Productivity Measuring System
for Sri Lankan Plant of Noratel Group

D.K. Karunarathne

Registration No : MSIT/04/039

Index No : 05/10030

Dissertation submitted to the Faculty of Information Technology,
University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements
of the Degree of MSc in Information Technology.

Supervisor Dr. Janaka Wijayanayake

Faculty of Information Technology
University of Moratuwa
Sri Lanka

September 2008
Declaration

I declare that this dissertation does not incorporate, without acknowledgement, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

D.K.Karunarathne

………………………….

Name of Student

Signature of Student

Date :

Supervised by : Dr. Janaka Wijayanayake

………………………….

Signature of Supervisor

Date :
Dedication

To my loving parents,
 whose lifelong ambition is to educate their children
to reach the pinnacle of education ….
Acknowledgement

It is my greatest pleasure to pay my sincere gratitude towards all those who supported me in numerous ways to complete this project successfully.

First of all I would like to express my gratitude to my supervisor Dr. Janaka Wijayanayake, the senior lecturer of the Department of Industrial Management, University of Kelaniya for his dedicated support and guidance given to make my project successful.

Then I should thank all the staff members of the Faculty of Information Technology of the University of Moratuwa who gave us complete knowledge on the subject for their guidance and comments given towards the project and for providing all the necessary facilities and support.

My appreciation should go to Dr. Shantha Jayalal – the senior lecturer, Department of Industrial Management, University of Kelaniya, for encouraging and motivating me to complete the project according to the deadlines.

Further, I would like to extend my sincere thanks and kind appreciation to all staff members and my colleagues who support me in various ways throughout the project to make it a success.

Finally, I would like to extend my special thanks to Mr. E.M.H.J. Edirisinghe – Director of the Computer Unit of the Wayamba University for English proofreading.
Abstract

Productivity is one of the major concerns in businesses that has to be measured and monitored, in order to meet manufacturing challenges and achieve a high standard of quality with superior results.

Noratel - Sri Lanka, under the Scandinavian based Noratel Holdings is an ISO certified company, which manufactures Toroidal transformers and chokes for a wide range of applications. Company is now facing fierce competition in the market and is becoming less competitive day by day. There are many factors around this result/outcome and organizational labour productivity is one of the key components. Non-availability of an effective labour productivity measuring system has been one of the key issues of the organization.

Labour component of the cost of production has been identified as the most sensitive portion to be evaluated in order to decrease the cost of production and to face the fierce competition successfully. Hence productivity based monthly incentive scheme was introduced. Shift wise daily production outputs including the timing for each and every operations of the production process were recorded and the recorded heavy data volume was input to the software application which was developed for measuring and monitoring the productivity.

Structured System Analysis and Design Methodology was used with the Rapid Application Development process model for developing the application. All the features that were required for entering data easily, fastly and accurately were implemented in the system. Further, data validation rules were implemented in all the areas where applicable in order to ensure the accuracy of the entered data and the system outputs. All the expected outputs were generated successfully through the software application and users were very much happy about the user friendliness of the system. Providing online information in multi-user environment was one of another important achievement.

Employees were rewarded based on their productivity and based on the predefined productivity benchmark values. After implementing the system, it was monitored that the productivity of production lines were gradually improving and monthly sales turnover also was gradually increasing while decreasing the cost of production. Graphically analyzing tool was a very much useful tool for monitoring trends of changes of productivity and making decisions.
Table of Contents

Title ... i
Declaration ii
Dedication iii
Acknowledgement iv
Abstract v
Table of Contents vi
List of Figures xi
List of Tables xii
Appendix .. xiii
Abbreviations xiv

Chapter 1 - Introduction

1. Introduction 1
 1.1 Introduction 1
 1.2 Organization 1
 1.3 Problem Domain and Motivation 2
 1.4 Aim and objectives of the proposed system 3
 1.5 Solution 3
 1.6 Scope of the project 6
 1.7 Structure of the dissertation 6
 1.8 System Requirements and Technology 7
 1.9 Summary 8

Chapter 2 – Problem Domain

2. Problem Domain 9
 2.1 Introduction 9
 2.2 More about the existing System 9
 2.3 Weaknesses of the Existing System .. 10
 2.4 Why proposed application is needed 10
 2.5 Summary 11

Chapter 3 – Technology Adapted

3. Technology Adapted 12
 3.1 Introduction 12
Chapter 4 - Approach

4. Approach 34
 4.1 Introduction 34
4.2 Selected Software Process Model and Justification 34
4.3 Selected Analysis and Design Methodology 36
4.4 Selected Application Development Environment 37
 4.4.1 Selected Database Technology 37
 4.4.2 Selected Programming Method 39
 4.4.3 Selected Programming Language 39
 4.4.4 Selected Reporting Tool 40
4.5 Selected Operating System 40
4.6 Summary 41

Chapter 5 – System Analysis and Design

5. System Analysis and Design 42
 5.1 Introduction 42
 5.2 System Investigation 43
 5.2.1 Requirement Gathering 43
 5.2.2 Functional and Non Functional Requirement 43
 5.2.2.1 Functional Requirement 43
 5.2.2.2 Non Functional Requirement 45
 5.2.3 Software Requirement Specification of the Proposed System 45
 5.3 Business Activity Model of the Existing System 46
 5.4 Data Flow Diagrams 48
 5.4.1 Context Diagram of the Existing System 48
 5.4.2 Level 1 DFD of the Existing System 49
 5.5 Business System Options (BSOs) 51
 5.6 Feasibility Study 55
 5.6.1 Technical Feasibility. 55
 5.6.2 Operational Feasibility. 56
 5.6.3 Economic Feasibility 56
 5.7 Selected BSO and Justification 56
 5.8 DFDs of the Proposed System 57
 5.8.1 Context Diagrams of the Proposed System 57
 5.8.2 Level 1 Data Flow Diagrams of the Proposed System 58
 5.9 Architectural Design of the System 60
 5.10 Database Design 61
 5.10.1 Logical Data Structure 61
 5.10.2. Relation Ship Diagram 63
 5.11 Graphical User Interface (GUI) Design 64
 5.12 Summary 65
Chapter 6 - Testing and Implementation
6. Testing and Implementation 66
 6.1 Introduction 66
 6.2 Testing 66
 6.2.1 Testing Methods and Comparison 67
 6.2.1.1 Black Box Testing 67
 6.2.1.2 White Box Testing 67
 6.2.1.3 Comparison - Black Box Vs White Box Testing 67
 6.2.1.4 Performance Testing 68
 6.2.1.5 Boundary Testing 68
 6.2.2 Testing Strategy and Test Plan 69
 6.2.3 Test Cases 70
 6.2.4 Test Report 73
 6.3 Implementation 74
 6.3.1 Implementation Strategy 74
 6.3.2 User Training 77
 6.3.3 User guide 77
 6.3.4 Program Deployment 77
 6.3.5 Problems Faced 77
 6.4 Sample User Interfaces 78
 6.5 Summary 81

Chapter 7 - Evaluation
7. Evaluation 82
 7.1 Introduction 82
 7.2 Evaluation 82
 7.2.1 Usability Evaluation 82
 7.3. Understandability 83
 7.4. Learnability 83
 7.5 Installability 84
 7.6 Testing for Functional and Non Functional Requirements 84
 7.7 Summary 85
Chapter 8 - Conclusion and Further work

8. Conclusion and Further work 86
 8.1 Introduction 86
 8.2 Conclusion 86
 8.3 Limitations and Further Work 87
 8.3.1 Limitations 87
 8.3.2 Further work 88

References 89
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 - Company Structure</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3.1 – Phases of Waterfall Model</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3.2 - Evolutionary Development Process</td>
<td>16</td>
</tr>
<tr>
<td>Figure 3.3 – Component-Oriented Development Process</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.4 – Iteration Process</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.5 – Spiral Development Model</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.6 – Stages in building a Software System</td>
<td>24</td>
</tr>
<tr>
<td>Figure 5.1 – Business Activity Model of the Existing System</td>
<td>47</td>
</tr>
<tr>
<td>Figure 5.2 - Context Diagram of the Existing System</td>
<td>49</td>
</tr>
<tr>
<td>Figure 5.3 - Level 1 DFD of the Existing System</td>
<td>50</td>
</tr>
<tr>
<td>Figure 5.4 – Visual Representation of BSO I</td>
<td>51</td>
</tr>
<tr>
<td>Figure 5.5 – Visual Representation of BSO II</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5.6 - Context Diagram of the Proposed System</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.7 - Level 1 DFD of the Proposed System</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.8 - Architectural Design of the Proposed System</td>
<td>60</td>
</tr>
<tr>
<td>Figure 5.9 – System Development Life Cycle</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.10 - Logical Data Structure</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.11 - Relation Ship Diagram</td>
<td>63</td>
</tr>
<tr>
<td>Figure 6.1 – Phase Implementation Process</td>
<td>74</td>
</tr>
<tr>
<td>Figure 6.2 – User Interface of Main Menu Screen</td>
<td>78</td>
</tr>
<tr>
<td>Figure 6.3 - User Interface of Transformer Timing Data Entering</td>
<td>79</td>
</tr>
<tr>
<td>Figure 6.4 - User Interface of Timing Sheet Report</td>
<td>49</td>
</tr>
<tr>
<td>Figure 6.5 - User Interface of Productivity Bonus Report</td>
<td>80</td>
</tr>
<tr>
<td>Figure 6.6 - User Interface of Management Dash Board</td>
<td>80</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1 – System Nature Vs Best software Process</td>
<td>34</td>
</tr>
<tr>
<td>Table 6.1 – Black Box Vs White Box Testing</td>
<td>68</td>
</tr>
<tr>
<td>Table 6.2 - Test Case for Test ID 1</td>
<td>70</td>
</tr>
<tr>
<td>Table 6.3 - Test Case for Test ID 2</td>
<td>71</td>
</tr>
<tr>
<td>Table 6.4 - Test Report</td>
<td>73</td>
</tr>
<tr>
<td>Table 6.5 – Comparison of Software Implementation Methods</td>
<td>75</td>
</tr>
</tbody>
</table>
Appendixes

Appendix A …… …..Benchmark Productivity Percentages
Appendix B ……… Key Result Areas of the Employee Performance Evaluation of previous system
Appendix C ………. Performance Evaluation Slip
Appendix D ……… Level 2 DFD of Existing System
Appendix E ………. Comparison Report of BSO I and BSO II
Appendix F ……… Level 2 DFD of Proposed System
Appendix G ………..User Interfaces of Proposed System
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOM</td>
<td>Bill of Materials</td>
</tr>
<tr>
<td>BSO</td>
<td>Business Solution Options</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>Dept</td>
<td>Department</td>
</tr>
<tr>
<td>DFD</td>
<td>Data Flow Diagrams</td>
</tr>
<tr>
<td>DLL</td>
<td>Dynamic Link Library</td>
</tr>
<tr>
<td>E & CR</td>
<td>Engineering & Customer Relation</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>HR</td>
<td>Human Resources</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LDS</td>
<td>Logical Data Structure</td>
</tr>
<tr>
<td>MC</td>
<td>Machine</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>PO</td>
<td>Purchase Order</td>
</tr>
<tr>
<td>PPD</td>
<td>Production Process Development</td>
</tr>
<tr>
<td>Prod</td>
<td>Production</td>
</tr>
<tr>
<td>RAD</td>
<td>Rapid Application Development</td>
</tr>
<tr>
<td>SDLC</td>
<td>System Development Life Cycle</td>
</tr>
<tr>
<td>SSADM</td>
<td>Structured System Analysis and Designing Methodologies</td>
</tr>
</tbody>
</table>