EMBEDDED GENERATION IMPACTS TO MEDIUM VOLTAGE DISTRIBUTION NETWORK AND MITIGATION TECHNIQUES

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by

B. A. P. THILAK KUMARA PERERA

WW.lib.mrt.ac.lk Library UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Supervised by: Dr. J. P. Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

January 2009

92968 621.3 "09" 621.3 (043) TH (5

13/DON 53/09

92968

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

B. A. P. T. K. Perera Date : 30/01/2009

I endorse the declaration by the candidate.

Dr. J. P. Karunadasa

Declaration Abstract Acknowledgement		i iv v	
List o List o	f Abbreviations f Figures f Tables	vi viii x	
List			
1	Introduction		
1.1	Background	1	
1.2	Motivation	3	
1.3	Objective	4	
1.4	Scope of work	4	
2	MV distribution system of Sabaragamuwa province of Sri lanka		
2.1	Sabaragamuwa Province	5	
2.2	Electricity Distribution Network of Sabaragamuwa Province	5	
2.3	Rathnapura Grid Substation	6	
2.4	Updating the map of MV distribution network	9	
2.5	Data Collection www.lib.mrt.ac.lk	9	
2.6	Modeling the network using SynerGEE	9	
2.7	Assigning input data to the digitizing model	10	
2.8	Modeling the network using MATLAB	11	
2.9	MHP Data	16	
3	Analysis and Results		
3.1	Voltage Regulation	18	
3.2	Fault Level Analysis	20	
3.3	Obtaining maximum fault currents	22	
4	Proposed Solutions		
4.1	Voltage Regulation	25	
4.2	Increasing the Fault Level	25	

CONTENTS

ii

4.3	Fault Current Limiters	27
4.4	Application of Fault Current Limiters	29
4.5	Thyristor Control Series Capacitor as FCL	32
4.6	Introduction to TCSC	33
4.7	Proposed TCSC for distribution network applications	35
4.8	Selection of operation regions	37
4.8	Testing and simulation of prototype TCSC	41

5 Conclusions

5.1	Conclusions	43
5.2	Suggestions for future works	44
Refer	ences	45
Appe	ndix A : Grid vice connected MHP s in Sri Lanka	47
Appe	ndix B : Conductor Data	48
Appe	ndix C : SynerGEE Table and Maps	49
Appe	ndix D : Calculating the source impedance	53
Appe	ndix E : Circuit Diagrams and Graphs	54
Appendix F : Types of fault Current Limiters		60

Abstract

As a result of increasing of electricity demand, the electrical transmission and distribution systems are continuously expanding. Connection of Distribution Generators (DG) to the distribution network and upgrading of the transmission lines are more frequent expansions. Connection of new mini hydro power plants (MHPs) in Sri Lanka is one good example. In most of the cases these DGs, which are mainly based renewable energy are located in remote areas. The main bottleneck barrier of connecting DG is violation of fault current ratings at some parts of the network. Some expansions may result in higher fault current level at some points of the power system and thus exceeding the short circuit ratings of equipment such as switchgears and expulsion switches. As upgrading of equipment is not feasible both economically and technically, introduction of fault current limiting devices has become an essential requirement.

Fault Current Limiter (FCL) is series device connected to the power system, which shows the high impedance to the current during a fault while showing a zero or low impedance during normal loading condition. Although several FCL topologies were introduced by researchers, there are some technical and economical problems to be solved before introducing them to the power system effectively. It demands the investigation of new FCL topologies which are more feasible or modifications of available topologies to increase feasibility. FCL introduces additional impedance to the system depending on the system operating conditions. It is not only reduces the fault current but also effects on a number of power system related phenomena such as power losses, protection coordination, interrupting duty of switchgears, transient stability and voltage sag.

This research work is mainly focus on application of Fault Current Limiter (FCL) to overcome this problem and facilitate the equipment safety.

Acknowledgement

First I thank very much Dr. J. P. Karunadasa without whose guidance, support and encouragement, beyond his role of project supervisor this achievement would not be end with this final dissertation successfully.

I also thank Mrs. Chulani Gamlath – System Planning Engineer (Sabaragamuwa Province), Mr. R. Ekanayake the distribution planning branch, Mrs. B. G. Geethani - System Planning Engineer (WPS II) for facilitating me necessary data and the information.

I would also like to express my appreciation to all my colleagues in Post Graduate programme and particularly to Amala, Palitha, Hetti, Weli and Jayasooriya for their encouragement.

Last but not least my gratitude goes to my dear parents, wife and family members for their love, moral support and understanding from start to end of this course.

List of Abbreviations

AAAC	All Aluminium Alloy Conductor
ABS	Air Break Switch
ACSR	Aluminium Conductor Steel Reinforced
CB	Circuit Breaker
CEB	Ceylon Electricity Board
CSC	Consumer Service Centre
DDLO	Drop Down Lift Off
DG	Distributed Generator
FCL	Fault Current Limiter
GSS	Grid Substation
GTO	Gate Turn Off
HTS	High Temperature Superconducting
I	Current
Ic	Critical current
J _c	Critical Current density
LBS	Load Break Switch
LT	Low Tension
LV	Low Voltage
MFCL	Magnetic Fault Current Limiter
MHP	Mini Hydro Power
MOV	Metal
MV	Medium Voltage
PSS	Primary Substation
RGSS	Rathnapura Grid Substation
SC	Superconductor
SFCL	Superconducting Fault Current Limiter
SIN	System Identification Number
SPP	Small Power Producers
SPPA	Small Power Purchase Agreement

StFCL Static Fault Current Limiter

T_c Critical Temperature

TCSC Thyristor Control Series Capacitor

TCR Thyristor Controlled Reactor

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.

List of Figures

Figure Page Figure 2.1 Single Line Diagram of Rathnapura Grid Substation 07 Figure 2.2 Single line Diagram of Feeder No: 05 12 Figure 2.3 Single line Diagram of Feeder No: 06 14 Figure 2.4 Single line Diagram of Feeder No: 08 15 Figure 4.1 FCL at primary distribution feeder 30 Figure 4.2 FCL at distribution transformer circuit 31 Figure 4.3 FCL at connection point of DG 32 Basic structure of TCSC Figure 4.4 33 Figure 4.5 Impedance characteristic of TCSC 34 Figure 4.6 Configuration of TCSC and control system 36 Figure 4.7 Expected firing angle variation of line current 37 Figure 4.8 Wave forms of the firing pulses 39 Circuit Diagram of TCSC Moratuwa, Sri Lanka. Figure 4.9 40 Feeder 05 Electronic Theses & Dissertations Figure C.1 50 Feeder 06 www.lib.mrt.ac.lk Figure C.2 51 Figure C.3 Feeder 08 52 Figure E.I Modeled Feeders of RGSS without DG s 54 Modeled Feeders of RGSS with DG s Figure E.2 55 Figure E.3 Application of designed FCL to the network 56 Figure E.4 Fault Current at the point of J, without DG s 57 Figure E.5 Fault Current at the point of J, with DG s 57 Figure E.6 Fault Current at the point of J, with FCL 57 Figure E.7 Fault Current at the point of H, without DG s 58 Fault Current at the point of H, with DG s Figure E.8 58 Figure E.9 Fault Current at the point of H, with FCL 58 Figure E.10 Fault Current at the point of S, without DG s 59 Figure E.11 Fault Current at the point of S, with DG s 59 Figure E.12 Fault Current at the point of S, with FCL 59

Page.

Figure		Page
Figure F.I	Layout of Resistive type SFCL	61
Figure F.2	Layout of Magnetic Shielding type SFCL	62
Figure F.3	Layout of Saturated Inductive type SFCL	63
Figure F.4	Equivalent circuit of Flux Lock type SFCL	64
Figure F.5	Equivalent circuit of Magnetic switch based MFCL	65
Figure F.6	Passive MFCL with series biasing	66
Figure F.7	Passive MFCL with parallel biasing	67
Figure F.8	GTO thyristor switch based	68
Figure F.9	Thyristor controlled series tune circuit based StFCL	69
Figure F.10	Impedance characteristics of TCSC	69

.

List of Tables

Table		Page
Table 2.1	MV distribution facilities of Rathnapura Grid Substation	07
Table 2.2	MV Feeder Data	08
Table 2.3	Data of connected MHP s	08
Table 2.4	Conductor Data of Feeder No: 05	13
Table 2.5	Conductor Data of Feeder No: 06	14
Table 2.6	Conductor Data of Feeder No: 08	16
Table 2.7	MHP Generator Data 01	16
Table 2.8	MHP Generator Data 02	17
Table 2.9	MHP Generator Data 03	17
Table 2.10	MHP Generator Data 04	17
Table 3.1	Voltage variation of feeder sections	20
Table 3.2	Comparing fault currents and without DG s	23
Table 4.1	Performance Data for FCL	42
Table A.1	Grid vice connected MHP s in Sri lanka ertations	47
Table B.I	Resistances and reactances of conductor types	48
Table C.1	SynerGEE Table and Maps	49

.