

FAULT DIAGONOSIS BY VIBRATION ANALYSIS OF SYNCHRONOUS GENERATORS

By: SAMEERA HARAPRASAD EDIRIWEERA

This thesis was submitted to the department of Electrical Engineering In partial fulfillment of the requirements for the Degree of Master of Engineering

Supervised By: Dr. J P Karunadasa

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

94546

Abstract

All machinery with moving parts generates mechanical forces during their normal operation As mechanical condition of machine changes because of wear, changes in operating environment, load variations etc., so do these forces. Generator has one or more machine elements that turn with the shaft - e.g. bearings, rotors. In a perfectly balanced machine, all rotors run on their true centre-line and forces are equal.

Rotor imbalance will generally be present due to uneven weight distribution or due to the imbalance between generated lift and gravity. Combination of these forces with stiffness of rotor-support system will determine the vibration level. Vibration profile that results from motion is the result of a force imbalance - there is always some imbalance in real-world applications. All mechanical equipment in motion generates a vibration profile, or signature, that reflect sits operating condition.

Many vibrations are normal for rotating or moving machinery, e.g. normal rotation of shafts and other rotors, contact with bearings etc.

Synchronous Generator faults such as mechanical misalignments, rotor imbalance, loose bolts, bearing faults and incipient metal fatigues cause to generate abnormal identifiable vibrations.

In the research,

First, the relationship between the generator mechanical faults and the vibration harmonic magnitudes are studied for particular machine problems occur previously and for that analysis the critical frequencies in the frequency spectrum of the synchronous generators are identified by using the Microlog instrument CMVA 60, which is a property of the Mahaweli Complex of Ceylon Electricity Board. Then, the magnitude ratios of the harmonics at critical frequencies to the fundamental component of the vibration profiles are determined from Experiment with using

single phase motor with load coupled which had been used with originated mechanical faults, is used for the vibration analysis.

Next, the results obtained from the case studies and the experiment are compared with the standards that have been evolved from the past studies and the researches in order to determine the feasibility of setting defective levels or standard on the vibrations harmonics at critical frequencies of generator faults. Finally, the possibility of developing a condition monitoring system to identify mechanical faults is investigated for synchronous generators in Ceylon Electricity Board. The results can then be extended to indicate the faults at early stage to minimize the unwanted long outages, minimize costly rotating failures & reduce maintenance inventory cost.

Thus it helps to provide the necessary lead-time to schedule maintenance to suit the needs of the plant management.

Declaration

I hereby declare that the work presented in this report is my own work and not has been submitted earlier or concurrently for any other degree.

J.

.

UOM Verified SignatureSignatureName: S. H. EdiriweeraDate: 08th February 2010

I certify that this work was supervised by me and the above declaration is true.

	UOM Verified Signature
Signature	:
Name	: Dr. J. P. Karunadasa 🛞 🎉 🤅 🦗
Date	: 08 th February 2010

Since this condition monitoring system is not much longer used in the CEB and there is little number of literature found in the University Library, it was little difficult for me to decide where to start at the beginning. The conditionmonitoring tool purchased from the SKF Condition Monitoring Inc. was helpful in this concept and I could gather more details from the Internet.

I express my sincere gratitude to Dr. J P Karunadasa for all the encouragement, guidance and support given throughout my Engineering Carrier to make this task a success and directing towards the research towards the realization of the ultimate goal.

I sincerely thank Mr. A.K.Samarasinghe, DGM (AMHE), Thilakasiri Vijayananda EE (Controls & Instrumentation) and the technical staff at Canyon Power station for providing me with the details of the vibration monitoring systems, other required literature, and support for builds a machine model for the experiment and for their comments on some difficulties encounter during the project.

Finally A big thanks go to my wife Iroshini and my parents for finding me free time and free mind taking my responsibilities to do the research.

Contents

	iv
Abstract	i
Preface	iii
Contents	iv
List of figures	vii
List of Tables	x
Chapter 1 Introduction	1
1.1 General	1
1.2 Condition Monitoring Tools	1
1.3 Vibration Analysis	3
1.4 Thesis Objective & Outline	4
1.5 Advantages of Vibration Monitoring System	5
Chapter 2 Project Implementation	7
2.1 Monitoring System Outline	7
2.2 Instrumentation	9
2.2.1 The SKF CMSS2200 Accelerometer	9
2.2.2 Microlog CMVA 60 and Prism 4 Database	10
Chapter 3 Synchronous Generator Vibration monitoring system	12
3.1 Vibration Monitoring System	12
3.2 Collect useful information	15
3.2.11dentify all components of the machine that generate vibration	15
3.2.2 Identify the Machines Running Speed	15
3.2.3 Identify type of Measurement produced the FFT spectrum	16
3.2.4 Selection of test point locations	16
3.2.5 Obtain any historical Machinery Data	16

Contents

v

3.3 Analysis of the Vibration Spectrum for Generator Fault Identification	16
3.3.1 Once Running Speed is Determined, Identify the Spectrum's Frequency Ranges	16
3.3.2 Verify Suspected Fault Frequencies	16
3.3.3 Determine the Severity of the Fault	17
3.4 Determine the Generator mechanical faults	18
3.4.1 Misalignment	18
3.4.2 Imbalance	20
3.4.3 Mechanical looseness	22
3.4.4 Bearing defects	22
3.4.5 Bent Shafts	23
Chapter 4 Machine model for verify vibration spectrums of the generator faults 4.1 Implementation of Machine Model	24 24
4.2 Imbalance Condition	26
4.3 Parallel Misalignment	26
4.4 Coupling and Mounting Looseness	27
4.5 Comparison of the experimental results with the Standards	29
Chapter 5 Case study	30
5.1 Measurements and Observations	31
5.1.1 Angular Misalignment	31
5.1.2 Parallel Misalignment	33
5.1.3 Imbalance	41
5.1.4 Mechanical Looseness	45
5.1.5 Bearing Defects	53

Contents

			vi
Chapter 6 I	Dis	cussion	58
Chapter 7 Co	onc	lusion	60
Reference			61
Appendices		-	
Appendix 1	:	Data Sheet of Accelerometer SKF CMSS2200	
Appendix 2	:	Data Sheet of the instrument SKF Microlog CMVA60	
Appendix 3	:	Data Sheet of Data Sheet of Prism 4 Software	
Appendix 4	:	Vibration Sampling Points	
Appendix 5	:	Vibration Standards VDI 2056	
Appendix 6	:	Vibration Standards ISO2372	
Appendix 7	:	Vibration Diagnosis Tables	

List of Figures

	vii
Figure 2.1: Block diagram of the proposed system	8
Figure 2.2: Accelerometer	9
Figure 2.3: Data Acquisition System	10
Figure 3.1: Vibration monitoring process	13
Figure 3.2: Vibration monitoring Instruments	14
Figure 3.3: SKF CMSS2200 Accelerometer	14
Figure 3.4: Angular Misalignment	18
Figure 3.5: Parallel Misalignment	19
Figure 3.6: Imbalance	21
Figure 4.1: The experimental Machine Model	24
Figure 4.2: Machine model Vibration Spectrum at Healthy Condition	25
Figure 4.3: Machine model Vibration Spectrum at developed Imbalance	26
Figure 4.4: Machine model Vibration Spectrum	
at developed Parallel Misalignment	27
Figure 4.5: Machine model Vibration Spectrum at Coupling looseness	28
Figure 4.6: Machine model Vibration Spectrum at Coupling looseness	28
Figure 4.7: Machine model Vibration Spectrum at Mounting looseness	29
Figure 5.1: Axial Vibration Spectrum of Randenigala Unit 02	
Upper Guide Bearing on 2003 May 07 (Before Repair)	32
Figure 5.2: Axial Vibration Spectrum of Randenigala Unit 02	
Upper Guide Bearing on 2003 June 11 (After Repair)	32
Figure 5.3: Radial Vibration Spectrum of New Laxapana Unit 01 Generator	
Upper Bearing Downstream side on 2005 May 01 (Before Repair)	34
Figure 5.4: Radial Vibration Spectrum of New Laxapana Unit 01 Generator	
Upper Bearing Loading bay side on 2005 May 01 (Before Repair)	34
Figure 5.5: Radial Vibration Spectrum of New Laxapana Unit 01 Generator	
Upper Bearing Downstream side (After Repair)	35
Figure 5.6: Radial Vibration Spectrum of Nilambe Unit 02	
Bearing 01 Downstream side on 2003 June 11 (Before Repair)	36

List of Figures

	viii
Figure 5.7: Vibration Spectrum of Nilambe Unit 02	
Bearing 01 Loading Bay side on 2003 June 11 (Before Repair)	36
Figure 5.8: Radial Vibration Spectrum of Nilambe Unit 02	
Trust Bearing Down stream side on 2003 June 11 (Before Repair)	37
Figure 5.9: Radial Vibration Spectrum of Nilambe Unit 02	
Trust Bearing Down stream side (After Repair)	38
Figure 5.10: Radial Vibration Spectrum of Victoria Unit 02	
Lower Guide Bearing on 2003 Sep 24 (Before Repair)	39
Figure 5.11: Radial Vibration Spectrum of Victoria Unit 02	
Lower Guide Bearing on 2003 Sep 24 (After Repair)	40
Figure 5.12: Radial Vibration Spectrum of Nilambe Unit 01	
Bearing on 2000 Jan 24 (Before Fault)	42
Figure 5.13: Radial Vibration Spectrum of Nilambe Unit 01	
Bearing on 2000 Aug 08 (After Fault)	42
Figure 5.14: Radial Vibration Spectrum of Victoria Unit 01	
Lower Guide Bearing on 2001 March (Before Fault)	44
Figure 5.15: Vibration Spectrum of Victoria Unit 01	
Upper Guide Bearing on 2005 May 30 (After Fault)	44
Figure 5.16: Vibration Spectrum of Nilambe Unit 01	
Bearing 02 on 2000 Aug 08 (Before Repair)	46
Figure 5.17: Vibration Spectrum of Nilambe Unit 01	
Bearing 01 on 2000 Aug 08 (Before Repair)	46
Figure 5.18: Vibration Spectrum of Nilambe Unit 01 Bearing 02 (After Repair)	48
Figure 5.19: Displacement Vibration Spectrum of Victoria Unit 01	
Lower Guide Bearing on 2003 June 16 (Before Repair)	49
Figure 5.20: Velocity Vibration Spectrum of Victoria Unit 01	
Lower Guide Bearing on 2003 June 16 (Before Repair)	49
Figure 5.21: Velocity Vibration Spectrum of Victoria Unit 01 Lower Guide Bearing	
(After Repair)	51

List of Figures

	ix
Figure 5.22: Vibration Spectrum of Randenigala Unit 02	
Trust Guide Bearing @ 45 MW on 2003 May 07 (Before Repair)	52
Figure 5.23: Vibration Spectrum of Randenigala Unit 02	
Trust Guide Bearing @ 45 MW (After Repair)	52
Figure 5.24: Vibration Spectrum of Randenigala Unit 02	
Upper Guide Bearing @ 32.5 MW on 2001 Aug 28 (Before Repair)	54
Figure 5.25: Displacement Vibration Spectrum of Randenigala Unit 02	
Coupling @ 34 MW on 2001 Aug 28 (Before Repair)	55
Figure 5.26: Velocity Vibration Spectrum of Randenigala Unit 02	
Coupling @ 34 MW on 2001 Aug 28 (Before Repair)	55
Figure 5.27: Velocity Vibration Spectrum of Randenigala Unit 02	
Coupling @ 34 MW on 2001 Aug 28 (After Repair)	56
Figure 5.28: Vibration Spectrum of Ukuwela Unit 01	
Turbine Bearing Bracket on 2004 Oct (Before Repair)	57
Figure 5.29: Vibration Spectrum of Ukuwela Unit 01	
Turbine Bearing Bracket on 2004 Oct (After Repair)	57

List of Tables

Table 5.1: New Laxapana Unit 01 Radial Vibration- Downstream side	33
Table 5.2: New Laxapana Unit 01Radial Vibration- Loading Bay side	33
Table 5.3: Nilambe Unit 02 Bearing 01 Radial Vibration- Downstream side	37
Table 5.4: Nilambe Unit 02 Bearing 01 Radial Vibration- Loading Bay side	37
Table 5.5: Nilambe Unit 02 Trust Bearing Radial Vibration- Downstream side	38
Table 5.6: Victoria Unit 02 LG Bearing Radial Vibration	39
Table 5.7: Nilambe Unit 01 Bearing 02 vibration Harmonic analysis	47
Table 5.8: Nilambe Unit 01 Bearing 01 vibration harmonic analysis	47
Table 5.9: Victoria Unit 01 LG Bearing velocity vibration harmonic analysis	50
Table 5.10: Victoria Unit 01 LG Bearing displacement vibratn. harmonic analysis	50