssons	learnt from tsunami wave attack.ssentations	19
	3.2 Co	astal	Hazardslib.mrt.ac.lk	21
	3.3 Ap	proac	h to mitigation of hazards	22
		3.3.1	Hazards, their impacts and mitigation	22
		3.3.2	Established tools to assist the Mitigation Process	23
	3.4 Me	easure	s that mitigate the impact of the hazard	25
		3.4.1	Classification of measures that mitigate the impact of hazards	25
		3.4.2	Costal Erosion and Storm Flooding	27
		3.4.3	Tsunamis	29
		3.4.4	Policy and Management Options for Planning for Coast and Flood Protection	31
		3.4.5	Details of Coast and Flood Protection Methods	33
	3.5 Me	asure	s that mitigate exposure and vulnerability to the hazard	42
	3.6 Me	asures	s that promote successful evacuation from the hazard	43

۳ ___

٠

Contents

Chapter	r 4 : Details of Experimental Investigations	
	4.1 Introduction	46
	4.2 Experimental Setup	47 ·
Chapter	5 : Generation and Propagation of Tsunamis	
	5.1 Introduction	49
	5.2 Physical Characteristics of Tsunami	51
	5.3 Causes of tsunami	52
	5.3.1 Submarine earthquakes	53
	5.3.2 Underwater landslides	54
	5.3.3 Volcanic eruption	55
	5.3.4 Asteroid impacts	57
	5.4 Tsunami propagation	58
4	5.5 Tsunami inundation	60
4	5.6 Earthquake generated Tsunami	62
	5.6.1 Tsunami and Tsunamigenic earthquakes.	64
	5.6.2 Source parameters of earthquakes	65
	5.6.3 Slip	66
	5.6.4 Rupture length and width	66
Chapter	6 : Tsunamigenic Sources	
6	.1 Introduction	67
6	.2 Plate tectonics	69
6	.3 Sunda trench / Sunda arc	71
6	.4 Seismic waves	72
6	.5 Magnitude scales for earthquakes and tsunami	73
	6.5.1 Earthquake magnitude scales	73
	6.5.2 Richter scale	74
	6.5.3 Moment magnitude scale	75

- ب

Chapter 7	:	Developing Tsunami Database	****
7.1 Ir	troduct	tion	77
7.2 T	ectonic	features in Sunda Trench	78 ·
7.3 M	lethodo	logy	80
	7.3.1	ComMIT	85
	7.3.2	Set model run parameters	86
	7.3.3	Set up Tsunami Initial Conditions	88
Chapter 8	:	Analysis and Discussion of Results	
8.1 T	sunami	Modelling	93
8.2 E	xperim	ental Investigation	95
Chapter 9	:	Conclusion and Recommendations	98
Appendix 1	:	Tsunami Modelling Data	100
Appendix 2	:	Experimental Data	
A2.1	Tables Mound	and graphs for the model results of Trapezoidal Rubble Breakwater ty of Moratuwa, Sri Lanka.	107
A2.2	Tables	and graphs for the model results of Coastal Vegetation	112
References			117

List of Figures

Figure	Description	page
Figure 1.1	Districts affected by the 2004 Indian Ocean Tsunami and wave action took place around the coast of Sri Lanka	2
Figure 1.2	Measured tsunami heights	3
Figure 1.3	Spatial distribution of inundation distance and tsunami heights of eastern and southern coasts	4
Figure 2.1	Visualization of the NTL/ICMMG global tsunami catalogue	8
Figure 2.2	Surface rupture length vs. subsurface rupture length estimated from the distribution of early aftershocks of historical continental earthquakes.	16
Figure 2.3	Ratio of surface to subsurface rupture length vs. magnitude	16
Figure 4.1	Cross section of the experimental setup and the locations of the probes for the breakwater	47
Figure 4.2	Cross section of the breakwater and the dimensions of the probe locations	47
Figure 4.3	Modelling of Type I trees ses & Dissertations	48
Figure 4.4	Modelling of Type II trees	48
Figure 4.5	Cross section of the experimental setup and the locations of the probes for the coastal vegetation	48
Figure 5.1	Tsunami generation. Propagation and inundation	49
Figure 5.2	Wave characteristics	51
Figure 5.3	Wave height variation with depth	52
Figure 5.4	Percentages of tsunami causes	52
Figure 5.5	Locations of volcanoes which generated tsunamis in the recorded history	56
Figure 5.6	Identified asteroid impacts to the ocean	58
Figure 5.7	Particle motion open ocean waves	59
Figure 5.8	Regular wave formation compared to an open ocean tsunami and a tsunami upon reaching coastline	60
Figure 5.9	In shallow water, the wave length decreases and wave height increases	61

vii

. ب

•

d is of Eddes -		
Figure 5.10	Earthquake source and fault structure	62
Figure 5.11	Types of faults giving rise to tsunami	63
Figure 5.12	Cross section of a subduction zone	64
Figure 5.13	Relationship between moment magnitude, Mw, and the average slip of an earthquake	64
Figure 5.14	Earthquake source parameters	66
Figure 6.1	Sunda trench and Makran fault	67
Figure 6.2	Tectonic plates of the world	69
Figure 6.3	Tectonic boundary types	70
Figure 6.4	Tectonic activities in Sunda trench	71
Figure 6.5	Interpretation of R and P waves and Record of seismic waves	74
Figure 7.1	Sunda trench	78
Figure 7.2	Earthquake source locations of Sunda trench	79
Figure 7.3	Deformation due to the earthquake	85
Figure 7.4	Unit sources	85
Figure 7.5	Input Model parameters for ComMIT	86
Figure 7.6	Input Tsunami Initial Conditions	88
Figure 8.1	Selected sources and input data for ComMIT	93
Figure 8.2	Spatial distribution of inundation distance and tsunami heights of southern coast	94
Figure 8.3	Probe Locations of the Breakwater and Coastal vegetation	96
Figure A1.1	Maximum wave height in Galle	106
Figure A1.2	Maximum wave height in Habaraduwa	106
Figure A1.3	Maximum wave height in Unawatua	106
Figure A1.4	Maximum wave height in Matara	106
Figure A1.5	Maximum wave height in Hambantota	106

اب

List of Libles			
List of Tables			
Table	Description	page	
Table 2.1	Regressions of Rupture Length, Rupture Width, Rupture Area, and Moment Magnitude (M)	17	
Table 2.2	Regressions of Displacement and Moment Magnitude (M)	17	
Table 2.3	Regressions of Surface Rupture Length and Displacement	18	
Table 3.1	Hydraulic functions of various Coast Protection Methods	37	
Table 5.1	Historical tsunami data	50	
Table 5.2	Causes of tsunami in the Pacific Ocean region over the last 2000 years	53	
Table 5.3	Causes of historical tsunami induced by volcanoes	56	
Table 5.4	Estimated deepwater wave height (above sea level) at a point	58	
Table 6.1	Sizes of the tectonic plates	69	
Table 6.2	Comparison of magnitudes oratuwa, Sri Lanka.	76	
Table 7.1	Levels of tsunami warningses & Dissertations	77	
Table 7.2	Regressions of rupture length, width, area, and moment magnitude	81	
Table 7.3	Comparison of models	84	
Table 7.4	Suitable resolutions for Grid A, B and C	86	
Table 8.1	Maximum wave heights gained from ComMIT	94	
Table A1.1	Calculated lengths and widths using Eq. 7.1 and Eq. 7.2	100	
Table A1.2	Calculated lengths and widths of the selected range with number of blocks	101	
Table A1.3	Calculated slip values from Eq. 7.3 and direct slip values from ComMIT	102	
Table A1.4	Calculated slip values from Eq. 7.3 for adjusted lengths and widths	103	
Table A1.5	All the source parameters that are to be used in model runs for the database	104	
Table A2.1	Calculated Transmission Coefficients for Regular waves	107	

 $\mathbf{i}\mathbf{x}$

. *

List of Tables		
Table A2.2	Calculated Transmission Coefficients for Random waves	107
Table A2.3	Coefficients of Reflection, Transmission and dissipation in the harbour side of the breakwater for Regular waves	109
Table A2.4	Coefficients of Reflection, Transmission and dissipation in the harbour side of the breakwater for Random waves	109
Table A2.5	Percentages of Energy Dissipation in the locations of probe 5, probe 6, probe 7 and probe 8	111
Table A2.6	Coefficients of reflection and calculated coefficients of transmission for coastal vegetation	112
Table A2.7	Coefficients of Reflection, Transmission and dissipation near probe 7	113
Table A2.8	Percentages of Energy Dissipation in the locations of probe 5, probe 6 and probe 7	115

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Graphs

Graph	Description	page
Graph 7.1	Slip vs. Moment Magnitude for Calculated Lengths & Widths, Rounded Lengths & Widths and the direct data from ComMIT	89
Graph 7.2	Slip vs. Moment Magnitude for Calculated Lengths & Widths, Rounded Lengths & Widths and for adjusted Lengths & Widths	90
Graph A1.1	Wave height graphs for the model results of ComMIT	105
Graph A2.1	Coefficient of Transmission vs. Steepness for Regular waves	108
Graph A2.2	Coefficient of Transmission vs. Steepness for Random waves	108
Graph A2.3	Coefficients of Dissipation, Reflection and Transmission vs. Steepness for Regular waves	110
Graph A2.4	Coefficients of Dissipation, Reflection and Transmission vs. Steepness for Random waves	110
Graph A2.5	Percentages of energy dissipation along the breakwater	111
Graph A2.6	Coefficient of Transmission vs. Steepness for coastal vegetation	112
Graph A2.7	Coefficient of Transmission vs. Steepness for coastal vegetation Type II	113
Graph A2.8	Coefficients of Reflection, Dissipation and Transmission vs. Steepness for coastal vegetation Type I	114
Graph A2.9	Coefficients of Reflection, Dissipation and Transmission vs. Steepness for coastal vegetation Type II	114
Graph A2.10	Percentages of energy dissipation along the coastal vegetation Type I	115
Graph A2.11	Percentages of energy dissipation along the coastal vegetation Type II	116

xi

٠.

•

List of Abbreviations

Abbreviation

Description

BMRC	Bureau of Meteorology Research Centre
C_d	Coefficient of Dissipation
Cr	Coefficient of Reflection
C_t	Coefficient of Transmission
CFL condition	Courant-Friedrichs-Lewy condition
ComMIT	Community Model Interface for Tsunami
D	Average fault displacement
DEM	Digital Elevation Models
GTDB	Global Tsunami Database
ICMMG	Institute of Computational Mathematics and Mathematical Geophysics
ITDB	Integrated Tsunami Database
ITIC	International Tsunami Information Centre
ITSU	International Co-ordination Group for the Tsunami Warning System in the Pacific
IUGG	International Union of Geodesy and Geophysics
L	Rupture Length
LHI	Lanka Hydraulic Institute
M _L	Local magnitude/ Richter scale
Mo	Seismic moment
M _s	Surface wave magnitude
M_w	Moment magnitude
MOST	Method of Splitting Tsunami
MMS	Moment magnitude scale

.

i ha of Abbrevic cous			
m _b	Body-wave magnitude		
NOAA	National Oceanic and Atmospheric Administration		
NTL	Novosibirsk Tsunami Laboratory		
P wave	Primary wave		
PMEL	Pacific Marine Environmental Laboratory		
S wave	Secondary wave		
TREMORS	Tsunami Risk Evaluation through seismic Moment in a Real time System		
USAID	United States Agency for International Development		
W	Rupture width		
2D	Two Dimensional		
μ	rigidity /shear modulus		

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk .