INVESTIGATING THE PERFORMANCE OF BERMS IN RUBBLE MOUND BREAKWATERS

MASTER OF PHILOSOPHY

M M P D SAMARASEKARA

UNIVERSITY OF MORATUWA SRI LANKA

AUGUST 2009

The work included in this Thesis in part or whole has not been submitted for any other academic qualification at any Institution

••••••

M M P D Samarasekara

.....

Professor S S L Hettiarachchi

Supervisor

Investigating the Performance of Berms in Rubble Mound Breakwaters

M M P D Samarasekara

This Thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Philosophy

> Department of Civil Engineering University of Moratuwa Sri Lanka

> > August 2009

ABSTRACT

The results of a comprehensive study on the hydraulic performance of rock armoured rubble mound breakwaters are presented. Based on an extensive literature review, results from selected previous investigations were re-analyzed following which, the scope of a major hydraulic model study of a large scale was developed and implemented.

The results from the hydraulic model study were compared with similar studies reviewed to arrive at conclusions on the hydraulic performance of rock armoured rubble mound structures with emphasis on the use of a berm for a greater efficiency with respect to energy dissipation.

In this study, a large scale model of a rock armoured rubble mound berm breakwater was tested to obtain a complete profile of energy transformation resulting from wave-structure interaction. Attention was focused on achieving reliable estimates of wave reflection and direct measurements of wave transmission as such information are essential for the evaluation of energy dissipation. In addition, two other structures were investigated to assess their hydraulic performance under extreme wave conditions.

In all the structures considered, the hydraulic performance was presented in relation to the wave conditions, structural geometry and water depth.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to Prof. S.S.L. Hettiararchchi for patiently supervising this research study over a long period of time. I would not have succeeded in completing this study without his invaluable assistance. His guidance, advice and encouragement during the study is gratefully acknowledged.

The support extended by the Lanka Hydraulic Institute during model testing and by providing relevant information for this study is greatly appreciated.

I acknowledge with thanks the financial assistance given by the Institute of Technology, University of Moratuwa (ITUM) for my postgraduate studies. The encouragement and support given by Dr. T.A.G. Gunasekara, Director, ITUM and my colleagues during this study is greatly appreciated.

Special thanks are due to Prof. S.A.S. Kulathilaka and Prof. J.M.S.J. Bandara for their encouragement during the study period. My sincere thanks are also due to Premini and Saman for their encouragement and support.

Finally I am very grateful for my husband Harsha for the helping hand given and for the continuous encouragement.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to Prof. S.S.L. Hettiararchchi for patiently supervising this research study over a long period of time. I would not have succeeded in completing this study without his invaluable assistance. His guidance, advice and encouragement during the study is gratefully acknowledged.

The support extended by the Lanka Hydraulic Institute during model testing and by providing relevant information for this study is greatly appreciated.

I acknowledge with thanks the financial assistance given by the Institute of Technology, University of Moratuwa (ITUM) for my postgraduate studies. The encouragement and support given by Dr. T.A.G. Gunasekara, Director, ITUM and my colleagues during this study is greatly appreciated.

Special thanks are due to Prof. S.A.S. Kulathilaka and Prof. J.M.S.J. Bandara for their encouragement during the study period. My sincere thanks are also due to Premini and Saman for their encouragement and support.

Finally I am very grateful for my husband Harsha for the helping hand given and for the continuous encouragement.

CONT	ENTS
------	------

ABSTRA	CT	i
ACKNOW	VLEDGEMENT	ii
LIST OF	TABLES	vii
LIST OF	FIGURES	xi
LIST OF	SYMBOLS	xvii
СНАРТЕ	R 1 INTRODUCTION	1
1.1	Background	1
1.2	Objectives of the Study	3
1.3	Guide to the Thesis	3
СНАРТЕ	R 2 COASTAL AND HARBOUR STRUCTURES:	
	WAVE-STRUCTURE INTERACTION	4
2.1	Introduction	4
2.2	Rock Armoured Rubble Mound Breakwaters	5
2.3	Wave-Structure Interaction	9
2.3.1	Energy Balance	10
2.3.2	Wave Reflection and Transmission	11
2.3.3	Wave Run-up and Overtopping	13
2.3.4	Important Parameters for Wave–Structure Interaction	14
2.3.5	Wave–Structure Interaction: Theoretical Aspects	16
2.3.5.1(a)	Analytical Solution	18

2.3.5.1(b)	General Solution of the Simplified Equations	19
2.3.5.1(c)	Energy of Waves in Porous Media	21
2.3.5.1(d)	Transmission and Reflection of Waves at a Junction	
	between Two Porous Media	22
2.3.6	Wave–Structure Interaction: Influence of Porosity and	
	Permeability	27
2.3.7	Wave Reflection: Prediction Methods	28
2.4	Review of Previous Investigations	29
2.4.1	Wave Reflection and Transmission	29
2.4.1.1	Wave Reflection and Transmission: Wave Filters	31
2.4.1.2	Wave Reflection and Transmission: Vertical Structures	34
2.4.1.3	Wave Reflection and Transmission: Trapezoidal Structures	35
2.4.1.4	Wave Reflection and Transmission: Berm Breakwaters	39
2.4.2	Wave Run-up and Overtopping	43
2.4.2.1	Wave Run-up	43
2.4.2.2	Wave Overtopping	49
2.4.2.2 (a)	Theoretical Work on Wave Overtopping	49
2.4.2.2 (b)	Experimental Work on Wave Overtopping	50
СНАРТЕ	R 3 APPROACH TO THE STUDY	58
CHAPTE	R 4 EXPERIMENTAL INVESTIGATION	60
		00
4.1	Relevance of Large Scale Hydraulic Models	60
4.2	Investigation of Energy Dissipation Characteristics of Rubble	
	Mound Breakwaters	60
4.3	Structures Investigated	62
4.4	Experimental Set Up	63
4.5	Test Conditions and Parameters Measured	63
4.6	Instrumentation and Data Acquisition	64

4.7	Measurement of Wave Reflection for Regular and	
	Random Waves	66
4.7.1	Measuring Techniques, Analysis of Data and	
	Sample Calculations	67
4.7.2	Theoretical Aspects: Method Adopted by DHI	67
4.7.2.(a)	Regular Waves: Two Gauge Method	67
4.7.2.(b)	Random Waves – Multiple Gauge Method	67
4.7.2.(c)	Recommendations for Practical Application of Three Gauges	68

CHAPTER 5 RE-ANALYSIS OF PREVIOUS INVESTIGATIONS 72

5.1	Reflection and Transmission of Rock Armoured	
	Rubble Mound Trapezoidal Structures	72
5.2	Reflection and Transmission of Rock Armoured	
	Rubble Mound Trapezoidal Structures with a Berm	90
5.3	Critical Issues Arising from the Re-Analysis	109
5.3.1	Influence of the Wave Height	109
5.3.2	Influence of Wave Steepness	111
5.3.3	Influence of the Berm	112
5.3.4	Wave Energy Reflection	112

CHAPTER 6EXPERIMENTS ON RUBBLE MOUND BERMBREAKWATERS: DISCUSSION OF RESULTS116

6.1	Approach to the Discussion	116
6.2	Rock Armoured Rubble Mound Trapezoidal Breakwater	
	with a 12 m Berm	117
6.2.1	Reflection at and Transmission through the Structure	
	at 7 m Water Depth	119

6.2.2	Reflection at and Transmission through the Structure	
	at 8m Water Depth	125
6.2.3	Reflection at and Transmission through the Structure	
	at 9 m Water Depth	130
6.2.4	Wave Run-up and Run-down on the Structure	138
6.2.5	Summary of Results	140
6.2.5.1	Influence of the Wave Height, Wave Period and	
	Water Depth	140
6.2.5.2	Influence of the Berm	144
6.3	Rock Armoured Rubble Mound Reshaping	
	Berm Breakwater	146
6.3.1	Transmission and Reflection at the Structure	148
6.3.2	Energy Dissipation at the Structure	152
6.3.3	Summary of Results	157
6.4	Concrete Armoured Rubble Mound Trapezoidal Structure	
	with Toe Protection	158
6.4.1	Wave Reflection at Different Breakwater Sections	160
6.4.2	Prediction of Wave Reflection by Empirical Equations	164
CHAPT	ER 7 CONCLUSIONS AND RECOMMENDATIONS	166
7.1	Rock Armoured Rubble Mound Breakwater with	
	a 12 m Berm	167
7.2	Rock Armoued Rubble Mound Reshaping Breakwater	168
7.3	Concrete Armoured Rubble Mound Trapezoidal	
	Breakwater	169
7.4	Conclusions	169

170

LIST OF TABLES

Table 2.1	Damage reported to Seawalls
Table 2.2	Wave Breaking Criteria
Table 2.3	Theoretical Work on Run-up of Non Breaking Waves on a Steep Slope
Table 2.4	Run-up of Regular Waves on Smooth Slopes
Table 2.5	Run-up of Regular Waves on Rock Armoured Slopes
Table 2.6	Run-up of Regular Waves on Concrete Armoured Slopes
Table 2.7	Run-up of Random Waves on Smooth Slopes
Table 2.8	Analytical Expressions Developed for Wave Overtopping based on the
	Formula for Discharge over a Weir
Table 4.1	Determination of Gauge Distances for the Experimental Set Up of Rock
	Armoured Rubble Mound Breakwater with a 12m Berm
Table 5.1	Model Wave Conditions Investigated on a Trapezoidal Layered
	Breakwater (Sollit and Cross)
Table 5.2	Model Wave Conditions Investigated on a Trapezoidal Structure
	(Sulisz)
Table 5.3	Equivalent Prototype Conditions Investigated Experimentally on a 1:20
	Scale Model of a Trapezoidal Breakwater (Hettiarachchi and
	Mirihagalle)
Table 5.4	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	Corresponding to the Wave Probes Located. (7 m Water Depth)
Table 5.5	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	Corresponding to the Wave Probes Located. (8 m Water Depth)
Table 5.6	Model Wave Conditions Investigated on a Trapezoidal Layered
	Structure (Helgason)
Table 5.7	Model Wave Conditions Investigated on a Trapezoidal Structure
	(Garcia)
Table 5.8	Model Wave Conditions Investigated on a Trapezoidal Structure with a
	Berm (Allsop and Chanell)

Table 5.9	Equivalent Prototype Conditions Investigated Experimentally on a 1:20
	Scale Model of a Trapezoidal Berm Breakwater (Hettiarachchi and
	Thilakarathne)
Table 5.10	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	Corresponding to the Wave Probes Located (7 m Water Depth)
Table 5.11	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	Corresponding to the Wave Probes Located. (8 m Water Depth)
Table 5.12	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	Corresponding to the Wave Probes Located. (9 m Water Depth)
Table 5.13	Hydraulic Performance of the Structure under Waves with Maximum
	Heights (Regular Waves Water Depth 7 m) (Hettiarachchi and
	Mirihagalle)
Table 5.14	Hydraulic Performance of the Structure under Waves with Maximum
	Heights (Regular Waves Water Depth 8 m) (Hettiarachchi and
	Mirihagalle)
Table 5.15	Hydraulic Performance of the Structure for Different Water Depths
	under Waves with Similar Steepness (Random Waves, Wave Period 4 s)
	(Hettiarachchi and Thilakarathne)
Table 5.16	Hydraulic Performance of the Structure for Different Water Depths
	under Waves with Similar Steepness (Random Waves, Wave Period
	10 s) (Hettiarachchi and Thilakarathne)
Table 5.17	Hydraulic Performance of the Trapezoidal Structure With and Without a
	Berm
Table 5.18	Wave Reflection at a Trapezoidal Structure With and Without a Berm
	(Water Depth 7 m)
Table 5.19	Wave Reflection at a Trapezoidal Structure With and Without a Berm
	(Water Depth 8 m)
Table 5.20	Equivalent Prototype Wave Periods Investigated Experimentally on a
	1:20 Scale Model of a Trapezoidal Berm Breakwater
Table 5.21	Wave Reflection at a Trapezoidal Structure with Different Berm
	Lengths (Water Depth 8 m)

Table 6.1	Equivalent Prototype Conditions Investigated Experimentally on a 1:20
	Scale Model of a Trapezoidal Berm Breakwater (12 m Berm Length)
Table 6.2	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	corresponding to the Wave Probes Located (7 m Water Depth)
Table 6.3	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	corresponding to the Wave Probes Located. (8 m Water Depth)
Table 6.4	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	corresponding to the Wave Probes Located. (9 m Water Depth)
Table 6.5	Hydraulic Performance of the Structure under Maximum Wave Heights
	(Regular waves, 7 m Water Depth)
Table 6.6	Hydraulic Performance of the Structure under Maximum Wave Heights
	(Regular waves, 8 m Water Depth)
Table 6.7	Hydraulic Performance of the Structure under Maximum Wave Heights
	(Regular Waves, 9 m Water Depth)
Table 6.8	Hydraulic Performance of the Structure under Similar Wave Heights for
	Different Wave Periods (Regular Waves, 7 m Water Depth)
Table 6.9	Hydraulic Performance of the Structure under Similar Wave Heights for
	Different Wave Periods (Regular Waves, 8 m Water Depth)
Table 6.10	Hydraulic Performance of the Structure under Similar Wave Heights for
	Different Wave Periods (Regular Waves, 9 m Water Depth)
Table 6.11	Hydraulic Performance of the Structure under Similar Waves for
	Different Water Depths (Random Waves, 10 s Wave Period)
Table 6.12	Hydraulic Performance of the Structure under Similar Waves for
	Different Water Depths (Random Waves, 4 s Wave Period)
Table 6.13	Hydraulic Performance of the Structure under Waves of Different
	Heights for Different Water Depths (Regular Waves, 12 s Wave
	Period)
Table 6.14	Hydraulic Performance of Structures with Different Berm Lengths
	(Regular Waves, Water Depth 7 m)
Table 6.15	Hydraulic Performance of Structures with Different Berm Lengths
	(Regular Waves, Water Depth 8 m)

Table 6.16	Hydraulic Performance of Structures with Different Berm Lengths
	(Regular Waves, Water Depth 9 m)
Table 6.17	Equivalent Prototype Conditions investigated Experimentally on a 1:36
	Scale Model of a Trapezoidal Reshaping Berm Breakwater
Table 6.18	Characteristics of Waves which result in High Transmission
	Coefficients
Table 6.19	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	corresponding to the Wave Probes Located Regular Waves, 15m Water
	Depth)
Table 6.20	Percentage of Wave Energy Reflected, Transmitted and Dissipated
	corresponding to the Wave Probes Located Random Waves, 15 m
	Water Depth)
Table 6.21	Hydraulic Performance of the Structure for Different Wave Periods
	(Regular Waves, 15 m Water Depth)
Table 6.22	Hydraulic Performance of the Structure under Extreme Wave Heights
	and Periods (Random Waves, 15m Water Depth)
Table 6.23	Equivalent Prototype Wave Conditions investigated on a 1:49 Scale
	Model of a Trapezoidal Layered Breakwater (LHI)
Table 6.24	Prototype Dimensions of the Different Sections investigated on a 1:49
	Scale Model of the Trapezoidal Layered Breakwater (LHI)
Table 6.25	Reflection Characteristics at Different Sections of the Breakwater

LIST OF FIGURES

- Figure 2.1 Rubble Mound Breakwater
- Figure 2.2 Conventional Multi Layered Rubble Mound Breakwater
- Figure 2.3 Berm Profile
- Figure 2.4 S-Shaped Profile
- Figure 2.5 Dynamically Stable Berm Breakwater (Two Classes of Stone)
- Figure 2.6 Statically Stable Berm Breakwater (Two Classes of Stone)
- Figure 2.7 Statically Stable Berm Breakwater (Several Classes of Stone I, II, III)
- Figure 2.8 Transmission and Reflection of Wave Energy at a Junction between two Porous Media
- Figure 4.1 Prototype Cross Section of the Rock Armoured Rubble Mound Breakwater with 12 m berm
- Figure 4.2 Prototype Cross Section of the Rock Armoured Rubble Mound Reshaping Berm Breakwater
- Figure 4.3 Prototype Cross Section of the Rock Armoured Rubble Mound Breakwater with 12 m Berm: Probe Positions
- Figure 4.4 Prototype Cross Section of the Rock Armoured Rubble Mound Reshaping Berm Breakwater: Probe Positions
- Figure 4.5 Experimental Set-up
- Figure 5.1 Model Cross Section of Trapezoidal Layered Breakwater (Sollit and Cross)
- Figure 5.2 Transmission Coefficient vs Wave Steepness (Sollit and Cross)
- Figure 5.3 Reflection Coefficient vs Wave Steepness (Sollit and Cross)
- Figure 5.4 Model Cross Section of the Trapezoidal Breakwater (Sulisz)
- Figure 5.5 Transmission Coefficient vs Wave Steepness (Sulisz)
- Figure 5.6 Reflection Coefficient vs Wave Steepness (Sulisz)
- Figure 5.7 Model Cross Section of Trapezoidal Breakwater (Hettiarachchi and Mirihagalle)
- Figure 5.8Transmission Coefficient vs Wave Steepness
(Hettiarachchi and Mirihagalle) (Regular Waves 7 m Water Depth)

Figure 5.9	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Mirihagalle) (Regular Waves 8 m Water Depth)
Figure 5.10	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Mirihagalle) (Random Waves 7 m and 8 m Water
	Depths)
Figure 5.11	Reflection Coefficient vs Wave Steepness (Hettiarachchi and
	Mirihagalle) (Regular Waves, 7 m and 8 m Water Depths)
Figure 5.12	Reflection Coefficient vs Wave Steepness (Hettiarachchi and
	Mirihagalle) (Random Waves 7 m and 8 m Water Depths)
Figure 5.13	Energy Transmission Across the Structure (Hettiarachchi and
	Mirihagalle) (Regular Waves 7 m Water Depth)
Figure 5.14	Energy Dissipation Across the Structure (Hettiarachchi and Mirihagalle)
	(Regular Waves,7 m Water Depth)
Figure 5.15	Energy Transmission Across the Structure (Hettiarachchi and
	Mirihagalle) (Regular Waves 8m Water Depth)
Figure 5.16	Energy Dissipation Across the Structure (Hettiarachchi and Mirihagalle)
	(Regular Waves 8m Water Depth)
Figure 5.17	Model Cross Section of Trapezoidal Layered Breakwater (Helgason)
Figure 5.18	Reflection Coefficient vs Wave Steepness (Helgason)
Figure 5.19	Model Cross Section of the Trapezoidal Breakwater (Garcia)
Figure 5.20	Reflection Coefficient vs Wave Steepness (Garcia)
Figure 5.21	Model Cross Section of the Berm Breakwater (Allsop and Chanell)
Figure 5.22	Reflection Coefficient vs Wave Steepness (Allsop and Chanell)
	(4 m Berm Length)
Figure 5.23	Reflection Coefficient vs Wave Steepness (Allsop and Chanell)
	(8 m Berm Length)
Figure 5.24	Reflection Coefficient vs Wave Steepness (Allsop and Chanell)
	(16 m Berm Length)
Figure 5.25	Reflection Coefficient vs Wave Steepness for Different Structure Slopes
	(Allsop and Chanell)
Figure 5.26	Reflection Coefficient vs Relative Berm Length (Allsop and Chanell)

Figure 5.27	Reflection Coefficient vs Relative Berm Length for Different Structure
	Slopes (Allsop and Chanell)
Figure 5.28	Model Cross Section of the Berm Breakwater (Hettiarachchi and
	Thilakarathne)
Figure 5.29	Transmission Coefficient vs Wave Steepness (Hettiarachchi and
	Thilakarathne) (Regular waves 7 m Water Depth)
Figure 5.30	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Thilakarathne) (Regular waves 8 m Water Depth)
Figure 5.31	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Thilakarathne) (Regular Waves 9 m Water Depth)
Figure 5.32	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Thilakarathne) (Random Waves 7 m Water Depth)
Figure 5.33	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Thilakarathne) (Random Waves 8 m Water Depth)
Figure 5.34	Transmission Coefficient vs Wave Steepness
	(Hettiarachchi and Thilakarathne) (Random Waves 9 m Water Depth)
Figure 5.35	Reflection Coefficient vs Wave Steepness (Hettiarachchi and
	Thilakarathne) (Regular Waves 7 m, 8 m and 9 m Water Depth)
Figure 5.36	Reflection Coefficient vs Wave Steepness (Hettiarachchi and
	Thilakarathne) (Random Waves 7 m, 8 m and 9 m Water Depth)
Figure 5.37	Energy Dissipation Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 7m Water Depth)
Figure 5.38	Energy Transmission Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 7 m Water Depth)
Figure 5.39	Energy Dissipation Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 8 m Water Depth)
Figure 5.40	Energy Transmission Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 8m Water Depth)
Figure 5.41	Energy Dissipation Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 9 m Water Depth)

Figure 5.42	Energy Transmission Across the Structure (Hettiarachchi and
	Thilakarathne) (Regular Waves 9 m Water Depth)
Figure 6.1	Prototype Cross Section of the Trapezoidal Breakwater with a 12 m
	Berm
Figure 6.2	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 7 m, Wave Period 6 s)
Figure 6.3	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 7 m, Wave Period 8 s)
Figure 6.4	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 7 m, Wave Period 12 s)
Figure 6.5	Transmission Coefficient vs Wave Steepness (Random Waves, Water
	Depth 7 m)
Figure 6.6	Reflection Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 7 m)
Figure 6.7	Energy Dissipation Across the Structure (Regular Waves, 7 m Water
	Depth)
Figure 6.8	Energy Transmission across the Structure (Regular Wave, 7m Water
	Depth)
Figure 6.9	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 8 m, Wave Period 6 s)
Figure 6.10	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 8 m, Wave Period 8 s)
Figure 6.11	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 8 m, Wave Period 12 s)
Figure 6.12	Transmission Coefficient vs Wave Steepness (Random Waves, Water
	Depth 8 m)
Figure 6.13	Reflection Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 8 m) (Regular Wave, 8 m Water Depth)
Figure 6.14	Energy Dissipation across the Structure
Figure 6.15	Energy Transmission across the Structure (Regular Wave, 8 m Water
	Depth)

Transmission Coefficient vs Wave Steepness (Regular Waves, Water
Depth 9 m, Wave Period 6 s)
Transmission Coefficient vs Wave Steepness (Regular Waves, Water
Depth 9 m, Wave Period 8 s)
Transmission Coefficient vs Wave Steepness (Regular Waves, Water
Depth 9 m, Wave Period 12 s)
Transmission Coefficient vs Wave Steepness (Random waves, Water
Depth 9 m)
Reflection Coefficient vs Wave Steepness (Regular Waves, Water
Depth 9 m)
Energy Dissipation across the Structure (Regular Wave, 9 m Water
Depth)
Energy Transmission across the Structure (Regular Wave, 9 m Water
Depth)
Reflection Coefficient vs Wave Steepness (Random Waves, Water
Depth 9 m)
Energy Dissipation across the Structure (Random Waves, 7 m, 8 m
and 9 m Water Depth)
Energy Transmission across the Structure (Random Waves, 7 m, 8 m
and 9 m Water Depth)
Relative Run-up and Run-down vs Wave Steepness for 7 m Water
Depth
Wave Run-up and Run-down vs Steepness for 8 m Water Depth
Wave Run-up and Run-down vs Wave Steepness for 9 m Water Depth
Prototype Cross Section of the Trapezoidal Reshaping Berm
Breakwater
Transmission Coefficient vs Wave Steepness (Regular Waves, Water
Depth 15 m, Wave Period 6 s)
Transmission Coefficient vs Wave Steepness (Regular Waves, Water
Depth 15 m, Wave Period 8 s)

Figure 6.31	Transmission Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 15 m, Wave Period 12 s)
Figure 6.32	Transmission Coefficient vs Wave Steepness (Random Waves, Water
	Depth 15 m)
Figure 6.33	Reflection Coefficient vs Wave Steepness (Regular Waves, Water
	Depth 15 m)
Figure 6.34	Reflection Coefficient vs Wave Steepness (Random Waves, Water
	Depth 15 m)
Figure 6.35	Energy Dissipation across the Structure (Regular Waves, 15m Water
	Depth)
Figure 6.36	Energy Transmission across the Structure (Regular Waves, 15m Water
	Depth)
Figure 6.37	Energy Dissipation across the Structure (Random Waves, 15 m Water
	Depth)
Figure 6.38	Energy Transmission across the Structure (Random Waves, 15 m Water
	Depth)
Figure 6.40	Prototype Cross Section of the Trapezoidal Layered Breakwater (LHI)
Figure 6.41	Reflection Coefficient vs Wave Steepness measured for the Main
	Breakwater Section (LHI) (Random Waves, 19.2m Water Depth)
Figure 6.42	Reflection Coefficient vs Wave Steepness measured for the Breakwater
	Head (LHI) (Random Waves, 19.2m Water Depth)
Figure 6.43	Reflection Coefficient vs Wave Steepness measured for the Shallow
	Water Breakwater Section (LHI) (Random Waves)
Figure 6.44	Reflection Coefficient vs Wave Steepness measured for the Revised
	Main Breakwater Section with Different Wave Wall Crest Levels (LHI)
	(Random Waves, 19.2 m Water Depth)
Figure 6.45	Prediction Equation for Wave Reflection at Trapezoidal Breakwater
	with Concrete Core-Loc Armour

LIST OF SYMBOLS

The most important symbols used in the text are listed below. Variables which have been used locally are not listed but are defined in the text.

а	Steady laminar flow coefficient in the Forchheimer equation

- *b* Steady turbulent flow coefficient in the Forchheimer equation
- *B* Length of the berm
- *C*_d Coefficient of wave energy dissipation
- *C*_{d1} Coefficient of wave energy dissipation at probe 1
- C_{d2} Coefficient of wave energy dissipation at probe 2
- *C*_{d3} Coefficient of wave energy dissipation at probe 3
- *C*_{de} Coefficient of wave energy dissipation at external probe
- *Cr* Coefficient of wave energy reflection
- *Ct* Coefficient of wave energy transmission
- C_{tl} Coefficient of wave energy transmission at probe 1
- C_{t2} Coefficient of wave energy transmission at probe 2
- C_{t3} Coefficient of wave energy transmission at probe 3
- *C_{te}* Coefficient of wave energy transmission at external probe
- E_k Mean kinetic energy per unit surface area
- E_p Mean potential energy per unit surface area
- E_T Total energy per unit surface area
- *E_i* Incident wave energy
- *E*_d Dissipated wave energy
- *E*_{d1} Dissipated wave energy at probe 1
- E_{d2} Dissipated wave energy at probe 2
- E_{d3} Dissipated wave energy at probe 3
- *E_{de}* Dissipated wave energy at external probe
- *Er* Reflected wave energy
- *Et* Transmitted wave energy
- E_{t1} Transmitted wave energy at probe 1

E_{t2}	Transmitted wave energy at probe 2
E_{t3}	Transmitted wave energy at probe 3
E_{te}	Transmitted wave energy at external probe
f	Non-Darcy friction factor
g	Acceleration due to gravity
h	Constant water depth outside the structure
Н	Wave height
H_i	Incident wave height
H_t	Transmitted wave height
H_r	Reflected wave height
H_s	Significant wave height
H/L	Wave steepness
H/Lo	Wave steepness in deep water
Ι	Hydraulic gradient
Ir	Surf similarity parameter/Iribarren Number
L	Wave length
Lo	Wave length in deep water
Р	Porosity
Q	Overtopping discharge
R	Wave run-up
R/H	Relative run-up
Т	Wave period
Tm	Mean wave period
T_p	Peak wave period
t	Time
и	Horizontal component of the macroscopic (bulk) velocity
u_p	Particle velocity
u_i	Particle velocity of the incident wave
Ur	Particle velocity of the reflected wave
u_t	Particle velocity of the transmitted wave
W_i	Energy flux of the incident wave

- W_d Energy flux of the dissipated wave
- W_t Energy flux of the transmitted wave
- W_r Energy flux of the reflected wave
- α Slope angle
- η Free surface elevation relative to still water level
- η_i Free surface elevation of the incident wave relative to still water level
- η_r Free surface elevation of the reflected wave relative to still water level
- η_t Free surface elevation of the transmitted wave relative to still water level
- τ Square root of tortuosity
- *γ* Unit weight of fluid