

VISION BASED TARGET TRACKING GUN TURRET

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by WANNIACHCHIGE INDU DILSHAN ABEYW ARDENA

Supervised by: Dr. Rohan Munasinghe

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

94544

Abstract

This project explores the task of tracking a moving target (aircraft) and pointing an anti aircraft gun perched on a pan tilt base in a real time combat environment. The purpose of this process is to study the dynamics of the mechanism, controlling requirements, software requirements and subsystems requirements needed for the implementation of a commercially viable air defense system. A laboratory model is developed to represent the pan-tilt gun turret, dynamically analyzed, controllers designed and field testing carried out. Though the system is designed as a laboratory model, every attempt is made to reach the level of sophistication and detail required for a military grade target tracking system. The thesis formulates a clearly identifiable procedures and steps which need to be carried out in the implementation of such a system. Due to the obvious unavailability of target tracking data from a radar system, target position information from machine vision software is used. The scope of the project is limited to; designing the interface between Camera, CPU and servo-controllers, designing the mounting base for the artillery with the pan-tilt mechanism, Modeling the plant and designing the ,controller.

Field testing reveals the validity of the procedures mentioned above and the satisfactory results obtained through such procedure.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

Dilshan Abeywardena 08/02/2010

I endorse the declaration by the candidate. Si Lanka

UOM Verified Signature

Dr Rohan Munasinghe

CONTENTS

Declaration	i
Abstract	iv
Acknowledgement	v.
List of Figures	vi
List of Tables	VII
1. Introduction	1
1.1 Target Tracking Fundamentals	1
1.2 Motivation	2
1.3 Goals and Achievements	3
2. Target Identification and Tracking Techniques	4
2.1 System Overview	5
2.2 Control Technologies	5
2.3 Linear Second Order SISO Model	7
2.4 Motor Model	10
3 Implementation of Vision Based Target Tracking System	11
3.1 Design and Construction of the Turret Base	11
3.1.1 Rotation Base www.lib.mrt.ac.lk	12
3.1.2 Tilt Base	13
3.1.3 Mounting Plate	13
3.1.4 Tilt Movement Gear Box	14
3.1.5 Complete System	14
3.1.6 Design Specifications	15
3.1.7 Selection of Motors	15
3.1.8 Selection of Sensors	16
3.1.9 System Inertia Calculation	18
3.2 Vision System	19
3.2.1 Pipe Program	20
4. Controller Design	21
4.1 Bandwidth Calculation	21
4.1.1 Required Bandwidth	21
4.1.2 Available Bandwildin 4.2 Design of Electronics	27
4.2 Design of Electionics	32
4.4 Stability of the System	40 42
4.5 System with Position Feedback	43 12
4.6 Digital Controller	43 15
4.7 Trajectory Planning	43 10
1.7 majoriory maining	48

5. Results	50	
5.1 Response to External Target Inputs	50	
5.2 Response to Sinusoidal Inputs	51	
6. Conclusions and Further Developments		
References	56	
Appendix A Co-ordinate Transformation using Inverse Kinematics	57	
Appendix B Pic Basic Pro Source Code	60	
Appendix C Matlab file for FFT Analysis	64	
Appendix D Matlab file for TF Extraction from Simulink Model	66	
Appendix E VB Scrip Program for Roborealm	67	
Appendix F Quadrature Encoder	69	
Appendix G Simple Potentiometer	70	
Appendix H Absolute Encoder Contact Less type	70	
Appendix I Absolute Encoder Contact type	71	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

Thanks are due first to my supervisor, Dr Rohan Munasinghe, for his great insights, perspectives and guidance. My sincere thanks go to the officers in the Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the officers who serve in the Department of Electrical Engineering office.

The author extends sincere gratitude to Professor Lanka Udawatta and Dr. Chandima Dedduwa Pathirana for their untiring efforts in coordinating the MSc in Industrial automation program and encouraging words in every step of the way of the above program.

The author had to make many visits to the local machinist in the process of designing and building the pan-tilt base and was pleasantly surprised by the skill and aptitude of these experienced craftmen. The design process was a marriage between mechanical engineering and electronics engineering among other disciplines, To this end, I may not have been able to finish off the mechanism if not for valuable suggestions from workers at the local machinist shop.

Lastly, I should thank my family for their understanding and perseverance during the last two years, friends and colleagues who have not been mentioned here personally in making this educational process a success. I could not have made it without your supports.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure	Page
2.1 Automated target tracking air defense system	5
2.2 System model	6
2.3 Linear second order SISO model of a manipulator joint	7
2.4 Motor model	10
3.1 Solidworks impression of the final gun turret system	11
3.2 Rotation base	12
3.3 Fixing plate for sensor potentiometer	12
3.4 Tilt base	13
3.5 Mounting plate	13
3.6 Tilt movement gearbox	14
3.7 Complete system	14
3.8 Calculating moment of inertia around y axis	18
3.9 Roborealm startup screen	19
3.10 Flow diagram of pipe program	20
4.1 Velocity profile of an A-10 thunderbolt at maximum acceleration	22
4.2 Movement (distance) profile of an A-10 thunderbolt at maximum acceler	ation 23
4.3 Movement observed from a distance of 3000m	24
4.4 Variation of pan angle when the movement is observed from 3000m	24
4.5 Power spectrum of the target movement	25
4.6 Variation of angular velocity with time	26
4.7 Variation of angular acceleration with time	26
4.8 System response to sinusoidal inputs of increasing frequency	27-31
4.9 Gain vs freq plot for pan movement	32
4.10 PID controller and plant	32
4.11 Overall control architecture of the system	33
4.12 PIC16f877 microcontroller support PCB	34
4.13 PIC16f877 microcontroller PCB (populated with components)	34
4.14 Schematic and PCB of the H-Bridge	35
4.15 Simulink model of the complete system	38
4.16 Simulink closed loop model of the complete system	39
4.17 Actual step response vs simulink model step response	39
4.18 Velocity step response of the system	41
4.19 Bode plot of the system	41
4.20 Bode plot with calculated gain in forward path	42
4.21 Phase margin	43
4.22 System with position feed back back	43
4.23 Velocity and position response for step input	44
4.24 Block diagram of PID implementation	48
5.1 Response to arbitrary external target inputs	50
5.2 Response to sinusoidal external inputs	51-53

List of Tables

Table		Page
4.1	Truth table for H-Bridge	35

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

هر