THE UNIVERSITY OF MORATUWA

USE OF ELECTRICITY CONSUMPTION FOR TRAFFIC MODELING OF A SUBURBAN AREA

BY TISSA U. LIYANAGE

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CIVIL NGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SUPERVISED BY PROFESSOR AMAL S. KUMARAGE

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DECEMBER, 2008

© TISSA U. LIYANAGE

THE UNIVERSITY OF MORATUWA FACULTY OF ENGINEERING

The undersigned certify that they have read, and recommended to the faculty of Engineering of University of Moratuwa, Sri Lanka for acceptance, a thesis entitled, "Use of Electricity Consumption for Traffic Modeling of a Suburban Area" submitted by Tissa U. Liyanage in partial fulfillment of the degree of Doctor of Philosophy.

> Chairman Dr. I.M.S. Sathyaprasad Senior Lecturer, Department of Civil Engineering University of Peradeniya

University of Moratuwa, Sri Lanka.

Electro Professor Amal S. Kumarage on S Head, Department of Transport and Logistics Management University of Moratuwa

> Professor J.M.S.J. Bandara Head, Transportation Engineering Division Department of Civil Engineering University of Moratuwa

Dr. T. Sivakumar Senior Lecturer Department of Transport and Logistics Management University of Moratuwa

Date: ____

Abstract

The history of urban travel demand studies spreads over a period of more than fifty years. Most of them are recorded from developed countries, with just a handful from developing countries. The scarcity of reliable and up-to-date socio-economic data to the required formats, and fewer possibilities of acquiring electronic data bases are the most apparent reasons for this situation. Often, data bases from more than one type of non-related data sources are required to run a complete travel demand forecasting model. This has restrained the calibration and forecasting of travel demand models in developing countries.

In particular, little attention has been given to forecasting travel in small and medium communities except for a few instances from developed countries. The primary reason for this is that, forecasting travel for small communities is not considered important, when statewide or national level travel forecasting models have not been developed, and specially due to the limited financial and technical capacities in the respective agencies. National level travel surveys are however not adequately sensitive to small and medium urban centres as they do not represent local travel behaviour adequately. But the need for travel demand forecasting in small communities is great with respect to infrastructure development planning. Many researches have shown that there is a strong relationship between trip generation and the combined income of a household. But it is very difficult to collect the income data in developing countries, and no proper and reliable data sources are available. In this context, more readily available electricity consumption data, for both households and for non-households can be used as a cost effective approach for ascertaining travel demand, given that such data can be easily measured either in terms of disaggregate household or aggregate area level, at a much lesser cost.

There are a number of advantages to use electricity consumption as an explanatory variable for travel forecasting. The electronically available disaggregated data sets can be easily used in many forms at the data preparation stage. This helps to use the data in aggregate or disaggregate forecasting according to the user requirements. The monthly updated data can be aggregated into any form of small zones by sorting them with addresses. The spatial location of the user can be geo-referenced and located with these addresses. Therefore, the use of GIS for travel modeling is possible. Since the electricity

is accessible to many users in urban areas, variations of the land use changes can be assessed in time with updated data.

Generalized functional forms for trip generation, mode selection, and trip distribution in suburban areas using electricity consumption as the main explanatory variable are suggested herein. The trip generation forecasting is explained by electricity consumption at household level with the hypothesis that household electricity consumption behaving as a surrogate variable for the combined income of that household. This model fit has been strengthened by introducing some of the socio-economic variables as well. Mode split models have also been calibrated using household electricity consumption, and functional forms for each mode and are presented separately. Both the trip generation and the mode selection by non-electricity users have been incorporated with category analysis techniques. The concept of traffic attraction to a destination zone based on its economic strength has been used here relating to the non-household electricity consumption level as a surrogate variable for the economic strength of that zone. The assignment of traffic in local road network is suggested with available commercial software popular for small areas to have a complete series of traffic forecasting models.

www.lib.mrt.ac.lk

The up-to-date electricity consumption data in electronic format could be obtained from the Lanka Electricity Company Ltd (LECO) or Ceylon Electricity Board (CEB) free of charge or at a nominal fee. Therefore, this approach will give a very economical use of a model that has been calibrated in a state-of-the art method to suit the local traffic environment. The simple and cost effective approach will be especially helpful for the local authorities for infrastructure development and planning.

Acknowledgements

I wish to express my sincere gratitude to my supervisor Professor Amal S. Kumarage, for his keen perception and insight to transportation, his consistent guidance and commitment right through the research work, providing me all financial assistance to make this research successful. The valuable suggestions made by Drs. Tudor Gunawardane and I.M.S. Sathyaprasad are sincerely acknowledged.

I also thank Professor Saman Bandara for helping me in many ways to make this research successful. The completion of the data collection surveys was made possible due to the enthusiasm and support given by many individuals from across the transportation and other industries in Sri Lanka, The students of the University of Moratuwa and friends who did an excellent job in collecting a large amount of data, and the community in Maharagama and Moratuwa DSD areas who readily co-operated with to the interviews.

My special thanks also to Mr. W.A.L.W.A.Perera, and Mr. H.N. Gunasekara of Lanka Electricity Company Limited, and Mr. Laksiri Mendis of the Ceylon Electricity Board and many other staff members from branch offices of both organizations for providing me the required data on electricity consumption.

I also acknowledge all the academic and nonacademic staff of the Department of Civil Engineering for the kind assistance they rendered to me, especially to Ms Pradeepa Jayaratne for her encouragement and assistance to initiate this research. Assistance given by Mr. F.A Mohidin for developing the computer model is sincerely acknowledged.

The financial support from the University Senate Research Grant, for data collection surveys is gratefully acknowledged.

A special thanks to my wife, Nalini for her patience, discipline, encouragement, caring and the assistance to accommodate all the trying time spent for the completion of this research.

Tissa U. Liyanage December, 2008

To

my wife, Nalini

daughter, Helli

University of Moand wa, Sri Lanka. Electronic These & Dissertations our Parents.

Abstra	act	iii
Ackno	wledgements	v
List of	Tables	xi
List of	f Figures	xii
List of	Abbreviations	xiv
СНАР	TER 01: INTRODUCTION	1
1.1.	General	1
1.2.	Objective and Scope	3
	1.2.1. Passenger Transport Modelling	
	1.2.2. Urban Transport Modelling and Present Challenges	4
	1.2.3. Use of Electricity Consumption	6
1.3.	Methodology	7
1.4.	Classification of Suburban Area	7
	1.4.1. Suburban Land Use in Sri Lanka	9
	1.4.1.1. Geographic	9
	1.4.1.2. Demographic anatana Sni Lanka	10
1.5.	Sub Urban Economy and Activities	11
1.6.	Colombo Metropolitan Region: A Case Study	13
	1.6.1. Maharagama Divisional Secretariat Division	14
	1.6.2. Moratuwa Divisional Secretariat Division	15
1.7.	Data Collection	
1.8.	Analysis1	
1.9.	Outline of Thesis	19
СНАР	TER 02: LITERATURE REVIEW	20
2.1.	Introduction	20
2.2.	Electricity Consumption and Users in Sri Lanka	22
2.3.	Limitations of Urban Transportation Demand Analysis	24
2.4.	Some Basic Concepts of Urban Transport Demand Analysis	25
2.5.	Model Development in General	27
2.6.	Approaches to Urban Travel Demand Modelling	29
	2.6.1. Direct Approach	29
	2.6.2. Sequential Approach	32
2.7.	Non Motorized Travel in Regional Travel Modelling	33
	2.7.1 Assumptions Related to Non-Motorized Models	34
2.8.	Model Development with Sequential Approach	35

Table of Contents

	2.8.1.	Trip Generation Modelling	36
	2.8.2.	Trip Attraction Model	44
	2.8.3.	Mode Choice Models	44
	2.8.4.	Trip Distribution Models	49
	2.8.5.	Trip Assignment Models	56
2.9.	Time Se	eries Models	61
2.10.	Transfe	rability of Travel Demand Models	62
2.11.	Statistic	al Methods in Model Calibration	62
2.12.	Evaluat	ion Methods for the Performance of the Model	63
2.13.	Summa	ry of Literature Review	66
CHAI	PTER 03	: DATA COLLECTION AND PROCESSING	68
3.1.	General		68
	3.1.1.	Types of Data	68
	3.1.2.	Data Collection and Management	69
	3.1.3.	Technical Approach for Data Collection	69
3.2.	Househ	old Survey	71
	3.2.1.	Data Collection Method	72
	3.2.2.	Accuracy and the Selection of Sample Size	72
	3.2.3.	Economic Factors Theses & Dissertations	75
	3.2.4.	Activity Data of the Population	76
	3.2.5.	Travel Data	76
3.3.	Collecti	on of Secondary Data	77
	3.3.1.	Census Data	77
	3.3.2.	Electricity Consumption Data	77
	3.	3.2.1. Household and Non-Household Electricity Consumption	79
		3.3.2.1.1. Distribution of Household Electricity Consumption	79
		3.3.2.1.2. Distribution of Non-Household Electricity Consumptio	n 82
3.4.	Limitati	on of Data Handling	84
3.5.	Summa	ry	85
CHAI	PTER 04	: BACKGROUND DATA AND PRELIMINARY ANALYSIS	86
4.1.	Introduc	ction	86
4.2.	Suburba	in Transport System	86
	4.2.1.	Bus Passenger Transport	87
	4.2.2.	Private Motorized Transport	88
	4.2.3.	Non Motorized Transport	88
	4.2.4.	Rail Transport	89
4.3.	Approa	ch for Trip Generation	90

	4.3.1.	Factors A	ffecting Suburban Trip Generation	
4.4.	Approa	ich to Trip I	Distribution Modeling	
	4.4.1.	Non-Hou	sehold Electricity Consumers	
		4.4.1.1.	Bulk Consumers	
		4.4.1.2.	Retail Consumers	
4.5.	Approa	ich to Mode	Split Models	
4.6.	Prelimi	nary Analys	sis of Travel Data from Household Surveys	
	4.6.1.	Effect of F	Population Activities	103
	4.6.2.	Effect of I	Distance to City Centre	
4.7.	Summa	ary		105

CHAPTER 05: CALIBRATION AND VALIDATION OF TRAVEL FORECASTING MODELS FOR SUBURBAN AREAS 107

FUK	ECASII	NG MUDELS FUK SUBUKBAN AKEAS	
5.1.	Introdu	iction	107
5.2.	Calibra	tion of Trip Generation Model	
	5.2.1.	Some Basic Models	
	5.2.2.	Approach for Selection of the Best Model	
	5.2.3.	Final Trip Generation Model	
	5.2.4.	Validation of Trip Generation Model	
	5.2.5.	Summary & Conclusion	
5.3.	Calibra	Calibration of Trip Distribution Model	
	5.3.1.	Selection of TAZs for OD Matrix	
	5.3.2.	Distribution of Trips	
	5.3.3.	Calibration process	
	5.3.4.	Statistical Examination of Residuals	
	5.3.5.	Validation of Trip Distribution Model	
	5.3.6.	Summary and Conclusion	
5.4.	Calibration of Mode Split Models		126
	5.4.1.	Private motorized mode split models	
	5.4.2.	Public transport mode split models	
	5.4.3.	Non-motorized mode split models	
	5.4.4.	Validation of Mode Split Models	
	5.4.5.	Summary and Conclusion	
5.5.	Traffic Assignment to the Local Road Network		
	5.5.1.	Introduction	
	5.5.2.	Trip Assignment Model Approaches	
		5.5.2.1. Statewide Traffic Assignment Models	
		5.5.2.2. Small Area Traffic Assignment Models	
5.6.	Time S	eries Analysis of Electricity Data	

5.7.	Limitation of the Model Usage	152
5.8.	General Summary	152
СНАР	PTER 06: DEVELOPMENT OF THE COMPUTER PROGRAMME	AND
THE N	MODEL APPLICATION	153
6.1.	Development of the Computer Software	153
	6.1.1. Data Inputs Forms	153
	6.1.2. Results Output	155
6.2.	The Computer Programme	156
6.3.	Trip Generation and Mode Split Estimates Using STEP	157
6.4.	Trip Distribution Estimates Using STEP	158
6.5.	Summary	160
СНАР	PTER 07: CONCLUSION AND RECOMMENDATIONS	161
7.1.	General	161
7.2.	Research Conclusion	162
7.3.	Recommendation and Future Research	164
REFE	RENCES	166
	(O) Electronic Theses & Dissertations	
ANNE	EXURES	172
Annex	I: Statistic Test for Parent and Sample Populations of Domestic Elec	tricity
Consu	mption	173
Annex	II: Observed O-D Trips in Maharagama DSD	174
Annex	III: Estimated Trips against Observed Trips by Different Modes	175
Annex	IV: Difference between Observed Total Trips and Estimated Sum of Tri	ips by
Mode	Split Models	176
Annex	V: Input Data Set for Travel Estimates at Moratuwa DSD	177
APPE	NDICES	178
Appen	dix I: Data Collection Survey Form for Households Surveys	179
Appen	dix II: Development of STEP Program	180

List of Tables

Table 1.1: Variation of Urban Factor by DSD in Colombo District
Table 1.2: Household Electricity Consumers at DSD Level in Colombo District
Table 2.1: Cross-Classification Trip Rate Table by (OMPO, 1982)
Table 2.2: Average Daily Person-Trips by Household for Madison, (1962)
Table 2.3: Classification of household based on physical and utility type42
Table 2.4: Household grouping based on their economic strength and ECU level
Table 2.5: Electricity consumption and trip generation rates. 43
Table 2.6: Electricity consumption of household and average vehicle ownership
Table 2.7: Relationship between household electricity consumption and trip length 56
Table 3.1:Total households by Physical and Utility Type and Sample Distribution
achieved75
Table 3.2: Population with Different Activities from Study Areas 76
Table 3.3: Descriptive Statistics of Domestic Electricity Consumption and Distribution 82
Table 3.4: Descriptive Statistics of Non-Household Electricity Consumption and
Distribution
Table 4.1. Comparison of Modal Share by Trip Length of Passenger Transportation 87
Table 4.2: Daily Observed Trip Generation Frequencies 99
Table 4.3: Observed Daily Trip Generation Frequencies by Mode 100
Table 4.4: Vehicle Ownership Rates in Suburban Area 101
Table 4.5: Effect of Vehicle Ownership on Trip Generation & Electricity Consumption102
Table 4.6: Activity Based Trip Generation in Suburban Areas 104
Table 5.1: Initial Statistic Significant Test for all Variables
Table 5.2: Development of the Best Model from Basic Models
Table 5.3: Statistical output from SPSS for Model M4 115
Table 5.4: Percentage (%) of Trips Based on Trip Purpose
Table 5.5: Observed and Estimated Total Trip Ends at Different Regions from Both
Surveys126
Table 5.6: Parameters for Mode Split Models 136
Table 5.7 : Statistics of model fit if calibrated using electricity consumption alone 138
Table 5.8: Mode Based Trip Rates by Non Electricity Users. 144
Table 6.1: Trip Generation and Mode Split Results for Moratuwa DSD 157
Table 6.2: Trip Distribution Estimates for Moratuwa DSD Area. 159
Table 6.3: Trip Ends to Major Zones 160

List of Figures

Figure 1.1: Population Density by Divisional Secretariat Divisions in Colombo District.11
Figure 1.2: Distribution of DSD in CMR
Figure 1.3: Two Study Areas in Colombo Suburbs 16
Figure 1.4: Flow Diagram of the Research Activities
Figure 2.1: ECU Vs Income for the US in 1997
Figure 2.2: The Basic Hypothesis of Urban Travel Demand
Figure 2.3: Model Development as an Iterative Process
Figure 2.4: Trip Generation Vs Age by Gender
Figure 2.5: Car Ownership and Trip Rates against Household Electricity Consumption
Units
Figure 2.6: Regression fit of observed OD trips Vs Estimated OD trips
Figure 3.1 : LECO Served Area in the CMR
Figure 3.2: Domestic Electricity Consumption Frequency Distribution of Parent and
Sample Populations in the Maharagema Study Area
Figure 3.3: Domestic Electricity Consumption Frequency Distribution of Parent and
Sample Populations in the Moratuwa Study Area
Figure 3.4: Non-household Electricity Consumption Frequency Distribution of Retail and
Bulk Consumers in Western Province
Figure 4.1: Average Household Electricity Consumption Vs Trip Rates by Major Mode
Types
Figure 5.1 : Behaviour of independent variables in the model 114
Figure 5.2: Validation with Observed Trips Vs Estimated Trips using Model M4 at
Moratuwa DSD 116
Figure 5.3: Observed Trip Distribution by Length in the Study Area 120
Figure 5.4: Linear Regression Fit between Observed Trips and Estimated Trips of O-D
Pairs
Figure 5.5: Observed Trips and Residuals 124
Figure 5.6: Regression Standard Residuals of Observed Trips 124
Figure 5.7: Observed O-D Pairs Against Estimated OD Pairs 125
Figure 5.8: Model Behaviour of Mode Selection with Average Household Electricity
Consumption 137
Figure 5.9: Observed Against Estimated Car Trips 138
Figure 5.10: Observed Against Estimated Van trips
Figure 5.11: Observed Against Estimated Motor Bicycle trips 139

Figure 5.12: Observed Against Estimated Bus trips 140
Figure 5.13: Observed Against Estimated Train Trips
Figure 5.14: Observed Against Estimated Three Wheeler Trips 141
Figure 5.15: Observed Against Estimated Bicycle Trips
Figure 5.16: Observed Against Estimated Walk Trips 143
Figure 5.17: Average Monthly Household Electricity Consumption Since 1970 147
Figure 5.18: Average Monthly Household Electricity Consumption Against Total
Consumption
Figure 5.19: Total Annual Household Electricity Consumption against GDP 148
Figure 5.20: Average Household Electricity Consumption Against GDP 148
Figure 5.21: Per Capita Electricity Consumption (All Types) Against GDP 149
Figure 5.22: Per Capita Electricity Consumption (All Types) Against GDP 149
Figure 5.23: Distribution of Household Electricity Consumption in Different Areas 150
Figure 5.24: Distribution of Household Electricity Consumption with Distance from
Colombo
Figure 6.1: Suburban Travel Estimation Programme (STEP) Software 153
Figure 6.2: Data Inputs from Origin Zones
Figure 6.3: Data inputs from Destination Zones
Figure 6.4: Trip Generation Results Output
Figure 6.5: Mode Split Results Output
Figure 6.6: Trip Distribution Matrix Results Output

List of Abbreviations

- ADT Average Daily Traffic
- ATM Automated Teller Machines
- CBC Cluster Bus Company
- CBD Central Business District
- CD Compact Disc
- CEB Ceylon Electricity Board
- CMC Colombo Municipal Council
- CMR Colombo Metropolitan Region
- CoV Coefficient of Variation
- CTB Ceylon Transport Board
- DCS Department of Census and Statistics
- DOT Department of Transportation
- DSD Divisional Secretariat Divisions
- ECU Electricity Consumption Unit
- FHWA Federal Highway Authority Moratuwa, Sri Lanka.
- GDP Gross Domestic Productic Theses & Dissertations
- GIS Geographic Information System
- GND Gramaseva Niladhari Division
- GWhrs Giga Watt Hours
- HC Hourly Capacity
- ITE Institute of Transportation Engineers
- kWh-Kilo Watt Hour
- LECO Lanka Electricity Company (Private) Limited
- LSE Least Square Estimation
- MC Municipal Council
- MWhrs Mega Watt Hours
- NCHRP National Highway Cooperative Research Program
- NhEcu Non- Household Electricity Consumption
- NTC National Transport Commission
- OD Origin and Destination
- PEF Pedestrian Environment Factor
- POA Private Omnibus Association

PS – Pradeshiya Sabha

RDA – Road Development Authority

RMV - Registrar of Motor Vehicles

RTB - Regional Transport Board

SLCTB - Sri Lanka Cluster Bus Company

SLR – Sri Lanka Railway

SMITE - Spreadsheet Model for Induced Travel Estimation

STEP - Suburban Travel Estimation Program

TAZ - Traffic Analysis Zone

TC – Town Council

U.S. - United States

UC – Urban Council

UDA – Urban Development Authority

UK – United Kingdom

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk