

NUCLEAR POWER PLANTS FOR SRI LANKA BY YEAR2020

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

> By B.M.A.T. PRIYADARSHANA

Supervised by: Eng. W.D.A.S. Wijayapala

Department of Electrical Engineering University of Moratuwa Sri Lanka

2010

94556

Abstract

Ever increasing demand for electricity, due to increased consumption, industrial development and electrification, will have to be met by the Sri Lankan electricity industry. Ceylon Electricity Board has a long term generation plan, which mainly focuses on coal power. Despite the massive environmental pollution, it is not wise to depend only on coal power since coal resource is also a limited conventional resource. Therefore a country like Sri Lanka should have a good mixture of energy options for electricity generation rather than adhering to one conventional energy source as coal.

Aim of this study is to investigate the possibility of adopting Nuclear Power option to Sri Lanka. Due to the limited capacity of the current electricity network to absorb an economic scale nuclear power plant, the consideration was made for the year 2020, by which time the electricity network capacity will be large enough. An interesting fact is that some countries smaller in size than Sri Lanka successfully adopted nuclear power plants for their electricity generation. Hence this study could be considered as timely.

The study focuses on following facts;

- 1. Future demand and generation of Sri Lanka up to year 2020
- 2. World status of the Nuclear Power Plants and Technology
- 3. Pre-feasibility study Technology
- 4. Pre-feasibility study Economics
- 5. Pre-feasibility study Site Survey
- 6. Pre-feasibility study Environmental Impact Assessment

The technological pre-feasibility study addresses suitable type and size of a nuclear power plant for Sri Lanka. Thereby the CANDU technology is discussed which is adopted mainly in India and Canada.

In economic pre-feasibility study, the Levelized Unit Electricity Costs were calculated for the nuclear power plant as well as for the coal power option. As per the calculation unit electricity cost for the nuclear option seems to be slightly higher than from the oal option at current market conditions. Also a sensitivity analysis was done considering the changes in fuel cost and it shows that nuclear power unit cost dependency on fuel price is very much less than that of coal option. Under the economics, the possible initial financing methods for a country like Sri Lanka are also discussed.

For the site survey, author proposes 9 locations for initial consideration. Screening to select final sites, should be done by the authority that is responsible for feasibility study. The main criteria for selecting these sites were population density, cooling water availability, and land availability. The selected sites should also have minimum impact on the environment.

Existing local regulations and international obligations as well as required local regulations for setting up a nuclear power plant are also discussed in this document. Especially the adaptation of International Atomic Energy Agency (IAEA) safeguard system is elaborated.

The worst nuclear power plant accident in the world history is analyzed to have a clear picture on the possible maximum damage in case of a major accident, even though the probability of occurrence of such a disaster is extremely low. India, the closest neighbor country of Sri Lanka, is increasing nuclear power share drastically and some nuclear power plants are being built near to Sri Lanka. A complete information regarding the locations of Indian nuclear power plants are also discussed.

For the formidable question, "In case of a nuclear accident, can Sri Lanka bear it?", the most common answer will be "NO!". It is not possible to rule out accidents. On the other hand, as the conventional fuels deplete and their prices escalate, the only long term sustainable and dependable energy source is nuclear. Renewable sources

such as solar, wind, hydro etc are either limited in availability or economically unviable as a standalone supply source. Unless there is an economically competitive supply of energy, any country will not be able to provide its services at an acceptable price and thereby will become economically bankrupt. Thus the recommendation conceived from this project is "Study the subject of nuclear power at national level and be cautiously ready to implement nuclear power projects at an appropriate stage in the future to come"

DECLARATION

The work submitted in this dissertation is the result of my own investigation, unless otherwise stated.

2

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

B.M.A.T. Priyadarshana Date: 30-03-2010

I endorse the declaration by the candidate.

Eng. W.D.A.S. Wijayapala

CONTENTS

Declaration Contents List of Tables List of Figures Acronyms Abstract Acknowledgement		· · · · · · · · · · · · · · · · · · ·	Page No. i ii-v vi vii – viii ix-x xi-xiii xiv
1.	Introduction	2	1
	1.1 Background		1
	1.2 Present Situa	ation of Electricity Generation in Sri Lanka	1
	1.2.1 Present	Generation	1
	1.2.2 Future H	Plans	2
	1.3 Motivation		3
2.	Problem statem	ent	6
	2.1 Identification	of the Problemsity of Moratuwa, Sri Lanka.	6
		f the Studyectronic Theses & Dissertations	6
	2.3 Importance of	of the Study w.lib.mrt.ac.lk	7
3.	Basics of Nuclea	r Power Technologies	8
	3.1 Basics of Nu	clear Power	8
	3.1.1 Nuclear	Fission	8
	3.1.2 Nuclear	Fusion	8
	3.1.3 Chain F	Reaction	9
	3.2 Basic Compo	onents of a Conventional Nuclear Power Plant	9
	3.2.1 Nuclear	·Reactor	9
	3.2.2 Reactor	Coolant System	10
	3.2.3 Steam (Generator	10
	3.2.4 Steam 7	Turbine and Electric Generator	10
	3.2.5 Reactor	Control System and Safety Shutdown System	11
	3.5.6 Contain	ment Building	11
	3.2.7 Spent F	uel Storage	11
4.	Nuclear Power	Plant Pre-feasibility Study: Technology	12
	4.1 System Capa	acity	12

	4.2 Technology	13
	4.2.1 CANDU Power Plant	13
	4.2.2 Suitable Size of the Nuclear Power Plant	17
	4.2.3 Fuel Requirement of CANDU 6 Unit	18
	4.2.4 Cooling Water Requirement of Nuclear Power Station	19
	4.2.5 Waste Disposal	19
	4.2.5.1 Managing HLW from used fuel	21
	4.2.6 Spent Fuel Reprocessing	22
	4.2.7 SSTAR (Small, Sealed, Transportable, Autonomous Reactor)	22
5.	Nuclear Power Plant Pre-feasibility Study: Economy	24
	5.1 Economics of Coal Power	24
	5.2 Economics of Nuclear Power	25
	5.3 Comparison and Sensitivity Analysis of Unit Cost	26
	5.4 Possible International Financing Sources and Contractors	27
	5.4.1 Export Credit	27
	5.4.2 Multilateral Development Institutions	28
	5.4.3 International Markets Theses & Dissertations	28
	5.4.4 Alternative Method – BOO/BOT Approach	28
	5.4.5 Possible Contractors and Equipment Suppliers	29
	5.5 Nuclear Fuel Market and Availability	29
	5.5.1 Uranium Market	29
	5.5.2 Thorium Market	32
	5.5.3 Availability and Sustainability to the Future (Uranium)	32
	5.5.3.1 Uranium Availability	33
	5.5.3.2 Availability at the Current Consumption Rate (Uranium)	34
	5.5.3.3 Thorium Availability	34
	5.5.3.4 Thorium Fuel Availability in Sri Lanka	35
6.	Nuclear Power Plant Pre-feasibility Study: Site Survey	36
	6.1 Regional Analysis and Identification of Potential Sites	36
	6.1.1 Ease of Integration into the Electric System	37
	6.1.2 Geology and Tectonic	38
	6.1.3 Seismology	40
	6.1.4 Heat Removal Capability	41
	6.1.5 Hydrology	41

	6.1.6 Demography	42
	6.1.7 Meteorology	42
	6.1.8 Risks from Man-made Events	44
	6.1.9 Availability of Local Infrastructure	44
	6.1.10 Public Acceptance	45
	6.2 Population Distribution and Zoning Criteria	45
	6.3 Identification of Potential Sites	46
7.	Nuclear Power Plant Pre-feasibility Study: Environmental Impact	48
	7.1 Impact on land use	48
	7.2 Impact on water systems and the fishing industry	49
	7.3 Impact of radioactive and other emissions	49
	7.4 Impact on flora, fauna and protected sites	50
	7.5 Impact on the soil, bedrock and groundwater	51
	7.6 Impact on the landscape and cultural environment	52
	7.7 Noise impacts	52
	7.8 Impact on people and society of Moratuwa, Sri Lanka.	52
	7.9 Impact on waste management and final disposal entations	53
	7.10 Impact of decommissioning the power plant	54
8.	Local Regulations & International Obligation	55
	8.1 Existing Local Regulations and Laws on Nuclear Technologies	55
	8.2 Local Legal Framework Required	56
	8.3 International Obligation	57
	8.3.1 Safeguards	57
	8.4 IAEA Assistance	58
9.	Analysis of Past Nuclear Accidents	59
	9.1 Effect to Human	59
	9.1.1 Deths	59
	9.1.2 Long Term Radiation Effects	61
	9.1.3 Other Effects	61
	9.2 Effected Areas	61
	9.3 Reasons for the Chernobyl Accident	63
10). Analysis of NPP Status of the India	65
	10.1 Government Bodies and Institutions	65

10.2 General Picture of Nuclear Energy (Electricity) Production	66
10.3 India's Nuclear Power Stations Nearest to Sri Lanka	68
10.3.1 Koodankulam Atomic Power Station	68
10.3.2 Madras Atomic Power Station	70
References	71
Appendix I: Nuclear Power Plant Classification	74
Appendix 2: Capital Cost of Unit Energy	80
Appendix 3: Nuclear Fuel	82
Appendix 4: Radiation and Radiation Measurement.	85
Appendix 5: Proposed NPP Sites	91
Appendix 6: International Nuclear Event Scale (INES)/ Record of Past Accidents	100

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of tables

Table number	Description
Table 1.1	Electricity Generation Statistics
Table 1.2	Load Forecast
Table 1.3	Implementation Program
Table 1.4	Pollutants Emission
Table 1.5	Pollutants Emission Estimate: Sri Lanka
Table 1.6	World Nuclear Status: Statistical Data, 2006
Table 4.1	World CANDU Plants as at Year 2003
Table 4.2	700 MWe class CANDU 6 NPP Data
Table 4.3	Cooling Water Requirement
Table 5.1	Sensitivity Analysis
Table 5.2	World Uranium Productionatuwa, Sri Lanka.
Table 5.3	Uranium Availabilityeses & Dissertations
Table 5.4	Uranium Availability: No. of Years
Table 10.1	Nuclear Plants in Operation - India
Table 10.2	Nuclear Plants Under Construction - India
Table 10.3	Planned Nuclear Power Plants - India
Table 10.4	Firmly Proposed Projects - India
Table 10.5	Koodankulam Atomic Power Station
Table 10.6	Madras Atomic Power Station
Table A2.1	Discounted Project Cost & Energy
Table A2.2	Loan Schedule
Table A6.1	General Description of INES Levels

List of Figures

Figure number	Description
Figure 3.1	Components of NPP
Figure 4.1	Average Daily Demand Curve
Figure 4.2	CANDU Fuel Bundle (37 element, 50 cm long & 10 cm diameter)
Figure 4.3	CANDU Fuel cycle options
Figure 4.4	Schematic Diagram of a CANDU reactor
Figure 4.5	Graphical Conception of Underground Disposal of HLW
Figure 5.1	World Uranium Production
Figure 5.2	Uranium Spot Prices – Cameco (Canada)
Figure 5.3	Australian Thermal Coal Prices (Low Sulpher)
Figure 6.1	Sri Lankan Electrical Transmission System
Figure 6.2	Geological Layers of Earth
Figure 6.3	Geology of Sri Lanka loratuwa, Sri Lanka.
Figure 6.4	Indian Platenic Theses & Dissertations
Figure 6.5	Seismic Hazard Map of Sri Lanka
Figure 6.6	Population Distribution of Sri Lanka
Figure 6.7	Proposed Locations for NPP
Figure 7.1	National Parks and Sanctuaries
Figure 9.1	Chernobyl Site after the Disaster
Figure 9.2	Continental Scale of the Chernobyl Accident
Figure 9.3	Continental Scale of the Chernobyl Accident
Figure 10.1	Atomic Power Stations in India
Figure 10.2	Koodankulam Atomic Power Station, India
Figure 10.3	Koodankulam Atomic Power Station, India
Figure 10.4	Madras Atomic Power Station, India
Figure A4.1	Radiation
Figure A5.1	Delft Island
Figure A5.2	Manar Island
Figure A5.3	Near Palavi Nawaladi

Figure number	Description
Figure A5.4	Near Kudramalei Point
Figure A5.5	Near Alampil Mulaitivu
Figure A5.6	Near Periyakarachchi Tank, Trincomalee North
Figure A5.7	Near Valaichchenai
Figure A5.8	Sangaman Kanda Tuduwa
Figure A5.9	Near Yala

٦

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acronyms

ABWR	Advanced Boiling Water Reactor
AEA	Atomic Energy Authority
AGR	Advanced Gas Cooled Reactor
BOO	Build Own and Operate
BOT	Build Own and Transfer
BWR	Boiling Water Reactor
CANDU	CANada Deuterium Uranium
CAESAR	Clean And Environmentally Safe Advanced Reactor
CEB	Ceylon Electricity Board
ECA	Export Credit Agencies
ECCS	Emergency Core Cooling System
EPZ	Emergency Planning Zone
ESBWR	Economic Simplified Boiling Water Reactor
GCR	Gas Cooled Reactor
HLW	High-Level Waste Theses & Dissertations
HWR	Heavy Water Moderated Reactor
HTGCR	High Temperature Gas Cooled Reactor
IAEA	International Atomic Energy Authority
ILW	Intermediate-Level Waste
INES	International Nuclear Event Scale
JVC	Joint Venture Company
LLW	Low Level Waste
LMFBR	Liquid Metal Fast Breeder Reactor
LUEC	Levelized Unit Energy Cost
LWR	Light Water Moderated Reactor
MSR	Molten Salt Reactor
NPP	Nuclear Power Plant
OMR	Organically Moderated Reactor
PHWR	Pressurized Heavy Water Reactor
PWR	Pressurized Water Reactor
RBMK	Reaktor Bolshoy Moshchnosti Kanalniy (High Power Channel
	Reactor)

- SSTAR Small Sealed Transportable Autonomous Reactor
- VLLW Very Low Level Waste
- 4S Super-Safe, Small, and Simple

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

2

ACKNOWLEDGEMENT

First of all, I am very much grateful to Eng. W.D.A.S. Wijayapala, who encouraged and guided me in all the areas in this investigation and on perpetration of final dissertation.

l also thank academic staff members of Department of Electrical Engineering who gave valuable comments and instructions during the progress reviews and valuable advices for perpetration of final dissertation. I sincerely mention all the teachers who gave me lot of knowledge during my first year of the M.Sc. program.

I would like to take this opportunity to extend my sincere thanks to Mr.U.K.W. Silva, Deputy General Manager (PHM-R4), Mr.M.M. Sabry, Chief Engineer (Procurement) and Mr. M. Weeratunga, Electrical Engineer (Substation – D4) of Ceylon Electricity Board who gave their co-operation to conduct my investigation work successfully. Electronic Theses & Dissertations

It is a pleasure to remember the co-operation offered by the colleagues in the post graduate programme, friends and specially my wife who encouraged me to continue the studies from start to end.