THE UNIVERSITY OF MORATUWA

USE OF ELECTRICITY CONSUMPTION FOR TRAFFIC MODELING OF A SUBURBAN AREA

BY
TISSA U. LIYANAGE

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SUPERVISED BY
PROFESSOR AMAL S. KUMARAGE

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF MORATUWA
SRI LANKA

DECEMBER, 2008

© TISSA U. LIYANAGE
The undersigned certify that they have read, and recommended to the faculty of Engineering of University of Moratuwa, Sri Lanka for acceptance, a thesis entitled, “Use of Electricity Consumption for Traffic Modeling of a Suburban Area” submitted by Tissa U. Liyanage in partial fulfillment of the degree of Doctor of Philosophy.

Chairman
Dr. I.M.S. Sathyaprasad
Senior Lecturer,
Department of Civil Engineering
University of Peradeniya

Professor Amal S. Kumarage
Head,
Department of Transport and Logistics Management
University of Moratuwa

Professor J.M.S.J. Bandara
Head,
Transportation Engineering Division
Department of Civil Engineering
University of Moratuwa

Dr. T. Sivakumar
Senior Lecturer
Department of Transport and Logistics Management
University of Moratuwa

Date: _____________________
Abstract

The history of urban travel demand studies spreads over a period of more than fifty years. Most of them are recorded from developed countries, with just a handful from developing countries. The scarcity of reliable and up-to-date socio-economic data to the required formats, and fewer possibilities of acquiring electronic data bases are the most apparent reasons for this situation. Often, data bases from more than one type of non-related data sources are required to run a complete travel demand forecasting model. This has restrained the calibration and forecasting of travel demand models in developing countries.

In particular, little attention has been given to forecasting travel in small and medium communities except for a few instances from developed countries. The primary reason for this is that, forecasting travel for small communities is not considered important, when statewide or national level travel forecasting models have not been developed, and specially due to the limited financial and technical capacities in the respective agencies. National level travel surveys are however not adequately sensitive to small and medium urban centres as they do not represent local travel behaviour adequately. But the need for travel demand forecasting in small communities is great with respect to infrastructure development planning. Many researches have shown that there is a strong relationship between trip generation and the combined income of a household. But it is very difficult to collect the income data in developing countries, and no proper and reliable data sources are available. In this context, more readily available electricity consumption data, for both households and for non-households can be used as a cost effective approach for ascertaining travel demand, given that such data can be easily measured either in terms of disaggregate household or aggregate area level, at a much lesser cost.

There are a number of advantages to use electricity consumption as an explanatory variable for travel forecasting. The electronically available disaggregated data sets can be easily used in many forms at the data preparation stage. This helps to use the data in aggregate or disaggregate forecasting according to the user requirements. The monthly updated data can be aggregated into any form of small zones by sorting them with addresses. The spatial location of the user can be geo-referenced and located with these addresses. Therefore, the use of GIS for travel modeling is possible. Since the electricity
is accessible to many users in urban areas, variations of the land use changes can be assessed in time with updated data.

Generalized functional forms for trip generation, mode selection, and trip distribution in suburban areas using electricity consumption as the main explanatory variable are suggested herein. The trip generation forecasting is explained by electricity consumption at household level with the hypothesis that household electricity consumption behaving as a surrogate variable for the combined income of that household. This model fit has been strengthened by introducing some of the socio-economic variables as well. Mode split models have also been calibrated using household electricity consumption, and functional forms for each mode and are presented separately. Both the trip generation and the mode selection by non-electricity users have been incorporated with category analysis techniques. The concept of traffic attraction to a destination zone based on its economic strength has been used here relating to the non-household electricity consumption level as a surrogate variable for the economic strength of that zone. The assignment of traffic in local road network is suggested with available commercial software popular for small areas to have a complete series of traffic forecasting models.

The up-to-date electricity consumption data in electronic format could be obtained from the Lanka Electricity Company Ltd (LECO) or Ceylon Electricity Board (CEB) free of charge or at a nominal fee. Therefore, this approach will give a very economical use of a model that has been calibrated in a state-of-the art method to suit the local traffic environment. The simple and cost effective approach will be especially helpful for the local authorities for infrastructure development and planning.
Acknowledgements

I wish to express my sincere gratitude to my supervisor Professor Amal S. Kumarage, for his keen perception and insight to transportation, his consistent guidance and commitment right through the research work, providing me all financial assistance to make this research successful. The valuable suggestions made by Drs. Tudor Gunawardane and I.M.S. Sathyaprasad are sincerely acknowledged.

I also thank Professor Saman Bandara for helping me in many ways to make this research successful. The completion of the data collection surveys was made possible due to the enthusiasm and support given by many individuals from across the transportation and other industries in Sri Lanka, The students of the University of Moratuwa and friends who did an excellent job in collecting a large amount of data, and the community in Maharagama and Moratuwa DSD areas who readily co-operated with to the interviews.

My special thanks also to Mr. W.A.L.W.A. Perera, and Mr. H.N. Gunasekara of Lanka Electricity Company Limited, and Mr. Laksiri Mendis of the Ceylon Electricity Board and many other staff members from branch offices of both organizations for providing me the required data on electricity consumption.

I also acknowledge all the academic and nonacademic staff of the Department of Civil Engineering for the kind assistance they rendered to me, especially to Ms Pradeepa Jayaratne for her encouragement and assistance to initiate this research. Assistance given by Mr. F.A Mohidin for developing the computer model is sincerely acknowledged.

The financial support from the University Senate Research Grant, for data collection surveys is gratefully acknowledged.

A special thanks to my wife, Nalini for her patience, discipline, encouragement, caring and the assistance to accommodate all the trying time spent for the completion of this research.

Tissa U. Liyanage
December, 2008
To

my wife, Nalini
daughter, Helli
and
our Parents.
Table of Contents

Abstract ... iii
Acknowledgements .. v
List of Tables ... xi
List of Figures .. xii
List of Abbreviations ... xiv

CHAPTER 01: INTRODUCTION .. 1
1.1. General .. 1
1.2. Objective and Scope ... 3
 1.2.1. Passenger Transport Modelling .. 3
 1.2.2. Urban Transport Modelling and Present Challenges 4
 1.2.3. Use of Electricity Consumption ... 6
1.3. Methodology ... 7
1.4. Classification of Suburban Area ... 7
 1.4.1. Suburban Land Use in Sri Lanka ... 9
 1.4.1.1. Geographic .. 9
 1.4.1.2. Demographic ... 10
1.5. Sub Urban Economy and Activities .. 11
1.6. Colombo Metropolitan Region: A Case Study ... 13
 1.6.1. Maharagama Divisional Secretariat Division .. 14
 1.6.2. Moratuwa Divisional Secretariat Division ... 15
1.7. Data Collection ... 16
1.8. Analysis ... 17
1.9. Outline of Thesis ... 19

CHAPTER 02: LITERATURE REVIEW .. 20
2.1. Introduction ... 20
2.2. Electricity Consumption and Users in Sri Lanka .. 22
2.3. Limitations of Urban Transportation Demand Analysis 24
2.4. Some Basic Concepts of Urban Transport Demand Analysis 25
2.5. Model Development in General .. 27
2.6. Approaches to Urban Travel Demand Modelling ... 29
 2.6.1. Direct Approach ... 29
 2.6.2. Sequential Approach .. 32
2.7. Non Motorized Travel in Regional Travel Modelling .. 33
 2.7.1 Assumptions Related to Non-Motorized Models 34
2.8. Model Development with Sequential Approach ... 35
2.8.1. Trip Generation Modelling ... 36
2.8.2. Trip Attraction Model .. 44
2.8.3. Mode Choice Models .. 44
2.8.4. Trip Distribution Models ... 49
2.8.5. Trip Assignment Models ... 56
2.9. Time Series Models ... 61
2.10. Transferability of Travel Demand Models ... 62
2.11. Statistical Methods in Model Calibration ... 62
2.13. Summary of Literature Review .. 66

CHAPTER 03: DATA COLLECTION AND PROCESSING 68
3.1. General .. 68
3.1.1. Types of Data .. 68
3.1.2. Data Collection and Management .. 69
3.1.3. Technical Approach for Data Collection ... 69
3.2. Household Survey ... 71
3.2.1. Data Collection Method ... 72
3.2.2. Accuracy and the Selection of Sample Size 72
3.2.3. Economic Factors .. 75
3.2.4. Activity Data of the Population ... 76
3.2.5. Travel Data .. 76
3.3. Collection of Secondary Data ... 77
3.3.1. Census Data ... 77
3.3.2. Electricity Consumption Data .. 77
3.3.2.1. Household and Non-Household Electricity Consumption 79
3.3.2.1.1. Distribution of Household Electricity Consumption 79
3.3.2.1.2. Distribution of Non-Household Electricity Consumption 82
3.4. Limitation of Data Handling ... 84
3.5. Summary ... 85

CHAPTER 04: BACKGROUND DATA AND PRELIMINARY ANALYSIS 86
4.1. Introduction .. 86
4.2. Suburban Transport System ... 86
4.2.1. Bus Passenger Transport ... 87
4.2.2. Private Motorized Transport ... 88
4.2.3. Non Motorized Transport ... 88
4.2.4. Rail Transport .. 89
4.3. Approach for Trip Generation ... 90
4.3.1. Factors Affecting Suburban Trip Generation .. 91
4.4. Approach to Trip Distribution Modeling ... 94
 4.4.1. Non-Household Electricity Consumers .. 95
 4.4.1.1. Bulk Consumers ... 96
 4.4.1.2. Retail Consumers ... 96
4.5. Approach to Mode Split Models .. 97
4.6. Preliminary Analysis of Travel Data from Household Surveys 99
 4.6.1. Effect of Population Activities .. 103
 4.6.2. Effect of Distance to City Centre ... 104
4.7. Summary ... 105

CHAPTER 05: CALIBRATION AND VALIDATION OF TRAVEL
FORECASTING MODELS FOR SUBURBAN AREAS .. 107
5.1. Introduction ... 107
5.2. Calibration of Trip Generation Model ... 107
 5.2.1. Some Basic Models .. 107
 5.2.2. Approach for Selection of the Best Model .. 110
 5.2.3. Final Trip Generation Model .. 112
 5.2.4. Validation of Trip Generation Model .. 115
 5.2.5. Summary & Conclusion .. 116
5.3. Calibration of Trip Distribution Model ... 117
 5.3.1. Selection of TAZs for OD Matrix ... 119
 5.3.2. Distribution of Trips .. 119
 5.3.3. Calibration process .. 121
 5.3.4. Statistical Examination of Residuals .. 123
 5.3.5. Validation of Trip Distribution Model ... 125
 5.3.6. Summary and Conclusion .. 126
5.4. Calibration of Mode Split Models .. 126
 5.4.1. Private motorized mode split models ... 128
 5.4.2. Public transport mode split models .. 131
 5.4.3. Non-motorized mode split models .. 134
 5.4.4. Validation of Mode Split Models ... 138
 5.4.5. Summary and Conclusion .. 143
5.5. Traffic Assignment to the Local Road Network ... 144
 5.5.1. Introduction ... 144
 5.5.2. Trip Assignment Model Approaches .. 145
 5.5.2.1. Statewide Traffic Assignment Models ... 145
 5.5.2.2. Small Area Traffic Assignment Models .. 146
5.6. Time Series Analysis of Electricity Data ... 146
5.7. Limitation of the Model Usage ... 152
5.8. General Summary ... 152

CHAPTER 06: DEVELOPMENT OF THE COMPUTER PROGRAMME AND
THE MODEL APPLICATION ... 153
6.1. Development of the Computer Software ... 153
 6.1.1. Data Inputs Forms ... 153
 6.1.2. Results Output ... 155
6.2. The Computer Programme ... 156
6.3. Trip Generation and Mode Split Estimates Using STEP 157
6.4. Trip Distribution Estimates Using STEP .. 158
6.5. Summary ... 160

CHAPTER 07: CONCLUSION AND RECOMMENDATIONS 161
7.1. General ... 161
7.2. Research Conclusion ... 162
7.3. Recommendation and Future Research ... 164

REFERENCES .. 166

ANNEXURES ... 172
Annex I: Statistic Test for Parent and Sample Populations of Domestic Electricity
Consumption .. 173
Annex II: Observed O-D Trips in Maharagama DSD ... 174
Annex III: Estimated Trips against Observed Trips by Different Modes 175
Annex IV: Difference between Observed Total Trips and Estimated Sum of Trips by
Mode Split Models ... 176
Annex V: Input Data Set for Travel Estimates at Moratuwa DSD 177

APPENDICES ... 178
Appendix I: Data Collection Survey Form for Households Surveys 179
Appendix II: Development of STEP Program .. 180
List of Tables

Table 1.1: Variation of Urban Factor by DSD in Colombo District 10
Table 1.2: Household Electricity Consumers at DSD Level in Colombo District 12
Table 2.1: Cross-Classification Trip Rate Table by (OMPO, 1982) 38
Table 2.2: Average Daily Person-Trips by Household for Madison, (1962) 39
Table 2.3: Classification of household based on physical and utility type 42
Table 2.4: Household grouping based on their economic strength and ECU level 42
Table 2.5: Electricity consumption and trip generation rates. 43
Table 2.6: Electricity consumption of household and average vehicle ownership 48
Table 2.7: Relationship between household electricity consumption and trip length 56
Table 3.1: Total households by Physical and Utility Type and Sample Distribution 75
Table 3.2: Population with Different Activities from Study Areas 76
Table 3.3: Descriptive Statistics of Domestic Electricity Consumption and Distribution 82
Table 3.4: Descriptive Statistics of Non-Household Electricity Consumption and Distribution ... 84
Table 4.1: Comparison of Modal Share by Trip Length of Passenger Transportation 87
Table 4.2: Daily Observed Trip Generation Frequencies ... 99
Table 4.3: Observed Daily Trip Generation Frequencies by Mode 100
Table 4.4: Vehicle Ownership Rates in Suburban Area ... 101
Table 4.5: Effect of Vehicle Ownership on Trip Generation & Electricity Consumption 102
Table 4.6: Activity Based Trip Generation in Suburban Areas 104
Table 5.1: Initial Statistic Significant Test for all Variables 109
Table 5.2: Development of the Best Model from Basic Models 110
Table 5.3: Statistical output from SPSS for Model M4 ... 115
Table 5.4: Percentage (%) of Trips Based on Trip Purpose 119
Table 5.5: Observed and Estimated Total Trip Ends at Different Regions from Both Surveys .. 126
Table 5.6: Parameters for Mode Split Models ... 136
Table 5.7: Statistics of model fit if calibrated using electricity consumption alone 138
Table 5.8: Mode Based Trip Rates by Non Electricity Users 144
Table 6.1: Trip Generation and Mode Split Results for Moratuwa DSD 157
Table 6.2: Trip Distribution Estimates for Moratuwa DSD Area 159
Table 6.3: Trip Ends to Major Zones .. 160
List of Figures

Figure 1.1: Population Density by Divisional Secretariat Divisions in Colombo District. 11
Figure 1.2: Distribution of DSD in CMR ... 14
Figure 1.3: Two Study Areas in Colombo Suburbs .. 16
Figure 1.4: Flow Diagram of the Research Activities .. 18
Figure 2.1: ECU Vs Income for the US in 1997 ... 24
Figure 2.2: The Basic Hypothesis of Urban Travel Demand 27
Figure 2.3: Model Development as an Iterative Process 28
Figure 2.4: Trip Generation Vs Age by Gender ... 44
Figure 2.5: Car Ownership and Trip Rates against Household Electricity Consumption Units ... 49
Figure 2.6: Regression fit of observed OD trips Vs Estimated OD trips 55
Figure 3.1: LECO Served Area in the CMR .. 78
Figure 3.2: Domestic Electricity Consumption Frequency Distribution of Parent and Sample Populations in the Maharagema Study Area .. 80
Figure 3.3: Domestic Electricity Consumption Frequency Distribution of Parent and Sample Populations in the Moratuwa Study Area .. 81
Figure 3.4: Non-household Electricity Consumption Frequency Distribution of Retail and Bulk Consumers in Western Province .. 83
Figure 4.1: Average Household Electricity Consumption Vs Trip Rates by Major Mode Types ... 98
Figure 5.1: Behaviour of independent variables in the model 114
Figure 5.2: Validation with Observed Trips Vs Estimated Trips using Model M4 at Moratuwa DSD ... 116
Figure 5.3: Observed Trip Distribution by Length in the Study Area 120
Figure 5.4: Linear Regression Fit between Observed Trips and Estimated Trips of O-D Pairs .. 122
Figure 5.5: Observed Trips and Residuals ... 124
Figure 5.6: Regression Standard Residuals of Observed Trips 124
Figure 5.7: Observed O-D Pairs Against Estimated OD Pairs 125
Figure 5.8: Model Behaviour of Mode Selection with Average Household Electricity Consumption ... 137
Figure 5.9: Observed Against Estimated Car Trips ... 138
Figure 5.10: Observed Against Estimated Van Trips .. 139
Figure 5.11: Observed Against Estimated Motor Bicycle trips 139
Figure 5.12: Observed Against Estimated Bus trips ... 140
Figure 5.13: Observed Against Estimated Train Trips .. 141
Figure 5.14: Observed Against Estimated Three Wheeler Trips 141
Figure 5.15: Observed Against Estimated Bicycle Trips ... 142
Figure 5.16: Observed Against Estimated Walk Trips .. 143
Figure 5.17: Average Monthly Household Electricity Consumption Since 1970........... 147
Figure 5.18: Average Monthly Household Electricity Consumption Against Total Consumption .. 147
Figure 5.19: Total Annual Household Electricity Consumption against GDP 148
Figure 5.20: Average Household Electricity Consumption Against GDP 148
Figure 5.21: Per Capita Electricity Consumption (All Types) Against GDP 149
Figure 5.22: Per Capita Electricity Consumption (All Types) Against GDP 149
Figure 5.23: Distribution of Household Electricity Consumption in Different Areas 150
Figure 5.24: Distribution of Household Electricity Consumption with Distance from Colombo .. 151
Figure 6.1: Suburban Travel Estimation Programme (STEP) Software 153
Figure 6.2: Data Inputs from Origin Zones ... 154
Figure 6.3: Data inputs from Destination Zones ... 155
Figure 6.4: Trip Generation Results Output ... 155
Figure 6.5: Mode Split Results Output ... 156
Figure 6.6: Trip Distribution Matrix Results Output .. 156
List of Abbreviations

ADT – Average Daily Traffic
ATM – Automated Teller Machines
CBC - Cluster Bus Company
CBD - Central Business District
CD – Compact Disc
CEB - Ceylon Electricity Board
CMC – Colombo Municipal Council
CMR - Colombo Metropolitan Region
CoV - Coefficient of Variation
CTB – Ceylon Transport Board
DCS - Department of Census and Statistics
DOT – Department of Transportation
DSD – Divisional Secretariat Divisions
ECU – Electricity Consumption Unit
FHWA – Federal Highway Authority
GDP – Gross Domestic Product
GIS – Geographic Information System
GND – Gramaseva Niladhari Division
GWhrs – Giga Watt Hours
HC - Hourly Capacity
ITE - Institute of Transportation Engineers
kWh – Kilo Watt Hour
LECO - Lanka Electricity Company (Private) Limited
LSE - Least Square Estimation
MC – Municipal Council
MWhrs – Mega Watt Hours
NCHRP – National Highway Cooperative Research Program
NhEcu – Non- Household Electricity Consumption
NTC - National Transport Commission
OD – Origin and Destination
PEF - Pedestrian Environment Factor
POA - Private Omnibus Association
PS – Pradeshiya Sabha
RDA – Road Development Authority
RMV – Registrar of Motor Vehicles
RTB - Regional Transport Board
SLCTB - Sri Lanka Cluster Bus Company
SLR – Sri Lanka Railway
SMITE - Spreadsheet Model for Induced Travel Estimation
STEP - Suburban Travel Estimation Program
TAZ - Traffic Analysis Zone
TC – Town Council
U.S. – United States
UC – Urban Council
UDA – Urban Development Authority
UK – United Kingdom