LB /DON /US, to

(1)

DESIGN OF A GARBAGE COMPACTING TRACTOR TRAILER HYDRAULIC SYSTEM

Library Uctiversity of Moratuwa, Sri Lalili Coratuwa

by

N. WANIGASINGHE

Supervised by

Dr. M. A. R. V. Fernando University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Dissertation submitted to the Department of Mechanical Engineering of the University of

Moratuwa in partial fulfilment of the requirements for the Degree of Master

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

621.7(043)

Monufacturing

Sac Ar's.

TN

December 2008

University of Moratuwa

93935

i

93935

DECLARATION

This Dissertation paper contains no material which has been accepted for the award of any other degree or diploma in any University or an equivalent institution in Sri Lanka or abroad, and to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text of this Dissertation.

I carried out the work described in this Dissertation under the supervision of Dr. M. A. R. V. Fernando.

Signature Name of Student : N. Wanigasinghe WWW.110.Init.ac.lk Registration No : 04/8641

Signature

: UOM Verified Signature :: 19 03 05

Name of Supervisor : Dr. M. A. R. V. Fernando.

ABSTRACT

The most common motorized vehicle used for garbage transportation in Sri Lanka is the tractor with an open trailer. Garbage is transported in an open system causing unpleasantness, pollution, bad smell, poor hygiene and over spillage.

The objective of the proposed design is to improve the capacity of garbage handled by the open tractor-trailer per each transport cycle and to improvise a closed system for waste transport to improve hygienic standards.

The proposed design is one in which an existing tractor-trailer is modified to a rear loading trailer. While loading, the garbage will be compacted using a hydraulic system to overcome the low productivity. A hydraulic pump, solenoid valves, hydraulic cylinders and an electrical system are used for this construction. Apart from this, the trailer body is

modified into a closed body Uliversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

The measured value volves of its waster currently handled per single load which is approximately 1000 kg, will be improved to about 2000 kg per load. The closed system will minimise the environmental pollution present in the existing system. These modifications to the existing tractor trailer would help to improve the present standards of solid waste management at a relatively low cost.

The cost of installation of the hydraulic system and constructing a closed body is approximately seven hundred thousand rupees.

ACKNOWLEDGEMENTS

The past four years was spent by me to pursue further studies in my academic carrier. The field chosen was manufacturing systems engineering. I extend my sincere gratitude to the head and the academic staff of the Mechanical Engineering Department in the University of Moratuwa for organising this excellent postgraduate course. I am grateful to all the lecturers and mentors of the course for all the guidance given at all times.

The most important and demanding aspect of the course was the research project. The successful completion would not have been a reality had it not been for the efforts of many. Firstly I extend my thanks to our course coordinator Dr. G. K. Watugala for the tremendous support extended to me at all times. I also attribute the success I made in this to my project supervisor, Dr. M. A. R. V. Fernando. I am thankful to him for his advice and the time that he spent to make this project a success. I am also very thankful to Dr. T. A. Piyasiri, Director General of the Tertiary and Vocational Education Commission who has been a tower of support during difficult times and who was available at all times, rendering invaluable advice which facilitated a successful completion of this project.

I wish to thank Eng. W. A. Senevirathne who readily undertook the task of manufacturing the trailer in the design. I also thank Prof. G. T. F. de Silva for organizing the financing part of the project. I also thank all those in the local government institutions in the Colombo district, who helped us during data collection. I also sincerely appreciate the unrelenting support given by my colleague Eng. Ananda Wijesinghe my partner in this project.

Finally, I thank all my colleagues for the great support extended to me throughout the course and also thank all others who helped me in preparation of this project report

Nandana Wanigasinghe nwanige@gmail.com December 2008

CONTENTS

PRE-CHAPTERS

İ.

ځ

-

TĽ	FLE	PAGE		i
DE	CLA	RATION	J	ii
AB	STR/	ACT		iii
AC	KNO	WLED	GEMENTS	iv
CC	NTE	NTS		v
LIS	ST O	F TABI	LES AND CHARTS	ix
LIS	ST O	F FIGU	RES	x
LIS	ST О	F APPE	ENDICES	xi
LIS	ST O	FACR	ONYMS	xii
1.	INT	5 (10)	CTION Iniversity of Moratuwa, Sri Lanka.	1
	1.1	Introd	uction to the Research Project & Dissertations	1
	1.2	Tracto	or and open trailer.mrt.ac.lk	2
		1.2.1	Poor vehicle productivity	2
		1.2.2	Environmental pollution	3
		1.2.3	Physical harm	4
	1.3	Projec	cted improvisations in this project	4
		1.3.1	Design specifications	4
2.	LII	TERAT	URE REVIEW	6
	2.1	Over	view on municipal solid waste	6
		2.1.1	Municipal Solid Waste Collection Methods	9
	2.2	Evolu	tion of garbage collecting vehicles	10
	2.3	Overv	iew of modern garbage collecting vehicles and mechanisms	15
		2.3.1	Front Loaders	15
		2.3.2	Rear loaders	18
		2.3.3	Automated Side Loaders	25

		2.3.4 Grapple truck	28
		2.3.5 Pneumatic collection vehic	le 29
		2.3.6 Other types of trucks	30
		2.3.6.1 Container carrier	30
		2.3.6.2 Recycle collection	trucks 31
		2.3.6.3 Rotary Compactors	32
	2.4	Garbage collection vehicles in Sri	Lanka 33
3.	MF	THODOLOGY	39
	3.1	Design tree	41
	3.2	The Perspectives to be achieved	42
	3.3	Problems to be addressed	42
		3.3.1 Main problems	42
		3.3.2 Auxiliary problems	42
	3.4	Analysis of each main problem University of M	oratuwa Sri Lanka 42
		3.4: Compacting ronic These	es & Dissertations 42
		3.4.2 Loadingww.lib.mrt.ac.	
		3.4.3 Unloading	43
	3.5	Analysis of auxiliary problems	44
		3.5.1 Power source	44
		3.5.2 Power transmission mode	44
	3.6	Candidate solution	48
		3.6.1 Comparison of unloading	methods 48
		3.6.1.1 Ejection Plate	49
		3.6.1.2 Tipping	49
	3.7	Conceptual Solution	50
	38	Final selection of methodology	50

4.	HYI	ORAU	LIC SY	STEM	51
	4.1	Calcu	lation of	f garbage densities	51
	4.2	Anal	ysis of lo	ading capacity of the 3.5 ton trailer	52
	4.3	Meas	urement	of force on the body due to compaction	52
	4.4	Other	r measure	ements from existing Isuzu 4m ³ compactor trucks	53
	4.5	Manı	ıfacturer'	s specifications from manuals	54
	4.6	Desig	gn of hyd	raulic circuit	54
	4.7	Selec	tion of h	ydraulic cylinders	57
		4.7.1	Selection	n of compacting door hydraulic cylinder	57
			4.7.1.1	Selection of loading cylinder rod diameter	59
			4.7.1.2	Selection of bore diameter of loading cylinder	59
			4.7.1.3	Calculation of cycle time	60
	2	1.7.2	Selection	n of ejection plate cylinder	61
			4.7.2.1	Selection of ejection plate cylinder rod diameter	64
			4 7.2.2	Selection of bore diameter of ejection cylinder	64
		({	4.7.2.3	Ecalculation of lunboading timesertations	65
	4	1.7.3	Selectio	n of door lifting cylinder	66
			4.3.3.1	Calculation of center of gravity of compaction door	66
			4.7.3.2	Calculation of centre of gravity of a rear complete door	68
			4.7.3.3	Calculation of the cylinder force	70
			4.7.3.4	Selection of door lifting cylinder rod diameter	72
			4.7.3.5	Selection of bore diameter of door lifting cylinder	72
	4.8	Selec	tion of p	ipes and horse sizes	74
		4.8.1	Select	ion of pressure line pipes	74
		4.8.2	Select	ion of return line pipe	74
		4.8.3		ion of pipe wall thickness	75
		4.8.4		ion of hose type	75
	4.9		igth calcu		76
		4.9.1		ng leg length calculation of compaction cylinder bracket	76
		4.9.2		failure check of the compaction cylinder bracket	78
		4.9.3	Calcul	lation of door locking 'U' Bolt size	79

.1

•

4

.

ゥ

vii

5 BOQ AND COST ESTIMATE

6.	CONCLUSIONS			
	6.1	Discus	sion	83
		6.1.1	Positive aspects of the design	84
		6.1.2	Limitations	84
	6.2	Furthe	er developments	85
	6.3	Summ	nary	85

REFERENCES

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

r. 1910 -

81

86

LIST OF TABLES AND CHARTS

Tables

Table 2.1	Global perspective on refuse differences	7
Table 1.2	MSW generated within the Greater Colombo area	8
Table 2.3	Results of survey on vehicles used for solid waste management	34
	by the local government institutes in the Colombo district	

Charts

Chart 2.1	Daily garbage collection in each local authority in	
	Colombo district	
Chart 2.2	Different vehicle types available in the Colombo district	36
Chart 2.3	Different vehicle types purchased for garbage transport	36

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

-

.

Figure 1.1	Environmental pollution from the exposed garbage	3
Figure 2.1	Human hand cart: one of the earliest vehicles	11
Figure 2.2	Dump truck converted to refuse-collection vehicle	12
Figure 2.3	Dempster LoadLugger	12
Figure 2.4	Heil load packer	13
Figure 2.5	Lifting folk of the machine is extended	16
Figure 2.6	Lifting folk retracted while in transit	16
Figure 2.7	Process of front loading	17
Figure 2.8	Rear loader with large hopper	18
Figure 2.9	Filling with cart tipper	19
Figure 2.10	Manual filling in Sri Lanka	19
Figure 2.11	Four steps in the mechanism of compaction	21
Figure 2.12	Four steps in the mechanism of compaction University of Moratuwa, Sri Lanka.	23
Figure 2.13	Onloading on to a dumping yard, Dissertations	24
Figure 2.14	Automatic side loaderrt. ac.lk	25
Figure 2.15	ASL with robotic arm at retracted position	26
Figure 2.16	Side view of the side loader	26
Figure 2.17	Rear view of the side loader	27
Figure 2.18	Grapple truck	28
Figure 2.19	Pneumatic collection vehicle	29
Figure 2.20	Container carrier	30
Figure 2.21	Operating Mechanism of the Container carrier	31
Figure 2.22	Rotary Compactor	32
Figure 2.23	Mechanism of Rotary Compactor	32
Figure 2.24	Unpleasant sight of an overloaded tractor trailer	38
Figure 4.1	Measuring of pressure on ejection plate	52
Figure 4.2	Hydraulic circuit	55
Figure 4.3	Electrical circuit	56

х

LIST OF APPENDICES

APPENDIX A: Stroke/Buckling length limits (Chart A)	88
APPENDIX B: Piston rod buckling (Chart B)	89
APPENDIX C: Bailey cylinder dimension	90
APPENDIX D: Bailey cylinder specification	91
APPENDIX E: Adaptor thread data	94
APPENDIX F: Pipe wall thickness selection table	95
APPENDIX G: SAE hydraulic hose data	96
APPENDIX H: Tables	98
APPENDIX I: Drawing No.1 Forces acting on compacting door	99
APPENDIX J: Drawing No.2 Forces acting on ejection pate link mechanism Pl	100
APPENDIX K: Drawing No.3 Forces acting on ejection pate link mechanism P2	101
APPENDIX L: Drawing No.4 Forces acting on ejection pate link mechanism P3	102
APPENDIX M. Drawing No.5 Compacting door dimensions	103
APPENDIX N. Drawing No.6 Rear door dimensions ssertations	104
APPENDIX O: Drawing No.7 Forces acting on rear door lifting cylinder	105
APPENDIX P: Drawing No.10 Forces acting on rear door locking "U" bolt	106

LIST OF ACRONYMS

ASL	Automated side loader
СМС	Colombo Municipal Council
DMMC	Dehiwela Mount Lavinia Municipal Council
MSW	Municipal solid waste
SWM	Solid waste management

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk