CONDUCTOR LOSSES DUE TO NON-LINEAR LOADS

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirement for the Degree of Master of Science

BY

M.L.D. DAMINDA DARSHANA

621.3 05"

Supervised by: Dr.J.P.Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

November 2005

Uni	vers	sity	of N	Mora	ntuwa	3
1	10					
		85	595	57		

85957

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

M.L.D.Daminda Darshana Date 30/01/2006

I endorse the declaration by the candidate.

UOM Verified Signature

Dr.J.P.Karunadasa

i

Abstract

With the heavy use of sophisticated equipment several problems arise related to electricity, within the user's premises and to the nearby users and to the utility. People tend to use the equipment, which save time, reduce labor and increase productivity of the office/industrial environment. Those equipment such as fax machine, photocopiers, printers, computers, CFLs, VSDs etc. comprises with electronic circuits, which consume harmonics.

When Harmonics are injected to the system several problems such as frequent breaker tripping, Error in meter readings, mal operation of relays, capacitor bank blasting, Telephone interference, overheating of conductors and transformers, over loading of neutral conductor, higher losses in conductors and transformers etc. can happen. Harmonic currents generated by modern office/industrial equipment cause power system heating and add to user power bills.

The aim of this study was to analyze the harmonic related losses in several electrical systems and quantify its energy usage in cost wise.

How site selection was done, the type of equipment used to gather data and the process of data analysis which are the key elements which this study is based upon are described in separate chapters.

The analysis shows that building-wiring losses related to powering non-linear electronic load equipment might be more than double the losses for linear load equipment. Current related power losses such as I^2R , Skin Effect of conductors, Proximity Effect of Conductors are considered.

A special emphasis is made upon the underlined theories, which the study is based upon which includes defining harmonics, generating sources, theirs adverse impacts, adopted methods of measuring or identifying, other methods of eliminating etc.

Acknowledgement

Thanks are due first to my supervisor, Dr.J.P.Karunadasa, for his great insights, perspectives, guidance and sense of Humor.

My sincere thanks go to the officers in Post Graduate Office, Faculty of Engineering. University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering Office.

I am very much grateful to Mr. Nandika Laksiri, Electrical Engineer of Ceylon Glass Company, Mr.Iran Kumara,Electrical Superintendant - Maintenance Department of University of Moratuwa, Dean of IT Faculty, University of Mortuwa for their assistance and cooperation in permitting the access to their premises for data collection which is the backbone of my study.

I also wish to acknowledge my heartfelt gratitude to my parents, teachers, my brother and sisters who have brought me up, guided me, taught me and helped me in various ways to be knowledgeable to carry out this research work.

Also I want to thank my friends who supported me from the initial stage to the completion of this thesis.

Finally I must thank my wife Radha for the inspiration and moral support she provided throughout my research.

Contents

Declaration	1
Abstract	ii
Acknowledgement	iii
List of Contents	iv
List of Figures	vi
List of Tables	vii
Chapters	Page
01. Introduction	1-6
1.1 General Background	1
1.1.1 What are non-linear loads	î
1.1.2 Effects of Harmonics on Equipment	1
1.1.3 Detecting the presence of Harmonics	3
1.1.5 Detecting the presence of Harmonies	5
1.2 Motivation	3
1.3 Methodology	4
1.3.1 Literature Survey	4
1.3.2 Site Selection and Data Collection	5
1.3.3 Data Analysis and Calculations	6
1.3.4 Conclusion and Future works	6
02. Theoretical Background	7-12
2.1 Tetal Hammania Distortion	7
2.1 Total Harmonic Distortion	'
2.2 Harmonic Related Losses	7
2.2.1 Cables	7
2.2.2 Thermal Effect	8
2.2.3 Skin Effect	8
2.2.4 Proximity Effect	9
2.2.5 Transformers	12
03. IEEE Standard and Filter Location	13-15
3.1 IEEE 519-1992	13
3.2 Location of Filters for optimum benefit	15

iv

04. Site Selection and Data Collection	16-17
4.1 Site Selection4.1.1 IT Faculty, University of Moratuwa4.1.2 Ceylon Glass Company, Ratmalana	16 16
4.2 Data Collection	17
05. Calculations	18-27
5.1 Ceylon Glass Company 5.1.1 Harmonic Current 5.1.2 Resistance 5.1.3 Losses	18 18 19 20
 5.2 IT Faculty, University of Motratuwa 5.2.1 Harmonic Current 5.2.2 Resistance 5.2.3 Losses 	23 23 24 25
06. Results	28-29
6.1 Ceylon Glass Company, Ratmalana	28
6.2 IT Faculty, University of Moratuwa	29
07. Conclusion and Future works	30-31
7.1 Conclusion	30
7.2 Future works	30
D. f	32-33
References	
Annex 01 – Details of Selected Sites	I
Annex 02 – Measured Data Sheets	VI
Annex 03 – Calculation Sheets	XXVI

v

List of Figures

Figure	Page
2.1 Skin Effect	9
3.1 Location of Filters	15
5.1.1 Skin Effect Parameter Vs Harmonic level of the VSD	20
5.1.2 Proximity Effect Parameter Vs Harmonic level of the VSD	21
5.1.3 Total AC Resistance Vs Harmonic level of the VSD	21
5.1.4 R _{ac} /R _{dc} Vs Harmonic level of the VSD	22
5.1.5 Current and Voltage pattern in cycle of the VSD	22
5.2.1 Skin Effect Parameter Vs Harmonic level of the Computer Lab	25
5.2.2 Proximity Effect Parameter Vs Harmonic level of the Computer Lab	26
5.2.3 Total AC Resistance Vs Harmonic level of the Computer Lab	26
5.2.4 Rac/Rdc Vs Harmonic level of the Computer Lab	27
5.2.5 Current and Voltage pattern in cycle of the Computer Lab	27

List of Tables

Table	rage
2.1 Resistivity and Mass Temperature Coefficient of Cu and Al	8
2.2 Experimental values for the coefficients k_S and k_P	11
3.1 IEEE 519-1992 Harmonic Limits	13
5.1.1 Average Harmonic Currents of three phases of the VSD	18
5.1.2 THD levels of three phases of the VSD	18
5.1.3 Total Currents of three phases of the VSD	18
5.1.4 Line losses of three phases of the VSD	20
5.2.1 Average Harmonic Currents of three phases of the Computer Lab	23
5.2.2 THD levels of three phases of the Computer Lab	23
5.2.3 Total Currents of three phases of the Computer Lab	23
5.2.4 Line losses of three phases of the Computer Lab	25
6.1 Analysis of Line losses of three phases of the VSD	28
6.2 Analysis of Line losses of three phases of the Computer Lab	29

vii