

SOLUTIONS TO POWER QUALITY PROBLEMS AT KANDANA WATER SUPPLY SCHEME

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Science

> By UPUL NANDANA ATTANAYAKE

SUPERVISED BY Prof. H.Y.R. Perera Dr. H.M.Wijekoon.

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

94550

Abstract

Quality of the power supply becomes a key issue in plant automation. Especially, voltage sags appearing on the electricity supply cause voltage sensitive equipment to shut down and incur heavy financial losses to Industrial customers. -However, effects of voltage sags can be minimized or mitigated considerably if both utility and the plant are working with good cooperation. This thesis presents power quality issues and mitigating techniques of voltage sag problem at Kandana water treatment plant where sensitive equipment are used for different stage of water treatment and distribution process.

Kandana water treatment plant consists of five pumps having capacity of 500 kW and three pumps with 200 kW capacities. The pumps are controlled by several sensitive electronic devices which are vulnerable to voltage sags. By analyzing the past break down data at Horana Grid substation and plant disturbance recorded at treatment plant and measurement taken with a power quality analyzer it has been observed that the voltage sag appearing at the treatment plant are mainly caused by faults.

First, investigations were carried out to estimate the severity of voltage sag associated with different types of faults in the utility network and their impacts on the equipment installed in the water treatment plant. Then, the effects of voltage sags on the equipment vulnerable for water pumping and distribution process like large pumps with sensitive electronic controllers were investigated to find out a mitigating solution. Detail analysis with theoretical descriptions has been given to describe field observation.

In order to solve the power quality problem especially the voltage sag, several options system level and device level have been considered. It is noted most of the system level mitigating solutions have been implemented by the utility side. Then device level solutions have been introduced. In this sense, Dynamic Voltage Restorer

CDVR) was used to solve the voltage sag problem. Further, designing and controlling of the DVR have been with theoretical derivations and simulations results are given to justify the proposed solution. Remarkably good results have been gained by using this Dynamic Voltage Restorer.

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

U.N.Attanayake.

Date 5/2/2010

We endorsed the declaration by the candidate. We endorsed the declaration by the candidate.

Prof. H.Y.R.Perera.

UOM Verified Signature

Dr. H.M. Wijekoon

Content

Declaration	i
Abstract	v
Acknowledgement	vi
List of Figures	vii
List of Tables	ix
Abbreviations	Х
Chapter 1	1
Introduction	1
1.1 Background of the study	1
1.2 Power Quality Problem	2
1.3 Motivation University of Moratuwa, Sri Lat	<u>1 ka</u> . 3
1.4 Objectives Electronic Theses & Dissertation	ns 4
1.5 Scope of the work ww.lib.mrt.ac.lk	4
Chapter 2	5
Power Quality Measurement at the site	5
2.1 Background	5
2.2 Site Measurements	6
2.3 Allocated time slots for each site	7
2.4 Data Logging	7
2.5 33kV Bus Bar at Horana Grid Substation	8
2.6 33kV Incoming Bus at Kandana Treatment Plant	9
2.7 Analysis of Data	11

Chapter 3	15
Voltage Sag and their impacts	15
3.1 Background	15
3.2 Voltage Sag Standards	17
3.2.1 The IEEE and IEC Voltage Sag Standards	
3.2.2 Voltage Magnitude Events	
3.3 Cause of Voltage Sags and their impacts	19
3.4 Voltage Sag Propagation	21
3.5 Voltage Sag Calculation	22
3.5.1 Balance Voltage Sag	
3.5.2 Unbalance Voltage Sag	
3.5.3 Calculation of Source Impedance	
3.6 SynerGEE Software	25
3.7 Evaluation of Voltage Sag	27
3.7.1 Effect of Conductor type on voltage sag	
3.7.2 Voltage Sag vs. Distance & Dissertations	
3.7.3 Phase Angle Jump vs. Distance	
3.7.4 Effect of onsite generators	
3.8 Area of Vulnerability	30
3.8.1 Area of Vulnerability for 3ph balance faults	
3.8.2 Area of Vulnerability for Unbalance faults	
Chapter 4	33
Design of a Mitigation Device	33
4.1 Voltage Sag Mitigation Techniques	33
4.1.1 Reduction of Duration and Number of Faults	
4.1.2 Reducing the fault clearing time	
4.1.3 Changes in the Power System	
4.1.4 Increasing Immunity	
4.1.5 Mitigation Device	
4.2 Background of Technical Feasibility	36
-	

4.3 Dynamic Voltage Restorer (DVR)	38
4.4 Principles of the DVR operation	39
4.5 DVR Controller Design	42
4.6 Design of DVR for Kandana Water Treatment Plan	44
4.6.1 Design Issues	
Chapter 5	49
Modeling and Simulation	49
5.1 Modeling of Dynamic Voltage Restorer	49
5.1.1 Model of Control Block	
5.1.2 Model of injection Transformer	
5.1.3 Model of Inverter	
5.2 Simulation and Results	54
5.2.1 DVR with open loop Control System	
5.2.2 DVR with Closed loop Control System	
Chapter 6 Electronic Theses & Dissertations	58
Conclusion Recommendations and Future Work	58
6.1 Conclusion	58
6.2 Future Work	59
References	60
Appendices	62
Appendix A: 33kV Single line diagram of Horana GSS	
Appendix B: 33kV Distribution Network of Horana GSS	
Appendix C: List of Pumps at Kandana Water Treatment Plant	

Appendix D: SynerGEE Fault Report for Feeder 4 of Horana GSS

Acknowledgements

First, I would like to thanks my supervisors Prof. Ranjit Perera, Dept. of Electrical Engineering in University of Moratuwa, and Dr.H.M.Wijekoon Chief Engineer –Planning (Region 3), Ceylon Electricity Board for their guidance and valuable suggestions to make this project a success.

A grateful thank goes to Dr. J.P.Karunadasa, Head of the Department, Dept. of Electrical Engineering in University of Moratuwa, who encouraged me by his insightful comments during progress presentations.

I would like to pay my sincere thanks to Mr. E.G Abeysekere Additional General Manager (Region 3) and Mr. D.Withanage Deputy General Manager (Uva) who extent their fullest support and cooperation to make this study to be reality. Further, I would like to pay my gratitudes to Eng. Kusum Shanthi Chief Engineer – Operation & Maintanace (Colombo Region) Ceylon Electricity Board, who helped me to provide Power Quality Analyzer to collect data, and sharing his views and experiences with me during this project. Dissertations

www.lib.mrt.ac.lk

I gratefully acknowledge Project Director and his staff of Kalu Ganga Water project, who helped me to get data of water treatment plant.

Last but not least I would like to remind and pay my sincere thanks to my parents, my wife, Sumedha Dissanayake and her parents and my beloved daughters Yassasvi and Anjani, for their patience, support and encouragement throughout the study.

List of Figures

Figure 1.1	Supply Voltage Quality and customer interaction	2
Figure 2.1	Feeding arrangements to Kandana Water Project	6
Figure 2.2	Voltage Events at Horana GSS	8
Figure 2.3	Voltage dips with CBEMA curve overlay for 33kV Busbar at Horana GSS	11
Figure 2.4	Voltage dips with CBEMA curve overlay for 33kV Busbar at Kandana	
	Treatment Plant	11
Figure 2.5	Voltage Sag stamped on 17.09.2009, at 11:59:52:7999 due to single phase	
	Fault Tripping of Feeder 4 – Horana GSS	12
Figure 2.6	Voltage Sag stamped on 16.09.2009, at 14:47:12:7540 due to three phase	
	Fault Tripping of Feeder 4 – Horana GSS	13
Figure 2.7	Voltage Sag stamped on 12.09.2009, at 04:40:01:330 due to two phase	
	Fault Tripping of Feeder 4 – Horana GSS	13
Figure 3.1	Voltage Sag to 60% www.lib.mrt.ac.lk	17
Figure 3.2	Voltage Sag to 60% (RMS Value)	17
Figure 3.3	Voltage Magnitude Events	19
Figure 3.4	Different types of faults	21
Figure 3.5	Primary Voltage (Y/ Δ)	21
Figure 3.6	Secondary Voltage (Y/ Δ)	21
Figure 3.7	Voltage divider model to analyze balance voltage sags	22
Figure 3.8	Voltage divider model to analyze unbalance voltage sags	23
Figure 3.9	Voltage Sag versus distance from GSS for Lynx conductor	27
Figure 3.10	Voltage Sag versus distance from GSS for Racoon conductor	28
Figure 3.11	Phase Angle jump versus distance from GSS for Lynx conductor	28
Figure 3.12	Phase Angle jump versus distance from GSS for Racoon conductor	29
Figure 3.13	Voltage sag versus distance for the effect of onsite generators	30
Figure 3.14	Area of vulnerability for 3ph balance faults	31
Figure 3.15	Area of vulnerability for unbalance faults	31

Figure 4.1	Typical waveform of voltage sag caused by remote fault clearing			
Figure 4.2	Different types of voltage mitigation			
Figure 4.3	Typical arrangement of power system with mitigation device			
Figure 4.4	Typical schematic diagram of a power system compensated by DVR	39		
Figure 4.5	Phasor diagram of power distribution system during sag			
Figure 4.6	DVR connected power system			
Figure 4.7	Block diagram representation of DVR system with open loop controller			
Figure 4.8	Block diagram representation of DVR system with closed loop controller	44		
Figure 4.9	Pre-sag voltage compensation	47		
Figure 5.1	Model of the Dynamic Voltage Restorer with closed loop controller	50		
Figure 5.2	Model of the Dynamic Voltage Restorer with open loop controller	51		
Figure 5.3	Simulink Block for closed loop controller	52		
Figure 5.4	Simulink Block for open loop controller	52		
Figure 5.5	Simulink Block for injection transformer	53		
Figure 5.6	Simulink block for Inverter	53		
Figure 5.7	Schematic Diagram of DVR	54		
Figure 5.8	Supply Voltage with 40% voltage sag and compensated load voltage	55		
	(Open loop)			
Figure 5.9	Supply Voltage with 40% voltage sag and compensated load voltage	56		
	(Closed loop)			
Figure 5.10	Compensation Voltage	57		

List of Tables

		Page
Table 2.1	Time Table for installation of PQ Analyzer at sites	7
Table 2.2	Voltage events at Horana Grid Substation	9
Table 2.3	Voltage events at Kandana Treatment Plant	10
Table 2.4	No. of Tripping at Horana GSS	12
Table 3.1	Categories and Typical characteristics of power system electromagnetic	
	Phenomena	16
Table 3.2	Voltage sag standards	18
Table 3.3	Results from SynerGEE software	26
Table 3.4	Voltage comparison using SynerGEE software	26
Table 3.5	Data about onsite generator (Acepower)	29

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abbreviations

PQ	-	Power Quality
CEB	-	Ceylon Electricity Board
DVR	-	Dynamic Voltage Restorer
GSS	-	Grid Substation
kV	-	Kilo Volts
MVA	-	Mega Volt Ampere
RMS	-	Root Mean Square
SLG	-	Single line to Ground
IGBT	-	Insulated gate bipolar transistor
VSC	-	Voltage Source Converter
UPS	-	Uninterruptable Power Supply
GMD	-	Geometrical Mean Diameter
GSS	-	Grid Substation iversity of Moratuwa, Sri Lank Electronic Theses & Dissertations www.lib.mrt.ac.lk