

LOAD HARMONIC MITIGATION: A CASE STUDY AT UVA PROVINCIAL COUNCIL BUILDING

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwe in partial fulfillment of the requirements for the Degree of Master of Science

> By RATNAYAKE MUDIYANSALAGE SANATH KAPILA RATNAYAKE

> > Supervised by: 1. Prof. Ranjith Perera 2. Dr. H. M. Wijekoon Banda

> > Department of Electrical Engineering University of Moratuwa Sri Lanka

> > > 2010

94548

Abstract

This thesis presents the application of active filters to mitigate the harmonic problems in an office building. Harmonics in electrical system induce additional heating. This causes premature aging, reduction of efficiency and life of the electrical equipments and components in the system. Harmonic problems can be caused by disturbances originating in the supply system, from customer's premises and from the nearby installations. The problem is due to the non-linear loads showing different current waveforms when supplied by a distorted or perfect sinusoidal voltage. Growing use of non-linear load equipment and technologies in commercial buildings has increased the severity of the problem.

This is common to Uva Provincial Council (UPC) building, as well, where a large number of connected computers, UPS and other peripherals are major sources of harmonics. The site measurements revealed that the non-linear loads generate TDD up to 15 % and the individual harmonic distortion up to 38 % of the fundamental. These values exceed the maximum limits prescribed by the power quality standards, IEE 519-1992.

To mitigate the harmonic effects, various available techniques are reviewed. The active power filter (APF) is selected as a solution, as it has become the popular and advantageous options among the many practices available today. The operation of common APF topologies, namely the shunt, series and hybrid APF s are discussed in detail, and shunt APF is identified as the most simple and advantageous choice for this purpose. This is followed by a review of various strategies of harmonic detection and APF controlling. After comparing the performances of these strategies with the real life applications, suitable techniques for harmonic detection and APF controlling are formulated.

Finally, a computer model of thus developed shunt active filter is simulated using MATLAB / Simulink environment.

Based on the case study, the thesis discusses alternatives and provides some practical solutions to the problem of harmonics in office buildings.

DECLARATION

The work submitted in this Dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is not being concurrently submitted for any other degree.

UOM Verified Signature

R. M. S. K. Ratnayake

We endorse the declaration by the candidate

UOM Verified Signature

Prof. Ranjith Perera

UOM Verified Signature

Dr. H. M. Wijekoon Banda

CONTENTS

De	clarat	ion		i
Ab	stract			v
De	dicati	on		vi
Ac	know	ledgem	ent	vii
Lis	t of F	igures		viii
Lis	t of T	ables	,	x
Ab	brevia	ations		xi
1.	Intro	oductio	n	01
	1.1	Backg	round	01
	1.2	Motiva	ation	03
	1.3	Goals	of the research	05
	1.4	Scope of work		05
2.	Powe	er Syst	em Harmonics & their Impacts	07
	2.1	Introd	uction University of Moratuwa, Sri Lanka.	07
	2.2	What	are harmonics	07
		2.2.1	Harmonic Number	09
		2.2.2	Odd and even Harmonics	09
		2.2.3	Inter Harmonics	09
		2.2.4	Harmonic phase sequence	10
		2.2.5	Triplen harmonics	13
		2.2.6	Crest factor	13
		2.2.7	True power factor and displacement power factor	13
	2.3	Harmo	onic indices	14
		2.3.1	Total harmonic distortion	14
		2.3.2	Total demand distortion	15
	2.4	How ł	narmonic generate in power systems?	15
		2.4.1	Linear and non-linear loads	16
		2.4.2	Harmonic current flow	18
	2.5	Harmo	onic sources	18
		2.5.1	Fluorescent lamp	18

		252		10
		2.5.2	Adjustable speed drives	19
		2.5.3	Switch mode power supplies	19
		2.5.4	Pulse width modulated (PWM) Drive	20
	2.6	Effects	s of harmonics	20
		2.6.1	Motors	21
		2.6.2	Transformers	22
		2.6.3	Power cables	22
		2.6.4	Neutral conductors	23
		2.6.5	Switchgear and relaying	23
		2.6.6	Capacitors	23
		2.6.7	Electronic equipment	24
		2.6.8	Communication equipment	24
		2.6.9	Meters	25
	2.7	Harmo	onic standards	25
		2.7.1	Harmonic limits for consumers	26
		2.7.2	Harmonic limits for utility	27
3	Prov	vincial	University of Moratuwa, Sri Lanka.	28
	31	Introd	Electronic Theses & Dissertations	28
	3.2	Backo	round	28
	3.2	Data logging		29
	5.5	3 3 1	Location for data logging	29
		227	Instruments used	30
	2.4	5.5.2 Maga	memory and data analysis	30
	5.4			30
		3.4.1	C	21
		3.4.2	Supply voltage variation	21
		3.4.3	Load current variation	32
		3.4.4	Current measurement	32
		3.4.5	Voltage harmonic distortion	34
		3.4.6	Current harmonic distortion	35
		3.4.7	Power factor variation	39
	3.5	Identi	fying problem category	40

4.	Har	monic N	Aitigation	41
	4.1	Introduction		41
	4.2	Reducing Harmonic Currents in load		41
	4.3	Structural Alterations		42
	4.4	Filtering Techniques		42
		4.4.1	Passive filtering	43
		4.4.2	Active filtering	44
	4.5	APF C	Configurations	46
		4.5.1	Shunt active power filter	46
		4.5.2	Series active power filter	47
		4.5.3	Hybrid active power filter	48
	4.6	Select	ion of suitable configuration of APF for UPC building	49
		4.6.1	Classification of APF	50
		4.6.2	Classification by power circuit	50
		4.6.3	Classification by method of harmonic detection	50
		4.6.4	Classification by control technique	52
	4.7	Locati	ion for harmonic mitigation Moratuwa, Sri Lanka.	54
5	Sim	Simulation Electronic Theses & Dissertations		
	5.1	Introd	uction www.lib.mrt.ac.lk	55
		5.1.1	Simulation software	55
		5.1.2	MATLAB /Simulink software	56
		5.1.3	Power System Blockset	56
	5.2	Mode	ling the APF	58
		5.2.1	Model of the power source	58
		5.2.2	Model of the nonlinear load	59
		5.2.3	Model of system controller / gating signal generator	60
		5.2.4	Model of the PWM Inverter	61
	5.3	Simu	lation results	62
6	. Co	nclusio	D	65
	6.1	Conc	lusions	65
	6.2	2 Remarks and Discussion		66
F	Refere	ences		67

Appendix

Acknowledgement

Thanks are due first to my supervisors, Professor Ranjith Perera and Dr H. M. Wijekoon, for their great insights and perspectives. Their valuable guidance and instructions were immensely useful for my studies. Directions of them rendered me a remarkable opportunity to share their knowledge and expertise in the area of power quality.

My sincere gratitude is also extended to Dr. J.P. Karunadasa, Head of the Department of Electrical Engineering and to Professor J.R. Lucas for helping in various ways to clarify the things related to my academic and research work in time with their excellent cooperation and guidance.

l would like to express thanks to the public works engineer, Eng. H. M. Dharmaratne attached to Uva provincial council for facilitating my measurements and helping me by providing data.

University of Moratuwa, Sri Lanka.

The second s

And, sincere thanks go to the course coordinators, my lectures and officers in Post Graduate division, Faculty of Engineering, University of Moratuwe, Sri Lanka for their valuable support given in completing my studies and thesis.

l am grateful to my employer, Ceylon Electricity Board for granting study leave and providing financial support for this course of study. And, the special thanks and grateful acknowledgement go to Mr. D. Withanage, Deputy General Manager (Uva Province) of Ceylon Electricity Board for his kind cooperation and support offered me during the studies.

Lastly, very special thanks go to my wife Thushari for her continuous encouragement, support and patience during the period I worked for this study. And none of this would be possible if it weren't love and support of my wife and sons Shaween and Maleen.

List of figures

Figure		
2.1	Representation of a distorted waveform	8
2.2	Phase sequences of (a) Fundamental, (b) Third harmonics,	12
	(c) Fifth harmonics and (d) Seventh harmonics	
2.3	Voltage and current waveforms for linear loads	16
2.4	Current distortion caused by nonlinear resistance.	17
2.5	Voltage and current waveforms for non-linear loads	17
2.6	Harmonic currents flowing through the system impedance result	18
	In harmonic voltages at the load.	
2.7	Current Wave of Switch Mode Power Supply	20
3.1	Single line diagram of Electricity distribution system	29
3.2	Graph of frequency University of Moratuwa, Sri Lanka.	31
3.3	Graph of Three Phase Voltagelic Theses & Dissertations	31
3.4	Graphs of Three Phase Currents	32
3.5	Graph of Percentage THD of Voltage	34
3.6	Individual voltage harmonics	34
3.7	Graph of Percentage THD of Current	35
3.8	Graph of TDD	36
3.9	Line diagram of feeding system of UPC building	37
3.10	Individual current harmonics at a worse case	39
4.1	Series Passive Filter Configuration	43
4.2	Common types of passive filters	44
4.3	Block diagram of general APF	45
4.4	Divisions of Active power Filters	46
4.5	Configuration of Shunt APF	47
4.6	Configuration of Series APF	48
4.7	Component of Shunt Active Filter	49

4.8	Harmonic determination methods	51
4.9	Block diagram of linear control techniques.	
4.10	Gating signal generation by linear controller	53
5.1	MATLAB / Simulink Model	
5.2	MATLAB /Simulink model of the power source	
5.3	Individual Harmonics of Load Current	59
5.4	MATLAB /Simulink model of non-linear Load	59
5.5	Figure 5.5 Frequency spectrum of load current 🖌	60
5.6	MATLAB /Simulink model of Controller/ Gating signal generator	61
5.7	MATLAB /Simulink Model of PWM Inverter	62
5.8	Per- phase Source current, Load current and Harmonic current with Shunt	62
	APF in action	
5.9	Source Current waveform together with the Harmonic Spectrum	
5.10	Harmonic spectrums with and without APF in action	64

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of tables

Table

Page

2.1	Spectrum of harmonics	10
2.1	Harmonic sequencing values.	12
2.2	Current Distortion Limits for General Distribution Systems (120V	27
2.4	through 69000 V) Voltage distortion limits	27
3 1	Current measurements	33
3.7	Crest factors of current waveforms	33
33	Current distortion limits for $20 < I_{SC} / I_L < 50$	38
3.4	Comparisons of individual Current Harmonic distortion with prescribed limits	39
3.5	Comparison between Standard limitations and Measurements Electronic Theses & Dissertations	40
4.1	Summary of the performance of harmonic determination methods	52
5.1	Comparison of source current with and without filtering action	64

Abbreviations

ac	alternating current
APF	Active Power Filter
ASD	Adjustable Speed Drive
CEB	Ceylon Electricity Board
CFL	Compact Fluorescent Lamp
dc	direct current
HPF	High Pass Filter
HV	High Voltage
IEC	International Electro technical Commission
IGBT	Insulated Gate Bipolar Transistor
MV	Medium Voltage
MCB	miniature Circuit breaker of Moratuwa, Sri Lanka.
MCCB	Molded Case Circuit breaker eses & Dissertations
РС	Personal Computer
РСС	Point of Common Coupling
PQ	Power Quality
PWM	Pulse Width Modulation
RMS	Root Mean Square
SMPS	Switch Mode Power Supply
TDD	Total Demand Distortion
THD	Total Harmonic Distortion
UPC	Uva Provincial Council
UPS	Uninterruptible Power Supply
VSI	Voltage Source Inverter