\ TIME DEPENDENT TRANSMISSION LOSSES IN NATIONAL NETWORK A Dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science by P.A.N.SHANTHA Supervised by: Professor Ranjit Perera LIBRARY . : KSiTY (?, MMATt'i. A. S.H LAM* MORATUWA Department of Electrical Engineering University of Moratuwa, Sri Lanka November 2008 University of Moratuwa 92957 6 Z I T H 9 2 2 5 7 DECLARATION The work submitted in this dissertation is the result of my own investigation, except where otherwise stated. It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree. UlX. S WVA+tvO P.A.N.Shantha 2008/11/24 I endorse the declaration by the candidate. ABSTRACT Ceylon Electricity Board (CEB) has the responsibility of Transmission and most o'f the Generation and Distribution of electric power in Sri Lanka. Today, total technical and non technical losses (Energy losses) are around 15.67%. It is a large loss compared with losses in developed countries. Losses will also affect electricity tariff. At the end, it affects domestic, commercial and industrial consumers as well as Gross Domestic Product (GDP) of the country. Transmission losses are very important to future planning and design of the National Network. Losses should be minimized as much as possible. 'As Ceylon Electricity Board has not yet investigated t ime dependent transmission losses in National Electric Network accurately, this study focused on the following, • Study thirty minutes t ime interval transmission losses in National Network for a day. • Transmission network is modelled and simulated using M A T L A B programme and calculation of power f low and transmission losses. • Analysis of the simulated results. Simulation results show that peak loss is recorded at 19.30 p.m. and amounting to 3.17% of total generation. Day minimum is recorded at 3.30 a.m. and minimum loss is 1.52% of total generation. Any time in between 0.00 a.m. to 24.00 midnight, Transmission losses vary f rom 1.52 % to 3.17 %. n ACKNOWLEDGEMENT Thanks are due first to my supervisor, Professor Ranjit Perera, for his great insights, perspectives and guidance. I also thank Mr. R.J. Gunawardena-Addit ional General Manager (Transmission), Mr. T.D. Hadagama-Deputy General Manager (System Control Branch), Mr. J. Nanthakumar-Chief Engineer (Operation Audit), Mr. L. Weerasinghe-Chief Engineer (System Operat ions) , Mr. T. Senavirathna- Electrical Engineer (System Control), Dr. L.D.L. Perera-Electrical Engineer (Transmission Planning) and Dr. A.M.D.R. Samarakoon-Chief Engineer (Generation Planning) for facilitation me with the necessary data and information Lastly, I should thank many individuals, friends and col leagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your support. i i i CONTENTS Declaration Abstract Acknowledgement List of Figures List of Tables 1. Introduction 1.1 Background 1.2 Motivat ion 1.3 Object ive 1.4 Scope of work 2 National Generat ion, Transmission and Distribution System 2.1 Ceylon Electricity Board 2.2 Generat ion 2.3 Transmiss ion 2.4 Distribution 2.5 Transmission losses 2.6 Total system losses 3 Theoretical Development 3.1 Electrical characteristics of transmission lines 3.1.1 Overhead lines 3.1.2 Underground cables 3.2 Per formance equations of the transmission tines 3.2.1 Equivalent circuit of a transmission line 3.2.2 Nomina l ji equivalent circuit 3.3 Transformers 3.3.1 Representation of two-winding t ransformers 3.3.2 Equivalent n circuit representation 3.4 Three winding t ransformers 3.5 Power f low analysis 3.5.1 Nonl inear power f low 3.5.2 Selection of solution method 3.5.3 Newton Raphson (N-R) method 3.6 Line f low equations 3.7 M A T L A B 4 Methodology 4.1 Assumpt ions for load flow calculation 4.2 Model l ing national transmission network 4.3 Simulation Procedure 5 Result and Analysis 5.1 Results of load flow study 5.2 Active power generation, consumption and losses 5.3 Reactive power generation, consumption and losses 5.4 Evaluation of energy loss 6 Conclusion and Recommendation 6.1 Conclusion and discussion References Annexes Annex 1 National Transmission Network 44 Annex 2 Data of Transmission Lines and Under Ground Cables 45 Annex 3 Data of Existing Transformers (Two Winding) 47 Annex 4 Data of Existing Transformers (Three Winding) 49 Annex 5 Data of Generators 50 Annex 6 Location of Existing, Committed and Candidate Power Stations 52 Annex 7 Reservoir Systems in Kelani and Walawe river basins 53 Annex 8 Reservoir Systems in Mahaweli river basins 54 Annex 9 C E B Distribution Regions 55 Annex 10 M A T L A B Programme for Load Flow Analysis 56 Annex 11 Bus Data input file 62 Annex 12 Line Data input file 63 Annex 13 Thirty Minutes P,Q Loads 64 Annex 14 Thirty Minutes Active and Reactive Power Generat ion 84 vi List of Figures Figure 2.1 M a p of national transmission system 7 Figure 2.2 System losses form 1978 to 2007 8 Figure 3.1 Current and voltage relationship of a distributed parameter lines 12 Figure 3.2 Equivalent circuit of a transmission line 14 Figure 3.3 Basic equivalent circuit of a two winding t ransformer 16 Figure 3.4 Per unit equivalent circuit 18 Figure 3.5 Standard equivalent circuit for a t ransformer 18 Figure 3.6 Transformer representation with O N R 20 Figure 3.7 Three winding transformer 21 Figure 3.8 Three winding transformer equivalent circuit 22 Figure 3.9 Equivalent circuit of a transmission link for evaluating line f lows 27 Figure 4.1 Selected bus bars of the transmission network 28 Figure 5.1 Transmiss ion losses as a percentage 35 Figure 5.2 Transmission losses (MW) 35 Figure 5.3 Active power generation, Consumption and losses 36 Figure 5.1 Transmission losses with and without t ransformer resistance 36 Figure 5.4 Reactive power generation, consumption and losses 38 vii List of Tables Table 2.1 C E B transmission Voltage levels and allowable tolerances 5 Table 2.2 Total System Losses from 1978 to 2007 8 Table 2.3 Forecast Energy Losses 9 Table 4.1 Line data 29 Table 4.2 Bus data 29 Table 4.3 M A T L A B functions 30 Table 5.1 Results of thirty minutes Load f low analysis 34 vi i i Chapter 1 Introduction 1.1 Background Electric power transmission is an essential component in our electricity network. Typically, power transmission is between the power plant and a substation near a populated area. This is distinct from electricity distribution, which is concerned with the delivery from the substation to the consumers. Due to the large amount of power involved, AC transmission takes place at high voltage levels. Electricity is usually transmitted over long distance through overhead power transmission lines. Underground power transmission is used only in densely populated areas (such as Colombo city). Engineers design transmission networks to transport the energy as efficiently as feasible, while at the same time taking into account economic factors, network safety and redundancy. These networks use components such as power lines, cables, circuit breakers, switches and transformers. Efficiency is improved by increasing the transmission voltage using a step-up transformer, which has the effect of reducing the current in the conductors, whilst keeping the power transmitted nearly equal to the power input. Losses The reduced current flowing through the conductor reduces the losses in the conductor and since the losses are proportional to the square of the current, halving the current results in a four-fold decrease in transmission losses. At the generating plants the energy is produced at a relatively low voltage of up to 15 kV then^fepped up by the power station transformer to a higher voltage (132 kV or 2 for t [ t '.•> transmission over long distances to grid exit points (substations). ^ » In an alternating current transmission line, the inductance and capacitance of the line conductors can be significant. The currents that flow in these components of transmission line impedance constitute reactive power, which transmits no energy to the load. Reactive current flow causes extra losses in the transmission circuit. The ratio of real power (transmitted to the load) to apparent power is the power factor. As reactive current increases, the reactive power increases and the power factor 1 decreases. For low power factors losses will increase. CEB adds capacitor banks and Static Var Compensators (SVC) throughout the system. 1.2 Motivation Time dependent transmission losses have not been investigated by the CEB yet. CEB has calculated energy losses, based on gross generation and gross sales units figures. The outcome of this study will evaluate time dependent transmission losses in national network. This can be used for proper planning of the transmission network expansions. As an Engineer, the author was motivated to select this topic for his study due to above facts. 1.3 Objective Time dependent transmission losses in national electric network have not investigated by CEB yet. Therefore, the objectives is to, • Investigate the thirty minutes time interval transmission losses in national network using load flow analysis. 1.4 Scope of work 1 Data Collection • Thirty minutes time interval power generation of each power plant, connected to the system. • Thirty minutes time interval loads at 33 kV feeders • Maximum and Minimum reactive power generation of each generators. • Transformer impedances and Transformer types • Transmission line resistance (R), Reactance (X) and line charging Suceptance (Y) 2. Modelling the National Network • Model all transmission lines; three phase two winding transformers and three phase three winding transformers using standard mathematical models. 3. Write MATLAB programme for modelled network to analyze load flow and calculate transmission losses. 4. Analyze the results and make concluding remarks 2 Chapter 2 National Generation, Transmission and Distribution System 2.1 Ceylon Electricity Board Ceylon Electricity Board (CEB) is the statutory body established by an Act of Parliament of Sri Lanka in 1969. CEB has the responsibility of Transmission and most of the Generation and Distribution of electric power. In addition to its own hydro and thermal electricity generation, CEB purchases power from private producers as well. It is estimated that 80% [13] of the population has access to electricity from the national electricity grid at the end of 2007. 2.2 Generation The existing generating system in the country is mainly owned by CEB with considerable share owned by private sector. Until 1996 total electricity system was owned by CEB. Since 1996, private sector has also being participated in power generation. The existing generating system in the country has 2444 MW [13] of capacity including non-dispatchable plants. The dispatchable capacity is predominantly owned by CEB , which includes 1207 M W of hydro and 548 MW of thermal generation capacity. Balance dispatchable capacity 567 MW [13], which is totally thermal plants, is owned by Independent Power Producers (IPPs). Wind capacity is 3 M W and Small hydro capacity is 119 M W [13] at the end of 2007. Sixty nine percent of the total existing CEB system capacity is installed at 16 hydro power stations. Details of the existing hydro power stations are given in Annex 5 and the geographical locations of the Power Stations are shown in Annex 6. The major hydropower schemes already developed are associated with Kelani and Mahaweli river basins. Five hydro power stations with a total installed capacity of 335 MW [11] (28% of the total hydropower capacity) have been built in two cascaded systems associated with the two main tributaries of Kelani River; Kehelgamu Oya and Maskeliya Oya (Laxapana Complex). The f.ve stations in this complex are generally not required to operate for irrigation or other water requirements; hence they are primarily designed to meet the power requirements of the country. Castlereigh and Moussakelle are the major storage reservoirs in the Laxapana hydropower complex located at main tributaries Kehelgamu Oya and Maskeliya Oya respectively. Castlereigh reservoir with a storage of 44.8 MCM feeds the Wimalasurendra Power Station of capacity 2 x 25 MW at Norton-bridge, while Canyon (2 x 30 MW) is fed from the Moussakelle reservoir of storage 123.4 MCM. Similarly in the down stream of these two tributaries, Canyon, Norton and Laxapana ponds having smaller storage capacity feed to New Laxapana, Old Laxapana and Polpitiya power stations respectively. The development of the major hydro-power resources under the Mahaweli project added six hydro power stations (Ukuwela, Bowatenna, Kotmale, Victoria, Randenigala and Rantambe) to the national grid with a total installed capacity of 660 MW (55% of the total hydropower capacity). The schematic diagrams of the hydro reservoir networks are shown in Annex 7 and Annex 8. Unlike the Laxapana cascade, the Mahaweli system is operated as a multi-purpose system. Hence power generation from the associated power stations is governed by the down-stream irrigation requirements as well. These requirements being highly seasonal constrain the operation of power stations during certain periods of the year. Samanalawewa hydro power plant of capacity 120 MW was commissioned in 1992. Samanalawewa reservoir, which is on Walawe River. Kukule power project which was commissioned in 2003, is run-of river type plant located on Kukule Ganga, a tributary of Kalu Ganga. Kukule power plant is 70 M W in capacity. The contribution of the three small hydro plants (Inginiyagala - 11MW, Uda Walawe - 6MW and Nilambe - 3MW) to the National Grid is small and is dependent on irrigation water releases from the respective reservoirs. In addition to the above hydro plants, CEB has a 3 MW wind plant at Hambantota. This project was implemented as a pilot project in order to see the feasibility of wind development in Sri Lanka. However, wind is a non-dispatchable power source. 2.3 Transmission Transmission system which is from power station sending end to substation is operated by the CEB Transmission Division. Electrical power is transferred from generation station to consumers through overhead lines and underground cables. Under ground cables are used in Colombo city. National Network uses three phase alternating current (AC) and 50Hz frequency. The voltage criteria defines the 4 permitted voltage deviation at any line bus bar of the national network under normal operating conditions are as shown below. Tolerance Maximum Voltage kV Minimum voltage kV Normal state 1. 220kV 2. 132kV +5% ,-5% 231 209 + 10%, -10% 145.2 118.2 Emergency state 1. 220kV 2. 132kV +5%,-10% 213 198 + 10%,-10% 145.2 118.2 Table 2.1 CEB Transmission voltage levels and allowable tolerances 2.4 Distribution For operational convenience, there are four distribution divisions (Annex 9) in CEB headed by four Additional General Managers. Distribution Division 01 Area of operation of Distribution Division 1 covers Colombo Municipality, North Western Province, North Central Province and Northern Province which is 42% of the total land area of Sri Lanka. Colombo city is the most profitable part of the division while area such as Jaffna and Kilinochchi are the areas where the business is far below the satisfactory level Distribution Division 02 Distribution Division 2 consists of Eastern Province, Central Province and Western Province North. 5 permitted voltage deviation at any line bus bar of the national network under normal operating conditions are as shown below. Tolerance Maximum Voltage kV Minimum voltage kV Normal state 1. 220kV 2. 132kV +5% ,-5% 231 209 + 10%, -10% 145.2 118.2 Emergency state 1. 220kV 2. 132kV +5%,-10% 213 198 + 10%,-10% 145.2 118.2 Table 2.1 CEB Transmission voltage levels and allowable tolerances 2.4 Distribution For operational convenience, there are four distribution divisions (Annex 9) in CEB headed by four Additional General Managers. Distribution Division 01 Area of operation of Distribution Division 1 covers Colombo Municipality, North Western Province, North Central Province and Northern Province which is 42% of the total land area of Sri Lanka. Colombo city is the most profitable part of the division while area such as Jaffna and Kilinochchi are the areas where the business is far below the satisfactory level Distribution Division 02 Distribution Division 2 consists of Eastern Province, Central Province and Western Province North. 5 Distribution Division 03 Distribution Division 3 consists of three CEB Provinces namely as Western Province South- II, Sabaragamuwa and Uva. Western Province South- II is the highest revenue generating Province having a larger number of industrial and commercial consumers. Distribution Division 04 Distribution Division 4 consists of Western Province South -1 and Southern Province. 2.5 Transmission losses During the process of transferring power across the transmission system, some of the power is lost. The lost power is known as transmission losses which consist of two components, active power and reactive power losses. Since current is dependent on the volume of power transferred, losses are variable and increase with the distance to which electricity has to travel. There are mainly two kinds of losses in a transformer, namely core loss and ohmic loss. The core loss occurring in the transformer iron, consists of two components, hysteresis loss and eddy current loss. When a transformer is loaded, ohmic loss occurs in both the primary and secondary winding resistances. In addition to the core and ohmic losses, stray load loss and dielectric loss are also present in a transformer. The Stray load loss and dielectric loss are small and are, therefore neglected. 6 The Map of Sri Lanka Transmission System 220kV Line 132kV :Underground Cable 132kY Line 132kV Line (not in operation) • 220/132 kV Sub Station Q 132kV GS © Hydro Power Station • Thermal Power Station Figure 2.1 Map of National Transmission System 7 2.6 Total System Losses As evident from Table 2.2 and Figure 2.2, percentage of gross system energy losses (calculated based on gross generation and gross sales units figures), shows a decrease during 2000-2007 (except 2005) which had been increasing in the preceding years. This is due to unmetered supply in those years [11][13][14], Year 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 Total Losses % 16.1 14.9 16.6 19.7 18.4 15.2 17.0 16.4 15.8 16.8 Year 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Total Losses % 15.3 17.7 17.2 18.8 19.0 17.8 18.3 18.1 18 17.7 Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Total Losses % 18.8 20.9 21.4 19.7 19.2 18.4 17.1 17.3 16.6 15.7 Table 2.2 Total System Losses from 1978 to 2007. System Energy Losses Vs Year Year Figure 2.2 System losses form 1978 to 2007 Total energy losses are calculated from balancing total generation and total sales. Currently CEB does not have accurate figures of generation, transmission, distribution and non technical losses separately. Generation losses are assumed as 1% [12]. The targeted percentage of transmission losses i.e. 2.7 % is to be reached in 16 years time (2021). Table 2.3 gives the total energy losses used for the demand forecast. [12] Year Losses (as a % of Gross Generation) Gx Tx Dx Total 2006 1.0 2.4 13.8 17.1 2007 1.0 2.3 13.3 16.7 2008 1.0 2.4 12.7 16.1 2009 1.0 2.1 12.5 15.5 2010 1.0 2.0 12.0 15.0 2011 1.0 2.3 11.3 14.6 2012 1.0 2.5 10.9 14.4 2013 1.0 2.3 10.9 14.2 2014 -2021 1.0 2.7 10.4 14.1 2022 - 2026 1.0 2.7 10.3 14.0 Table 2.3 - Forecast Energy Losses Therefore, it is essential to calculate transmission losses and improve the system to reduce the losses for the targeted value as well as keep the system voltage levels as given in the table 2.1. This study will help to find out transmission losses more accurately and the results obtained will help for planning of the transmission network as efficiently as feasible. 9 Chapter 3 Theoretical Development 3.1 Electrical characteristics of transmission lines 3.1.1 Overhead lines A transmission lines is characterized by four parameters, series resistance (R) due to the conductor resistivity, shunt conductance (G) due to leakage currents between the phases and ground, series inductance (L) due to magnetic field surrounding the conductors and shunt capacitance (C) due to the electric field between conductors. Series resistance (R) The resistance of lines accounting for stranding and skin effect. R = P l Q (3-0) A R - Resistance of the transmission line p - Resistivity of conductor material (Om) A - Effective conductor area m2 1 - Length of the transmission line It should also be added that, because the conductors are of considerable size. The effective ac resistance will be some what higher than the dc value due to "skin effect." Shunt conductance (G) The shunt conductance represents losses due to leakage currents along insulator strings and corona. Its effect is small in overhead power lines. Series inductance (L) The line inductance depends on the partial flux linkage within the conductor cross section and external flux linkages. For overhead lines, the inductances of the three phases are different from each other unless the conductors have equilateral spacing, a geometry not usually adopted in practice. However this effect is compensated by transposing the lines regularly. 10 For three phase line, the inductance per phase is L = 2.t10~7 In—— Him A Ds is the self geometric mean distance (geometric mean radius) D is the geometric mean of the distances between the conductors of the three phases a, b and c Deq=(dahdhl.dJ13 (3.2) Shunt capacitance (C) The potential difference between the conductors of a transmission line causes the conductors to be charged. The charge per unit of potential difference is the capacitance between conductors. For three phase line, the capacitance of each phase to neutral is C = 2 tzSq In! •F / m (3.3) r is the conductor radius £ „ - p - — Z p 0 i p + n s Z s o i s (3.21) (3.22) Super bars denote per unit values n - n n = n , = — n P„ n , 17 2 r y D ' Z V n p Z p0 F n s L so Ideal s Figure 3.4 Per unit equivalent circuit n = np _ po s Z„ = ns \ Zpo+ Zso (3.23) (3.24) n = Per unit turn ratio n : 1 Ideal Figure 3.5 Standard equivalent circuit for a transformer 18 LIBRARY UNIVERSITY GF MSRAWWA, £Bi LANKA MORATUWA If the actual turns ratio is equal to nominal turns ratio, then n - 1.0 When the actual turns ratio is not equal to nominal turns ratio, then n represents off- nominal ratio (ONR). The equivalent circuit of figure 3.5 can be used to represent a transformer with a fixed (off load) tap on one side and on load tap changer (OLTC) on the other side. The off nominal turns ratio is assigned to the side with OLTC and Ze has a value corresponding to the fixed-tap position of the other side. 3.3.2 Equivalent 7t circuit representation From figure 3.5, the terminal current at bus P is h =(v,-vs) Y n f v p Y v V n n Y (3.25) = (vp~nvs) n Ye=l/Z Similarly the terminal current at bus S is is =(nvs-vp) Y (3.26) n 19 (a) General Jt network cYe (b) Equivalent n circuit Figure 3.6 Transformer representation with ONR Ye.=\IZe c = \ / n Corresponding terminal currents for the n network shown in figure 3.6 (a) iP=yi(vp-vs) + y2vp (3.27) 20 Equating the corresponding admittance terms in equations 3.25 and 3.27 y{ =-Ye n ( \ L _ i 2 \n nJ y2 = — — Ye =c(c-\)Ye c = 1 / n From equations 3.26 and 3.28 y3=(l-c)Ye 3.4 Three winding transformers This type can be represented under balanced three phase conditions by a single phase equivalent circuit of three impedances star connected (Figure 3.7 ) Figure 3.7 Three winding Transformer 21 V, T 12 < ) u v 2 Zt ) T,3 V3 Figure 3.8 Three winding Transformer equivalent circuit Z p s = Impedance of the primary when the secondary is short circuited and the tertiary open. Z p t = Impedance of the primary when the tertiary is short circuited and the secondary open. Z s t = Impedance of the secondary when the tertiary is short circuited and the primary open. Zps— Z p + Z s Z p t = Zp + z t Zst = z s + z t Z p = '/2 ( Zps + Zpt-Zst) Zs = '/2 ( Zps + Zs, - Zpt) z t = y2 (Zpt + Zst - Z p s ) Star point is fictit ious. Z s is very small and can be negative 22 3.5 Power flow analysis The power flow (load flow) analysis involves the power flows calculation and voltage of a transmission network for specified terminal or bus conditions. Such calculations are required for the analysis of transmission losses. The system is assumed to be balanced. This allows a single phase representation of the system. Associated with each bus there are four quantities: active power P, reactive power Q, voltage magnitude V, and voltage angle 6. Three types of buses are represented, and at each bus two of the above four quantities are specified 1. Voltage controlled (PV) bus : Active power and voltage magnitude are specified . limits to the reactive power are specified. 2. Load (PQ) bus: Active power and reactive power are specified. Normally loads are assumed to have constant power. 3. Slack (Swing) bus: Voltage magnitude and phase angle are specified. Because power losses in the system are not known a priori, at least must have unspecified P and Q. the slack bus is the only bus with known voltage. I 1 ~Y 11 Y 12 T 2 — Y 21 Y 22 Y "i Y n2 Y in Y In Y V V., V (3.29) n is the total number of nodes Yu is the self admittance of node i (sum of all the admittances terminating at node i) Yu is the mutual admittance between nodes i and node j (negative of the sum of all the admittances between nodes i and node j) / / is the phasor current flowing into the network at node i Vi is the phasor voltage to ground at node i 23 3.5.1 Nonlinear power flow Equation 3.29 would be linear if the current injection I was known, In practice, the current injections are not known for most nodes. The current at any node k is related to P, Q and V For P Q nodes, P and Q specified and for the P V nodes P and the magnitude of the V are specified. For other type of nodes, the relationship between P, Q, V and I are defined by the characteristics of the devices connected to the nodes. The boundary conditions imposed by the different types of nodes make the problem nonlinear and therefore power flow equations are solved iteratively using techniques such as the Gauss- Seidel (G-S) or Newton Raphson (N-R) method. 3.5.2 Selection of solution method The time taken to perform one iteration of the computation is relatively smaller in case of G-S method as compared to N-R method but the number of iteration required by G-S method are larger as compared to N-R method . They increase with the increasing system size. The convergence of N-R method is not effected by the selection of the slack bus whereas G-S method is sometimes very seriously affected and the selection of the particular bus may result in poor convergence. G-S method is easy to programme and uses core memory most efficiently. Large power systems N-R method is found to be more efficient and practical from the view point of computational time and convergence characteristics. Therefore Newton Raphson method is selected as the best method for load flow analysis 3.5.3 Newton Raphson (N-R) method For any node k T - p k - j Q k (3.30) k ~ Sk = Pk+jQk = V k i k (3.31) 24 From equation 3.29 T k = f Y j r (3.32) m=1 From equation 3.31 and 3.32 P k + j Q k = K l J ( . G k m - j B k m ) V m m=1 Jek \(V a-iem —V.V pMk-6^ VkVm ={Vke^)(Vme-^) = VkVmeJ VkVm - Vk Vm (cos 9km + 7 s in 0km) m=1 Qk=Vk2(GkmVmsrnekm-BkmVmcos9km) m=I P and Q at each bus are functions of voltage magnitude V and angle 9 sp denotes specified values, then load flow equations are sp pn{6x...en,vy.v„) = pnsp Qx(ev..9n,Vx..Vn) = Qxsp Q„(9l...9„,Vr..V„) = Qn sp (3.33) (3.34) Pk and Qk from real form Pk = Vkfj(GkmVmcos9km + BkmVmsrn9km) (3-35) (3.36) Using Taylor 's theorem and neglecting higher terms we can arrange above load flow Equations in the form 25 d dx " 'd6n dV, •' psp_ n ) 3Pn dpn dp„ fyn p SP rn .y °) ••' n ) d0] ' d9„ dVx dVn Q;P - 0 , ( 0 , ° ...V °) n ) 3 0 , 50 , 5 0 , 3 0 , 5(9, d0„ dV, WN Q:p SQN 30„ 5 0 „ 3 0 „ dpx dp, dp] dpj_ ddx dd„ dV, . s v n J A6>, A0n AV, AV, J -Jacobian matrix ~dP dP~ ~AP~ 30 dV 'AO _ A 0 M M AV _ _39 3V„ AP A 0 Ad AV (3.37) 3.6 Line flow equations After the iterative solution of bus voltage is completed, line f lows can be calculated. The current at bus p in the line connecting bus p to q is y'pq ipq=(Vp-V-)ypq+Vp 2 Ppq jQpq Vpq ' pq Ppq-jQpq=Vp[(Vp-Vq)ypq+Vp±-f-] =v: M3 P G e n Q G e n X CS 1 o Q M in P_ L oa d Q _L oa d Slack bus 1 J J ? ? J J - - Voltage controlled bus 2 J 7 J 7 J J - - Load bus 0 ? 9 - - - J J Initially, Voltage and phase angle of each node is assumed one per unit and zero degrees. For the Slack bus, Voltage and angle are known, active power generation and reactive power generation are calculated by the programme. For the Voltage controlled busses; Voltage and active power generation are known, angle and reactive 29 power generation are calculated by the programme. For Load buses, active power consumption and reactive power consumption are known, Voltage and angle are calculated by the programme. 4.3 Simulation procedure Transmission System shown in annex 15 was simulated using MATLAB. 1. Transmission line data and bus data are listed in Table 4.1 and Table 4.2 respectively. Fr om B us To B us R es is ta nc e ( R ) P. U R ea ct an ce (X ) P. U . H al f of to ta l lin e ch ar gi ng Su ce pt an ce Y /2 Ta p Po si tio n P. U Table 4.1 Line data B us N o. B us t yp e V ol ta ge ( p. u. ) A ng le (D eg re es ) P Lo ad (M W ) Q _L oa d (M va r) P G en (M W ) Q G en (M va r) Q M in (M va r) Q M ax (M va r) Q C ap . B an k (M va r) • Table 4.2 Bus data 2. Specify some programme parameters : Base MVA: 100 Accuracy: 0.001 Maximum iterations: 100 30 3. Each row in the bus-data matrix corresponds to a bus in the system and there are 11 entries (columns) per row. Column 1 is the bus number. Column 2 is designated for bus code where code 0, 1 and 2 are used to specify load buses, slack bus, and voltage controlled bus respectively. Column 3 & 4 are reserved for voltage magnitude and phase angle. For slack bus, voltage bus and phase angle will be specified. Column 5 & 6 are for load buses, real and reactive powers are entered in positive MW and Mvar. It is important to enter initial bus voltage and phase angle. A flat start (V=l , 5 =0) is used. Column 7 & 8 are used to specify generated MW and Mvar respectively. Column 9 & 10 are denoted for generator unit minimum and maximum limits of Mvar. The last column is used to specify positive injected Mvar of shunt capacitors. Power flow programme reads bus data from "Budata.xls" input file. 4. Transmission line parameters are entered in line-data matrix which consists of 6 columns. Columns 1 and 2 are reserved for the bus numbers column 3 through 5 are used for line resistance, reactance and one-half of the total line charging Suceptance. The last column has the value of 1 for transmission line or transformer tap setting. Power flow programme reads line data from "Lndata.xls" input file. 5. The following functions are used in sequence to compute and display power flow solution in MATLAB work space, (Annex 12). Function Description Lfybus.m Forms bus admittance matrix Lfnewton.m Load flow solution by Newton Raphson method Busout.m Prints power flow solution on the screen Lineflow.m Computes and displays line flow and losses Table 4.3 MATLAB functions 31 6. M A T L A B input file is shown in below clear; basemva=T00; accuracy=0.0001; maxiter=100; busdata=xlsread('Budata.xls'); linedata=xlsread('Lndata.xls'); Lfybus Lfnewton busout Lineflow 32 Chapter 5 Resu l t s and Analys i s 5.1 Results of load flow study Table 5.1 summarizes thirty minutes load, generation and losses in transmission network over the twenty four hours. Load and generation data (Wednesday, August 13, 2008) were taken for the load flow analysis. Load Generation Losses Losses (%) Time MW Mvar MW Mvar (Generator) Mvar (BSC) Total Mvar MW Mvar 0:30 783.10 390.34 796.25 213.78 45.00 258.78 13.15 -131.56 1.65% 1:00 782.90 384.14 795.93 206.33 45.00 251.33 13.03 -132.81 1.64% 1:30 782.30 383.32 795.26 204.41 45.00 249.41 12.96 -133.91 1.63% 2:00 767.40 365.50 779.55 176.34 45.00 221.34 12.15 -144.16 1.56% 2:30 775.20 377.40 787.57 192.42 45.00 237.42 12.37 -139.98 1.57% 3:00 762.50 365.70 774.54 174.87 45.00 219.87 12.04 -145.83 1.55% 3:30 761.80 343.60 773.56 148.42 45.00 193.42 11.76 -150.19 1.52% 4:00 771.70 366.05 784.20 178.85 45.00 223.85 12.50 -142.20 1.59% 4:30 812.90 372.85 825.78 191.21 45.00 236.21 12.88 -136.64 1.56% 5:00 877.40 361.25 891.31 191.03 45.00 236.03 13.91 -125.22 1.56% 5:30 955.80 385.60 972.15 244.15 45.00 289.15 16.35 -96.46 1.68% 6:00 1029.00 403.98 1047.81 288.37 45.00 333.37 18.81 -70.61 1.79% 6:30 1036.40 416.08 1055.44 281.24 65.00 346.24 19.04 -69.84 1.80% 7:00 1033.60 430.01 1052.75 299.16 65.00 364.16 19.15 -65.85 1.82% 7:30 1035.90 466.51 1055.27 336.37 70.00 406.37 19.37 -60.14 1.84% 8:00 1146.90 534.96 1168.86 435.50 85.00 520.50 21.96 -14.46 1.88% 8:30 1175.60 598.00 1200.05 540.72 95.00 635.72 24.45 37.72 2.04% 9:00 1208.40 635.07 1234.37 604.40 95.00 699.40 25.97 64.33 2.10% 9:30 1224.29 653.37 1251.14 636.62 95.00 731.62 26.85 78.25 2.15% 10:00 1265.00 643.51 1293.82 643.36 95.00 738.36 28.82 94.85 2.23% 33 Load Generation Losses Losses Time MW Mvar MW Mvar (Generator) Mvar (BSC) Total Mvar MW Mvar (%) 10:30 1271.30 674.05 1300.31 651.44 120.00 771.44 29.01 97.39 2.23% 11:00 1274.40 687.50 1304.15 670.76 120.00 790.76 29.75 103.26 2.28% 11:30 1268.00 685.10 1297.31 663.79 120.00 783.79 29.31 98.69 2.26% 12:00 1233.70 694.15 1262.03 655.20 120.00 775.20 28.33 81.05 2.24% 12:30 1206.40 675.45 1234.68 636.13 115.00 751.13 28.28 75.68 2.29% 13:00 1196.30 673.65 1223.74 630.22 115.00 745.22 27.44 71.57 2.24% 13:30 1218.10 690.70 1244.94 651.25 115.00 766.25 26.84 75.55 2.16% 14:00 1232.30 700.25 1259.44 662.67 115.00 777.67 27.14 77.42 2.15% 14:30 1242.60 695.75 1269.77 661.63 115.00 776.63 27.17 80.88 2.14% 15:00 1239.15 687.15 1265.81 647.89 115.00 762.89 26.66 75.74 2.11% 15:30 1214.80 674.65 1240.05 607.81 120.00 727.81 25.25 53.16 2.04% 16:00 1230.30 664.45 1254.85 603.45 105.00 708.45 24.55 44.00 1.96% 16:30 1201.40 676.82 1224.49 596.55 105.00 701.55 23.09 24.73 1.89% 17:00 1186.00 650.18 1208.39 549.63 105.00 654.63 22.39 4.45 1.85% 17:30 1186.40 635.88 1208.75 526.24 105.00 631.24 22.35 -4.64 1.85% 18:00 1207.10 605.90 1229.56 503.81 95.00 598.81 22.46 -7.09 1.83% 18:30 1324.30 636.05 1354.53 597.41 95.00 692.41 30.23 56.36 2.23% 19:00 1596.00 694.12 1645.77 815.59 90.00 905.59 49.77 211.47 3.02% 19:30 1635.40 702.92 1688.88 858.99 90.00 948.99 53.48 246.07 3.17% 20:00 1599.50 682.77 1650.43 824.11 80.00 904.11 50.92 221.34 3.09% 20:30 1570.20 671.58 1617.26 772.39 85.00 857.39 47.06 185.81 2.91% 21:00 1492.00 634.95 1533.69 678.62 85.00 763.62 41.69 128.67 2.72% 21:30 1338.90 578.78 1370.38 561.88 85.00 646.88 31.48 68.10 2.30% 22:00 1206.80 530.59 1231.32 435.32 85.00 520.32 24.52 -10.27 1.99% 22:30 1123.90 499.27 1145.17 388.88 75.00 463.88 21.27 -35.39 1.86% 23:00 999.90 462.50 1016.02 297.17 75.00 372.17 16.12 -90.33 1.59% 23:30 950.30 454.20 965.05 275.10 75.00 350.10 14.75 -104.10 1.53% 24.00 866.50 452.90 880.00 254.96 70.00 324.96 13.50 -127.94 1.53% Table 5.1 Results of thirty minutes load-flow analysis 34 Active Power Loss 3.5% 3.0% 2.5% j? 2.0% ¥ 3 1.5% 1.0% 0.5% 0.0% o o o o o o o o o o o o o o o o o o o o o R - CM to 10 o> o > o f ^ Time o o o o o o o n tt in © N dj o CM CM CM 60 55 50 45 40 35 - 30 8 25 -I 20 15 10 5 0 Figure 5.1 Transmission losses as a percentage Transmission Losses o o o o o o o o o o o o o o o o o o co di O CM CO u> V2coC then the receiving end voltage will drop and if I2coL < V2coC (light load) the voltage will rise. Normally the loading is higher than the SIL and therefore, the condition I2©L > V2coC exists and the net effect of the line will be to absorb the reactive vars. Under light load conditions, the line will work as vars generator. Time Figure 5.5 Reactive power generation, consumption and losses Variation of reactive power loss, generation and consumption over twenty four hours are shown in Figure 5.5. Highest reactive power loss is around 19.30 p.m.and It is 246 Mvar. Figure 5.5 shows that reactive power consumption is greater than reactive power generation in light load condition (0.00 a.m. to 8.00 a.m, and 22.00 p.m to 24.00 p.m). Because part of the total reactive power consumption will be met by 38 transmission lines. Balance will be provided by generators and breraker switch capacitors (BSC) to maintain voltage within allowable range. Minimum reactive power generation is around 3.30 a.m. At heavy load condition (8.00 a.m to 22.00 p.m.), reactive power consumption is less than reactive power generation. 5.4 Evaluation of Energy loss Load factor (e) It is "the ratio of the average load over a designated period of time to the peak load occurring on that period [15]." Therefore, the load factor e is Average load ,, e = = P-4) Peak load e= P max Pav=j\PW Loss factor (LF) It is "the ratio of the average power loss to the peak load power loss during a specified period of the time [15]." Therefore, the loss factor LF is Average power loss L F = ( 5 " 5 ) Power loss at peak load Utilization time of losses (UTL) The UTL is defined as the time required to dissipate same amount of energy losses if peak power loss is maintained instead of actual demand curve. An empirical formula (Jung's Formula) for UTL in terms of load factor (e) is as follows UTL = e2{2 + e2)* 24 Hrs / Day ^ (1 + 2e) 39 An approximate formula to relate the loss factor to the load factor is LF = (0.2* e) + (0.8*e2) Pav = 1 130.38 MW Pm a x= 1635.4 MW Peak power loss = 53.48 MW Total energy delivered = 27128.17 MWh From equation 5.4 e = 0.6912 ' From equation 5.7 LF = 0.5204 From equation 5.6 UTL = 11.925 hrs/day Method 1 By definition of UTL Energy loss = (Peak power loss) x (UTL) MWh = 637.73 MWh = 2.35 % Method 2 From equation 5.5 Average power loss = (Peak power loss) x (LF) MW Total daily energy loss = Average power loss x 24 MWh = 667.97 MWh = 2.46 % 40 Chapter 6 Conclusion and Recommendation 6.1 Conclusion and Discussion According to the 2007 CEB statistics, total system losses (Energy losses) amount to around 15.67%. It is a heavier loss compared with losses in developed countries. CEB has forecasted that the transmission losses are 2.4% and 2.0% at 2008 and 2010 respectively with their expansions. According to this study, evening peak demand which is 1635.4 MW is recorded around 19.30 p.m. The total generation required is 1688.8 MW. Maximum active power loss is 53.4 MW. As a percentage of total generation, it is a 3.17 %. Lowest demand and generation are recorded around 3.30 a.m. It is around 761.8 MW and 773.56 M W respectively. Minimum loss is 11.75 M W and 1.52 % of total generation. Day peak is around 11.00 a.m. Any time in between 0.00 a.m. to 24.00 midnight, Transmission losses vary from 1.52 % to 3.17 %. Highest reactive power loss is around 19.30 p.m. and It is 246 Mvar. Reactive power consumption is greater than reactive power generation in light load condition. Minimum reactive power generation is around 3.30 a.m. At heavy load condition reactive power consumption is less than reactive power generation. At light load condition, vars absorbed are higher than vars generated, because part of the total reactive power consumption will be met by transmission lines. Due to available excess system capacity of var generation, vars can be sold to the embedded power producers and which will generate additional revenue to the CEB. At peak time period, vars can be obtained from the embedded power producers. Most of studies have been done neglecting transformer series resistance. But the loss due to transformer resistance is significant. The difference between with and without transformer resistance varies in between 0.5 % to 0.8 % .Thus, It can be concluded that neglecting transformer series resistance is not justifiable. 41 MATLAB is found to be a powerful and convenient programming tool for load flow analysis. It is easy to handle complex numbers and matrix calculations with M A T L A B due to inbuilt functions for handling complex numbers. 42 References: [1] P.Kundur, "Power System Stability & Control", McGraw-Hill Education, November 1994 [2] B.M.Weedey, "Electric Power Systems" Third Edition, John Wiley & Sons Ltd., New York, 1979. [3] C.L.Wadhwa. "Electrical Power Systems", Second Edition, New Age International (P) Ltd., New Delhi ,7th Reprint 1997. [4] Olle 1. Elgerd, "Electric Energy Systems Theory An Introduction" Second Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 12th Reprint 1999. [5] P.S.Bimbhra, "Electrical Machinery" (Theory, Performance and Applications) Fifth Edition, Khanna publishers, Delhi, 1997. [6] B.L.Theraja and A.K. Theraja, "Textbook of Electrical Technology "Twenty Second Edition, S.Chand & Company Ltd., New Delhi 1997. [7] Stephen J.Chapman "MATLAB Programming for Engineers" Second Edition, Thomson Asia Pte Ltd., 4th Reprint 2004. [8] Turan Gonen "Modern Power System Analysis", John Wiley & Sons, Inc., USA, 1988. [9] Fernando L. Alvarado "Solving Power Flow Problems with a MATLAB Implementation of the Power System Applications Data Dictionary" ECE Department, the University of Wisconsin, Madison, Wisconsin 53705 [10] Long Term Transmission Expansion Plan 2004, Transmission Planning Branch, CEB [11] Long Term Generation Expansion Plan 2006-2020, Generation Planning Branch, CEB [12] Long Term National Demand Forecast Report 2006 , Generation Planning Branch, CEB [13] Ceylon Electricity Board Statistical Digest -2007 [14] Ceylon Electricity Board Statistical Digest -2005 [15] Turan Gonen "Electric Power Distribution System Engineering." McGraw- Hill Inc. 2nd Reprint 1987. 43 National Transmission Network Annex 10 44 Annex 10 Data of Transmission Lines/ Under Ground Cables L in e Se ct io n > jt Ci rc ui ts C on du ct or L en gt h (k m ) R /c ct in p .u . X /c ct in p .u . Y /c ct in p .u . 132kV Transmission lines UG Kelanitissa-Fort 132 1 Cu500 4.9 0.00143 0.00267 0.10997 Fort-Kollupitiya 132 1 Cu350 2.7 0.00093 0.00153 0.05321 Kollupitiya-Kolonnavva 132 1 Cu500 5.4 0.00158 0.00294 0.12119 Pannipitiya-Dehiwala 132 1 XLPE, 1000 9.0 0.00139 0.00816 0.10346 Colombo 1-K.olonnawa 132 1 XLPE, 1000 4.6 0.00071 0.00417 0.05288 Dehiwala-Havelock Town 132 1 XLPE, 800 8.5 0.00151 0.00805 0.09073 Colombo A-Colombo 1 132 1 XLPE. 800 6.3 0.00112 0.00597 0.06725 132k V Transmission lines OH New Laxapana-Canyon 132 1 Lynx 10.0 0.01022 0.02301 0.00487 Ukuwela-Bowatenna 132 1 Lynx 30.0 0.03065 0.06904 0.01462 Rantambe-Badulla 1 132 1 Lynx 37.0 0.03780 0.08515 0.01803 Rantambe-Badullla 2 132 1 Lynx 33.0 0.03371 0.07595 0.01608 Badulla-Inginiyagala 132 1 Oriole 79.9 0.08759 0.19993 0.03866 Inginiyagala-Ampara 132 1 Lynx 25.0 0.02554 0.05754 0.01218 Habarana-Valachchena 132 1 Lynx 99.7 0.10185 0.22945 0.04857 Kotmale-Kiribathkumbura 132 2 Lynx 22.5 0.02299 0.05178 0.01096 Kiribathkumbura-Ukuwela 132 2 Lynx 29.9 0.03055 0.06881 0.01457 Ukuwela-Habarana 132 2 Lynx 82.3 0.08408 0.18941 0.04009 Habarana-Anuradapura 132 2 Lynx 48.9 0.04996 0.11254 0.02382 Polpitiya-FCotmale 132 2 Lynx 29.5 0.03014 0.06789 0.01437 Biyagama-Sapugaskanda PS 132 2 Zebra 2.1 0.00092 0.00466 0.00109 Kelanitissa-Kolonnawa 132 2 Invar 2.2 0.00048 0.00386 0.00155 Kolonnawa-Pannipitiya 132 2 Lynx 12.9 0.01318 0.02969 0.00628 K.otugoda-Bolawatta(T) 132 2 Zebra 22.0 0.00960 0.04886 0.01144 Bolawatta(T)-Madampe(T)) 132 2 Lynx 22.6 0.02309 0.05201 0.01101 Madam pe(T)-Puttalam 132 2 Lynx 61.4 0.06272 0.14131 0.02991 Madampe(T)-SS 132 2 Lynx 6.8 0.00695 0.01565 0.00331 Kolonnawa-Aturugiriya 132 2 Lynx 14.0 0.01430 0.03222 0.00682 Athurugiriya-Oruwala 132. 2 Lynx 3.4 0.00347 0.00782 0.00166 Athurugiriya-Thulhiriya(T) 132 2 Lynx 36.0 0.03678 0.08285 0.01754 Thulhiriya(T)-SS 132 2 Lynx 23.9 0.02442 0.05500 0.01164 Thulhiriya(T)-Polpitiya 132 2 Lynx 28.0 0.02860 0.06444 0.01364 K.olonnawa-Kosgama(T) 132 2 Lynx 31.9 0.03259 0.07342 0.01564 Kosgama(T)-SS 132 2 Lynx 0.5 0.00051 0.00115 0.00024 K.osgama(T)-Polpitiya 132 2 Lynx 34.4 0.03514 0.07917 0.01676 Pannipitiya-Ratmalana 132 2 Lynx 6.9 0.00705 0.01588 0.00336 45 Pannipitiya-Panadura(T) 132 2 Goat 12.3 0.00629 0.02734 0.00631 Panadura(T)-Matugama 132 2 Goat 29.1 0.01488 0.06467 0.01493 Panadura(T)-SS 132 2 Lynx 4.7 0.00480 0.01082 0.00229 Polpitiya-Laxapana 132 2 Lynx 8.3 0.00848 0.01910 0.00404 Laxapana-Wimalasurendra 132 2 Lynx 5.1 0.00521 0.01174 0.00248 Laxapana-New Laxapana 132 2 Lynx 0.6 0.00061 0.00138 0.00029 New Laxapana-Polpitiya 132 2 Lynx 8.0 0.00817 0.01841 0.00390 Kiribathkumbura-Kurunegala 132 2 Lynx 34.6 0.03535 0.07963 0.01686 New Anuradapura-Trinco 132 2 Lynx 103.3 0.10553 0.02377 0.05033 New Laxapana-Balangoda 132 2 Lynx 43.9 0.04485 0.10103 0.02139 Balangoda-Samanalawewa 132 2 Zebra 19.0 0.00829 0.04220 0.00988 Samanalawewa-Embilipitiya 132 2 Lynx 38.0 0.03882 0.08745 0.01851 Balangoda-Deniyaya(T) 132 2 Tiger 44.2 0.06266 0.10527 0.02093 Deniyaya(T)-Galle 132 2 Tiger 57.3 0.08123 0.13648 0.02713 Laxapana-NuwaraEliya 132 2 Lynx 38.8 0.03964 0.08930 0.01890 NuwaraEliya-Badulla 132 2 Lynx 35.4 0.03616 0.08147 0.01725 Embilipitiya-Matara 132 2 Lynx 52.0 0.05312 0.11967 0.02533 Embilipitiya-Hambantota 132 2 Zebra 35.0 0.01527 0.07774 0.01820 Puttalam-Anuradapura 132 2 Lynx 75.0 0.07662 0.17261 0.03654 Anuradapura-New Anuradapura 132 2 Lynx 1.5 0.00153 0.00345 0.00073 Anuradapura-Vavunia 132 2 Lynx 54.7 0.05588 0.12589 0.02665 Kotugoda-Weyangoda 132 2 2xZebra 17.0 0.00371 0.02986 0.01195 Sapugaskanda GS-Biyagama 132 2 Zebra 4.2 0.00183 0.00933 0.00218 Kolonnawa-Kelaniya 132 2 Zebra 6.6 0.00288 0.01466 0.00343 Kelaniya-Kotugoda 132 2 Zebra 19.3 0.00842 0.04287 0.01004 Kelaniya-KHD* 132 2 Zebra 3.6 0.00157 0.00800 0.00187 Kelaniya-Sapugas. GS* 132 2 Zebra 4.6 0.00201 0.01022 0.00239 Single in out to Horana from Panadura T-Matugama* 132 2 Zebra 20.0 0.00872 0.04442 0.01040 Kukule-Matugama 132 2 Lynx 30.0 0.03065 0.06904 0.01462 Anuradapura-Vavunia 132 2 Zebra 54.7 0.02386 0.12149 0.02845 220 k V transmission lines V ictori a-Ran den i gal a 220 1 2xZe"bra 16.4 0.00129 0.01037 0.03202 Randenigala-Rantambe 220 1 2xZebra 3.1 0.00024 0.00196 0.00605 K.otmale-New Anuradapura 220 1 Zebra 163.0 0.02560 0.13033 0.23545 Biyagama-Kelanitissa 220 2 2xGoat 12.5 0.00134 0.00764 0.02361 Biyagama-Kotugoda 220 2 Zebra 19.6 0.00308 0.01567 0.02831 Biyagama-Kotmale 220 2 2xZebra 70.5 0.00554 0.04457 0.13764 Kotmale-Victoria 220 2 2xZebra 30.1 0.00236 0.01903 0.05877 Pannipitiya-Biyagama 220 2 Zebra 15.5 0.00243 0.01239 0.02239 Note: The Line parameters are given in p.u. values w.r.t. ZbaSe=V2baSe/MVA base (MVA base~100, VbaSe in kV ) 46 Annex 10 Data of Existing Two Winding Transformers Z% p.u. MVA base Units H kV L kV Z p.u. (100MVA base) G e n e r a t o r T r a n s f o r m e r s 1 Victoriya 15.00 96.0 J 220.0 12.5 0.15625 2 Kotmale 10.50 90.0 3 220.0 13.8 0.11667 3 Randenigala 14.50 81.0 2 220.0 12.5 0.17901 4 Ukuwela 12.30 27.0 2 132.0 12.5 0.45556 5 Bowatenna 10.00 50.0 1 132.0 12.5 0.20000 6 Polpitiya 12.10 53.7 2 132.0 12.5 0.22533 7 Canyon 10.80 38.0 2 132.0 12.5 0.28421 8 Nlaxapana 13.50 72.0 2 132.0 12.5 0.18750 9 10.00 40.0 1 132.0 11.0 0.25000 10 Olaxapana 10.00 16.0 2 132.0 11.0 0.62500 11 Iginiyagala 8.00 10.0 1 33.0 6.9 0.80000 12 4.00 5.0 1 33.0 6.9 0.80000 13 Samanalawewa 11.00 71.0 2 132.0 10.5 0.15493 14 Kukule 11.00 46.0 2 132.0 13.8 0.23913 15 Wimalasurendra 12.30 32.1 2 132.0 11.0 0.38318 16 Ambilipitiya 13.00 70.0 2 132.0 11.0 0.18571 17 Matara 10.00 32.0 1 33.0 11.0 0.31250 18 Horana 10.00 32.0 1 33.0 11.0 0.31250 19 Colombo(Barge) 12.00 76.0 1 220.0 11.0 0.15789 20 CCY-AES -GT 12.50 161.0 1 220.0 11.0 0.07764 21 CCY-AES -ST 12.50 81.0 1 220.0 11.0 0.15432 22 CCY-Kalanitissa - G T 12.00 147.0 1 220.0 11.0 0.08163 23 CCY-Kalanitissa -ST 12.00 83.0 1 220.0 11.0 0.14458 24 KHD(Asia Power) 10.00 36.0 2 132.0 11.0 0.27778 25 Lakdanavi 9.04 20.0 1 33.0 11.0 0.45200 26 Sapugas(01d-4 nos) 17.80 50.0 2 142.0 11.0 0.35600 27 Sapugas(Ext-4 nos) 17.80 50.0 1 142.0 11.0 0.35600 28 Sapugas(Ext.-4 nos) 17.80 50.0 1 142.0 11.0 0.35600 29 Puttalam-Heladanavi 12.00 80.0 2 132.0 15.0 0.15000 30 GT7 11.00 149.0 1 132.0 11.0 0.07383 31 GT4-5 14.70 27.0 2 34.0 11.5 0.54444 Gr id Stat ion T r a n s f o r m e r s 32 Kalanitissa 15.00 60.0 2 132.0 33.0 0.25000 33 Kalaniya 10.00 31.5 1 132.0 33.0 0.31746 34 Sapugaskanda 9.90 30.0 J 132.0 33.0 0.33000 35 Bolawatta 10.95 31.5 j 132.0 33.0 0.34762 36 Madampe 10.00 31.5 2 132.0 33.0 0.31746 47 37 Puttalam 9.95 31.5 2 132.0 33.0 0.31587 38 Veyangoda 10.00 31.5 2 132.0 33.0 0.31746 39 Kurunagala 10.00 31.5 2 132.0 33.0 0.31746 40 Kiribathkubura 10.90 31.5 3 132.0 33.0 0.34603 41 Anuradhapura 10.65 10.0 2 132.0 33.0 1.06500 42 Anuradhapura 10.00 31.5 1 132.0 33.0 0.31746 43 Vavniya 10.70 10.0 2 132.0 33.0 1.07000 44 Trinco 10.52 31.5 2 132.0 33.0 0.33397 45 Habarana 10.46 31.5 2 132.0 33.0 0.33206 46 Valachchena 10.00 10.0 2 132.0 33.0 1.00000 47 Ukuwela 9.67 31.5 2 132.0 33.0 0.30698 48 Rantabe 9.90 105.0 1 220.0 132.0 0.09429 49 WPS 10.00 15.0 1 132.0 33.0 0.66667 10.30 31.5 1 132.0 33.0 0.32698 50 Thuliriya 10.00 31.5 3 132.0 33.0 0.31746 51 Athurugiriya 10.00 31.5 2 132.0 33.0 0.31746 52 Sithawaka 10.00 31.5 2 132.0 33.0 0.31746 53 Kosgama 10.00 31.5 2 132.0 33.0 0.31746 54 N'Eliya 9.64 31.5 2 132.0 33.0 0.30603 55 Badulla 11.00 31.5 2 132.0 33.0 0.34921 56 Am para 10.02 31.5 2 132.0 33.0 0.31810 57 Iginiyagala 11.00 15.0 2 132.0 33.0 0.73333 58 Hambantota 10.87 16.0 2 132.0 33.0 0.67938 59 Ambilipitiya 10.00 31.5 2 132.0 33.0 0.31746 60 Matara 10.00 31.5 3 132.0 33.0 0.31746 61 Balangoda 10.00 31.5 2 132.0 33.0 0.31746 62 Deniyaya 10.76 31.5 3 132.0 33.0 0.34159 63 Galle 10.40 30.0 2 132.0 11.0 0.34667 64 Ratnapura 10.00 31.5 2 132.0 33.0 0.31746 65 Matugama 9.98 31.5 j 132.0 33.0 0.31683 66 Horana 10.00 31.5 2 132.0 33.0 0.31746 67 Panadura 9.98 31.5 2 132.0 33.0 0.31683 68 Pannipitiya 9.90 31.5 J 132.0 33.0 0.31429 69 Ratmalana 10.20 31.5 3 132.0 33.0 0.32381 70 Kolonnawa 10.00 31.5 5 132.0 33.0 0.31746 71 S'Japura 10.00 31.5 2 132.0 33.0 0.31746 72 Dehiwala 10.00 31.5 2 132.0 33.0 0.31746 73 H'Town 10.00 31.5 2 132.0 33.0 0.31746 74 Kollupitiya 29.20 30.0 -> j 132.0 11.0 0.97333 75 Fort 29.20 30.0 3 132.0 11.0 0.97333 76 Maradana 29.00 31.5 3 132.0 11.0 0.92063 48 D at a of E xi st in g T hr ee W in di ng s T ra ns fo rm er s A nn ex 4 D es cr ip ti on kV M V A B et w ee n Z % p. u. M V A ba se Z % (E qu iv al en t St ar C on ne ct io n) Z p. u . (M V A b= 10 0) D es cr ip ti on U ni ts H L M H L M B et w ee n Z % p. u. M V A ba se Z % (E qu iv al en t St ar C on ne ct io n) Z p. u . (M V A b= 10 0) K el an it is sa 1. 2 22 0. 0 33 .0 13 2. 0 15 0. 0 40 .0 15 0. 0 H -M 14 .2 15 0. 0 H 10 .3 7 9. 47 K el an it is sa H -L 85 .8 15 0. 0 L 46 .8 3 57 .2 0 K el an it is sa M -L 68 .9 15 0. 0 M -0 .9 0 45 .9 3 Pa nn ip it iy a 1- 2 22 0. 0 33 .0 13 2. 0 25 0. 0 60 .0 25 0. 0 H -M 14 .1 6 25 0. 0 H 6. 72 5. 66 Pa nn ip it iy a H -L 16 .6 1 60 .0 L 20 .9 7 27 .6 8 Pa nn ip it iy a M -L 11 .9 5 60 .0 M -1 .0 5 19 .9 2 B iy ag am a 1, 2 22 0. 0 33 .0 13 2. 0 25 0. 0 60 .0 25 0. 0 H -M 13 .8 25 0. 0 H -1 0. 24 5. 52 B iy ag am a - H -L 91 .3 25 0. 0 L 46 .7 6 36 .5 2 B iy ag am a - M -L 15 6. 3 25 0. 0 M 15 .7 6 62 .5 2 K ot ug od a 1- 2 22 0. 0 33 .0 13 2. 0 25 0. 0 60 .0 25 0. 0 H -M 13 .8 25 0. 0 H -1 0. 52 5. 52 K ot ug od a H -L 89 .9 25 0. 0 L 46 .4 8 35 .9 6 K ot ug od a M -L 15 6. 3 25 0. 0 M 16 .0 4 62 .5 2 N E W A nu ra dh ap ur a 1- 2 22 0. 0 33 .0 13 2. 0 15 0. 0 30 .0 15 0. 0 H -M 14 15 0. 0 H -1 6. 67 9. 33 N E W A nu ra dh ap ur a H -L 22 .7 30 .0 L 92 .3 3 75 .6 7 N E W A nu ra dh ap ur a M -L 35 .5 30 .0 M 26 .0 0 11 8. 33 R an ta be 1- 2 13 2. 0 12 .5 34 .5 34 .5 34 .5 10 .0 H -M 12 .2 34 .5 H 24 .6 4 35 .3 6 R an ta be H -L 12 .7 34 .5 L 12 .1 7 36 .8 1 R an ta be M -L 7. 9 34 .5 M 10 .7 2 22 .9 0 49 Annex 5 Data of Generators Power Stat ion G e n e r a t o r Units x Capaci ty ( M W ) Total Capaci ty (MW) MVA Total MVA cos a> Mvar at rated P.F. Canyon 2 x 3 0 60 2x37.5 75 0.85 19.75 Wimalasurendra 2 x 25 50 2x31.25 62.5 0.80 18.75 Old Laxapana 3 x 8.33 25 3x9.8 29.4 0.85 5.16 2 x 12.5 25 2x14.7 29.4 0.85 7.74 New Laxapana 2 x 5 0 100 2x62.5 125 0.80 37.50 Polpitiya 2 x 37.5 75 2x53.9 107.8 0.80 28.14 Victoria 3 x 7 0 210 3x82.5 247.5 0.85 43.46 Kotmale 3 x 6 7 201 3x90 270 0.80 47.41 Randenigala 2 x 6 1 122 2x81 162 0.80 42.67 Ukuwela 2 x 19 38 2x21.4 42.8 0.80 16.50 Bowatenna 1 x 40 40 1x47 47 0.80 30.00 Rantambe 2 x 2 4 . 5 49 2x30 60 0.80 18.00 Samanalawewa 2 x 6 0 120 2x70.6 141.2 0.85 37.19 Kukule 2 x 3 5 70 2x42 84 0.85 22.12 Iginiyagala 2x2.75 5.5 2x3.5 7 0.80 2x3.25 6.5 2x4 8 0.80 Udawalawe 2x3 6 2x3.3 6.6 0.90 Nillambe 2x1.6 3.2 2x2 4.4 0.80 CEB Hydro Total 1206.2 GT2 1x20 20 1x31 31 0.85 GT3 1x20 20 1x31 31 0.85 GT4 1x20 20 1x27 27 0.85 12.00 GT5 1x20 20 1x27 27 0.85 12.00 GT6 1x20 20 1x27 27 0.85 50 GT7 1 x 1 1 5 115 1x154.6 154.62 0.80 92.78 CCY- GT 1x104 104 1x133 133 0.80 80.00 CCY-ST 1x61 61 1x81 81 0.80 48.60 Sapugaskanda Diesel 4 x 2 0 80 4x26.5 106 0.80 8.00 Sapugaskanda Diesel (Ext.) 4 x 10 40 4x12.9 51.6 0.80 6.00 4x 10 40 4x12.9 51.6 0.80 6.00 Chunnakam 1x8 8 CEB T h e r m a l Tota l 548 Lakdhanavi 4x5.63 22.5 4x7.5 30.00 0.80 4.50 Asia Power Ltd 8x6.375 51 8x8 64.00 0.80 4.80 Colombo Power (Pvt) Ltd 4x16 64 4x19.622 78.48 0.80 11.77 ACE Power Matara 4x6.2 24.8 4x7.97 31.88 0.80 4.78 ACE Power Horana 4x6.2 24.8 4x7.97 31.88 0.80 4.78 AES Kelani (Pvt.) Ltd-CCY-GT 1x109 109 1x144.95 144.95 0.80 80.00 AES Kelani (Pvt.) Ltd-CCY-ST 1x54 54 1x80 80.00 0.80 43.20 Heladanavi (Pvt.) Ltd. 6x16.6 100 6x21.34 128.07 0.80 12.81 ACE Power Embilipitiya 14x7.107 100 14x9.21 129.01 0.80 5.53 IPP Total 550.1 Small hydro 119 Wind j Grand Total 2426.3 • 51 Annex 6 Location of Existing, Committed and Candidate Power Stations No. HYDROPOWER PLANT CAPACITY (MW) 1 CANYON 60 2 WIMALASURENDRA 50 3 NEW LAXAPANA 100 4 OLD LAXAPANA 50 5 POLPITIYA 75 6 KOTMALE 201 7 VICTORIA 210 8 RANDENIGALA 122 9 RANTAMBE 49 10 UKUWELA 38 11 BOWATENNA 40 12 SAMANALAWEWA • 120 13 UDAWALAWE 06 14 INGINIYAGALA 11 15 NILAMBE 03 16 KUKULE 70 17 UPPER KOTMALE = 150 18 BROADLANDS X 40 19 UMA OYA X 150 20 MORAG0LLA X 27 21 GINGANGA x 49 No. THERMAL POWER PLANT CAPACITY (MW) ® KELANITISSA POWER STATION GAS TURBINE (OLD) 48 GAS TURBINE (NEW) 115 GAS TURBINE (JBIC) 65 COMBINED CYCLE (AES) • 163 COLOMBO POWER (Pvt)Ltd. 60 SAPUGASKANDA POWER STATION ® DIESEL 144 SAPUGASKANDA GRID SUBSTATION LAKDANAVI 22.5 ASIA POWER Ltd. 49 © ACE POWER MATARA • 20 ® ACE POWER HORANA 20 © CHUNNAKAM 08 © HE LAD AN AVI 100 © ACE POWER EMBILIPITIYA 100 © COMBINED CYCLE PLANT KERAWALAPITIYA o 300 © COLOMBO POWER Pvt. 1TD. • LEGEND EXISTING PLANTS • CANDIDATES PLANTS X COMMITTED PLANTS Q 52 K E L A N I R IV E R u> (D W (D o n CO (0 CD 3 V) 0) 7 fi> € (D 7s = accuracy & iter <= maxiter % Test for max. power mismatch for ii=l :m for k = l : m A(ii ,k)=0; %lnitializing Jacobian matrix 8x8 matrix end ,end iter = iter+1; fo rn= l :nbus nn=n-nss(n); lm=nbus+n-ngs(n)-nss(n)-ns; J11=0; J22=0; J33=0; J44=0; for ii=l :nbr if mline( i i )==l % Added to include parallel lines if nl(ii) = = n | nr(ii) == n if nl(ii) = = n , 1 = nr(ii); end if nr(ii) == n , 1 = nl(ii); end J11 = J11+ Vm(n)*Vm(l)*Ym(n, l )*sin( t (n , I ) - delta(n) + delta(l)); J33=J33+ Vm(n)*Vm(l)*Ym(n, l )*cos( t (n , l ) - delta(n) + delta(l)); if kb (n )~= l J22=J22+ Vm(l)*Ym(n,l)*cos(t(n, l )- delta(n) + delta(l)); J44=J44+ Vm(l)*Ym(n,l)*sin(t(n, l)- delta(n) + delta(l)); else,end if kb(n) ~ = 1 & kb(l) ~=1 Ik = nbus+l-ngs(l)-nss(l)-ns; 11 = 1 -nss(l); % off diagonalelements of J1 A(nn, 11) =-Vm(n)*Vm(l)*Ym(n, l )*sin( t (n , l ) - delta(n) + delta(l)); if kb(l) == 0 % off diagonal elements of J2 A(nn, lk) =Vm(n)*Ym(n, l)*cos( t(n, l ) - delta(n) + delta(l)); end if kb(n) == 0 % off diagonal e lements of J3 A(lm, 11) =-Vm(n)*Vm(l)*Ym(n, l )*cos( t (n , l ) - delta(n)+delta(l)); end if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4 A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n, l )- delta(n) + delta(l)); end else, end else , end else, end end Pk = Vm(n)A2*Ym(n,n)*cos(t(n,n))+J33; Qk = -Vm(n)A2*Ym(n,n)*sin(t(n,n))-Jl 1; if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end if kb(n) — 2 Q(n)=Qk; if Qmax(n) ~= 0 Qge = Q(n)*basemva + Qd(n) - Qsh(n); if iter <= 7 if iter > 2 if Qge < Qmin(n), Vm(n) = Vm(n) + 0.01; elseif Qge > Qmax(n), Vrn(n) = Vm(n) - 0.01 ;end else, end else,end else,end end % Swing bus P % Between the 2th & 6th iterations % the Mvar of generator buses are % tested. If not within limits Vm(n) % is changed in steps of 0.01 pu to % bring the generator Mvar within % the specified limits. if kb(n) ~= 1 A(nn,nn) = J11; %diagonal elements of J1 DC(nn) = P(n)-Pk; end if kb(n) == 0 A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2 A(lm,nn)= J33; %diagonal elements of J3 A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4 DC(lm) = Q(n)-Qk; end end DX=A\DC'; for n=l :nbus nn=n-nss(n); lm=nbus+n-ngs(n)-nss(n)-ns; if kb(n) ~= 1 delta(n) = delta(n)+DX(nn); end i fkb(n) = = 0 Vm(n)=Vm(n)+DX(lm); end end maxerror=max(abs(DC)); if iter == maxiter & maxerror > accuracy fprintf( ' \nWARNING: Iterative solution did not converged af te r ' ) fprintf('%g', iter), fprintf( ' iterations.\n\n') fprintf('Press Enter to terminate the iterations and print the results \n') converge = 0; pause, else, end end if converge ~= 1 tech= (' ITERATIVE SOLUTION DID NOT CONVERGE') ; else, tech=(' Power Flow Solution by Newton-Raphson Method'); end V = Vm.*cos(delta)+j*Vm.*sin(delta); deltad=180/pi*delta; i=sqrt(-l); k=0; for n = 1 :nbus if kb(n) == 1 k=k+l; S(n)= P(n)+j*Q(n); Pg(n) = P(n)*basemva + Pd(n); Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); Pgg(k)=Pg(n); Qgg(k)=Qg(n); elseif kb(n) ==2 k=k+l ; S(n)=P(n)+j*Q(n); Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); Pgg(k)=Pg(n); Qgg(k)=Qg(n); % June 1997 end yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)A2); end busdata(:,3)=Vm'; busdata(-4)=deltad'; Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh); %clear A DC DX J11 J22 J33 J44 Qk delta lk 11 lm %clear A DC DX J11 J22 J33 Qk delta lk 11 lm This program prints the power flow solution in a tabulated form on the screen, busout.m disp(tech) fprintf(' Maximum Power Mismatch = %g \n', maxerror) fprintf(' No. of Iterations = %g \n\n', iter) head =[' Bus Voltage Angle L o a d - Generation— Injected' ' No. Mag. Degree MW Mvar MW Mvar M v a r ' disp(head) for n=l:nbus fprintf(' %5g', n), fprintf(' %7.3f , Vm(n)), fprintf(' %8 .3f , deltad(n)), fprintf(' %9.3f , Pd(n)), fprintfC %9.3f , Qd(n)), fprintf(' %9.3f , Pg(n)), fprintfC %9.3 f ' , Qg(n)), fprintfC %8.3f\n', Qsh(n)) end fprintfC \n'), fprintfC Total ') fprintfC %9.3f , Pdt), fprintfC %9.3f , Qdt), fprintfC %9.3f , Pgt), fprintf(' %9.3f , Qgt), fprintfC %9.3f\n\n', Qsht) This program is used in conjunction with If Newton For the computation of line flow and line losses. Lineflow.m SLT = 0; fprintf('\n') fprintf(' Line Flow and Losses \n\n') fprintf(' --Line-- Power at bus & line flow --Line lo s s - Transformer^ ' ) fprintf(' from to MW Mvar MVA MW Mvar tap\n') for n = 1 :nbus busprt = 0; for L = 1 :nbr; if busprt == 0 fprintf(' \n'), fprintf('%6g', n), fprintf(' %9.3f, P(n)*basemva) fprintf( '%9.3f, Q(n)*basemva), fprintf('%9.3f\n', abs(S(n)*basemva)) busprt = 1; else, end if nl(L)==n k = nr(L); In = (V(n) - a(L)*V(k))*y(L)/a(L)A2 + Bc(L)/a(L)A2*V(n); Ik = (V(k) - V(n)/a(L))*y(L) + Bc(L)*V(k); Snk = V(n)*conj(In)*basemva; Skn = V(k)*conj(Ik)*basemva; SL = Snk + Skn; SLT = SLT + SL; elseif nr(L)==n k = nl(L); In = (V(n) - V(k)/a(L))*y(L) + Bc(L)*V(n); Ik = (V(k) - a(L)*V(n))*y(L)/a(L)A2 + Bc(L)/a(L)A2*V(k); Snk = V(n)*conj(In)*basemva; Skn = V(k)*conj(Ik)*basemva; SL = Snk + Skn; SLT = SLT + SL; else, end if nl(L)==n | nr(L)==n fprintf( '%12g', k), fprintf( '%9.3f, real(Snk)), fprintf( '%9.3f, imag(Snk)) fprintf( '%9.3f, abs(Snk)), fprintf( '%9.3f, real(SL)), i fn l (L) ==n & a(L) ~= 1 fprintf( '%9.3f, imag(SL)), fprintf('%9.3f\n', a(L)) else, fprintf( '%9.3f\n', imag(SL)) end else, end end end %SLT = SLT; SLT = SLT/2; fprintf(' \n'), fprintf(' Total loss ') fprintf('%9.3f, real(SLT)), fprintf( '%9.3IV, imag(SLT)) fprintf(' \n'), fprintf(' Total loss %% ') fprintf('%9.4f, ((real(SLT)* 100)/Pgt)) clear Ik In SL SLT Skn Sn Annex 11 Bus Data Input File (Budata.xls) B us N o. B us t yp e V ol ta ge (P .U ) A ng le (D eg re es ) P_ L oa d (M W ) Q L o a d (M va r) P G e n (M W ) Q _G en (M va r) Q M in (M va r) Q M ax (M va r) Q _C ap . B an k (M va r) • 62 Annex 12 Line Data Input File (Lndata.xls) From Bus To Bus Resistance ( R ) p.u Reactance ( X ) p.u. Half of total line charging Suceptance (Y/2) p.u. Tap position p.u. 63 T hi rt y M in ut es L oa ds A nn ex l3 T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 11 :0 0 11 :3 0 12 :0 0 12 :3 0 M W 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 9. 0 9. 0 9. 0 9. 0 8. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 T 1 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 M W 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 9. 0 9. 0 9. 0 9. 0 8. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 T 2 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 T ot al M W 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 14 .0 18 .0 18 .0 18 .0 18 .0 16 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 1S .0 T ot al M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 M at ar a T 1 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 0 3. 0 5. 2 5. 0 4. 0 2. 5 5. 5 3. 0 7. 0 7. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 5 M at ar a T 1 M va r 6. 5 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 5 6. 0 6. 5 5. 0 5. 5 • 6. 0 6. 8 8. 2 8. 2 9. 2 9. 2 10 .2 10 .2 10 .0 10 .0 T 2 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 0 3. 0 5. 2 5. 0 4. 0 2. 5 5. 5 3. 0 7. 0 7. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 5 T 2 M va r 6. 5 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 5 6. 0 6. 5 5. 0 5. 5 6. 0 6. 8 8. 2 8. 2 9. 2 9. 2 10 .2 10 .2 10 .0 10 .0 T ot al M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 2. 0 6. 0 10 .4 10 .0 8. 0 5. 0 11 .0 6. 0 14 .0 14 .0 16 .0 16 .0 16 .0 16 .0 16 .0 15 .0 T ot al M va r 13 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 11 .0 12 .0 13 .0 10 .0 11 .0 12 .0 13 .6 16 .4 16 .4 18 .4 18 .4 20 .4 20 .4 20 .0 20 .0 B al an go da T ! M W 1. 1 0. 9 0. 9 0. 6 0. 6 0. 3 0. 3 0. 8 0. 8 1. 9 3. 6 4. 0 4. 8 4. 3 4. 3 3. 7 3. 9 3. 6 3. 5 3. 4 3. 4 3. 4 3. 6 3. 6 3. 6 B al an go da T ! M va r 1. 4 1. 2 1. 2. 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 0. 9 1. 0 1. 0 1. 1 1. 6 1. 6 1. 6 2. 2 2. 4 2. 9 2. 9 2. 9 2. 6 2. 6 3. 2 3. 2 T 2 M W 1. 1 0. 9 0. 9 0. 6 0. 6 0. 3 0. 3 0. 8 0. 8 1. 9 3. 6 4. 0 4. 8 4. 3 4. 3 3. 7 3. 9 3. 6 3. 5 3. 4 3. 4 3. 4 3. 6 3. 6 3. 6 T 2 M va r 1. 4 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 0. 9 1. 0 1. 0 1. 1 1. 6 1. 6 1. 6 2. 2 2. 4 2. 9 2. 9 2. 9 2. 6 2. 6 3. 2 3. 2 T ot al M W 2. 2 1. 8 1. 8 1. 2 1. 2 0. 6 0. 6 1. 6 1. 6 3. 8 7. 2 8. 0 9. 6 8. 6 8. 6 7. 4 7. 8 7. 2 7. 0 6. 8 6. 8 6. 8 7. 2 7. 2 7. 2 T ot al M va r 2. 8 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 1. 8 2. 0 2. 0 2. 2 3. 2 3. 2 3. 2 4. 4 4. 8 5. 8 5. 8 5. 8 5. 2 5. 2 6. 4 6. 4 D en iy ay a T l M W 6. 8 6. 8 6. 8 5. 6 5. 6 5. 6 5. 6 5. 6 6. 8 7. 4 8. 6 10 .0 10 .0 8. 4 8. 4 8. 4 8. 4 8. 4 8. 4 6. 4 6. 4 6. 4 6. 4 6. 4 8. 0 D en iy ay a T l M va r 3. 3 3. 3 3. 3 2. 7 2. 7 2. 7 2. 7 2. 7 3. 3 3. 6 4. 2 4. 8 4. 8 4. 1 4. 1 4. 1 4. 1 4. 1 4. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 9 G al le T l M W 9. 3 10 .2 10 .2 10 .8 10 .8 10 .8 10 .8 10 .9 10 .9 11 .2 11 .2 13 .8 14 .7 15 .3 15 .3 16 .8 16 .8 17 .7 17 .7 18 .6 18 .6 18 .6 18 .6 17 .7 17 .7 G al le T l M va r 4. 5 4. 9 4. 9 5. 2 5. 2 5. 2 5. 2 5. 3 5. 3 5. 4 5. 4 6. 7 7. 1 7. 4 7. 4 8. 1 8. 1 8. 6 8. 6 9. 0 9. 0 9. 0 9. 0 8. 6 8. 6 T 2/ 21 M W 11 .8 10 .9 10 .9 10 .8 10 .8 10 .8 10 .8 10 .8 10 .8 12 .7 15 .0 15 .0 15 .0 15 .0 15 .0 16 .0 16 .0 16 .1 16 .1 16 .2 16 .2 16 .5 16 .5 16 .2 16 .2 T 2/ 21 M va r 5. 7 5. 3 5. 3 5. 2 5. 2 5. 2 5. 2 5. 2 5. 2 6. 2 7. 3 7. 3 7. 3 7. 3 7. 3 7. 7 7. 7 7. 8 7. 8 7. 8 7. 8 8. 0 8. 0 7. 8 7. 8 T ot al M W 21 .1 21 .1 21 .1 21 .6 21 .6 21 .6 21 .6 21 .7 21 .7 23 .9 26 .2 28 .8 29 .7 30 .3 30 .3 32 .8 32 .8 33 .8 33 .8 34 .8 34 .8 35 .1 35 .1 33 .9 33 .9 T ot al M va r 10 .2 10 .2 10 .2 10 .5 10 .5 10 .5 10 .5 10 .5 10 .5 11 .6 12 .7 13 .9 14 .4 14 .7 14 .7 15 .9 15 .9 16 .4 16 .4 16 .9 16 .9 17 .0 17 .0 16 .4 16 .4 H am ba nt ot a M W 3. 1 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 1 3. 1 3. 4 3. 4 4. 0 3. 5 3. 2 3. 2 3. 1 3. 0 3. 1 3. 1 3. 1 3. 1 3. 6 4. 0 3. 9 3. 4 H am ba nt ot a M va r 1. 1 1. 2 1. 2 1. 2 1. 2 1. 0 1. 0 1. 1 1. 1 1. 1 1. 1 1. 0 1. 0 1. 0 1. 0 1. 3 1. 5 1. 8 1. 1 1. 1 1. 1 1. 1 1. 2 1. 2 1. 1 T 2 M W 3. 1 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 1 3. 1 3. 4 3. 4 4. 0 3. 5 3. 2 3. 2 3. 1 3. 0 3. 1 3. 1 3. 1 3. 1 3. 6 4. 0 3. 9 3. 4 T 2 M va r 1. 1 1. 2 1. 2 1. 2 1. 2 1. 0 1. 0 1. 1 1. 1 1. 1 1. 1 1. 0 1. 0 1. 0 1. 0 1. 3 1. 5 1. 8 1. 1 1. 1 1. 1 1. 1 1. 2 1. 2 1. 1 T ot al M W 6. 2 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 2 6. 2 6. 8 6. 8 8. 0 7. 0 6. 4 6. 4 6. 2 6. 0 6. 2 6. 2 6. 2 6. 2 7. 2 8. 0 7. 8 6. 8 T ot al M va r 2. 2 2. 4 2. 4 2. 4 2. 4 2. 0 2. 0 2. 2 2. 2 2. 2 2. 2 2. 0 2. 0 2. 0 2. 0 2. 6 3. 0 3. 6 2. 2 2. 2 2. 2 2. 2 2. 4 2. 4 2. 2 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 E m bi li pi ti ya M W 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 10 .0 14 .0 16 .0 16 .0 16 .0 15 .0 13 .0 10 .0 9. 0 9. 0 9. 0 9. 0 9. 0 T 1 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 M W 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 10 .0 14 .0 16 .0 16 .0 16 .0 15 .0 13 .0 10 .0 9. 0 9. 0 9. 0 9. 0 9. 0 T 2 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 T ot al M W 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 20 .0 28 .0 32 .0 32 .0 32 .0 30 .0 26 .0 20 .0 18 .0 18 .0 18 .0 18 .0 18 .0 T ot al M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 4. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 M at ar a T 1 M W 6. 5 6. 0 6. 0 7. 5 7. 5 5. 0 5. 0 5. 0 2. 5 3. 2 6. 0 9. 5 16 .0 17 .0 16 .5 15 .5 13 .0 11 .0 6. 5 6. 5 1. 5 1. 5 1. 0 M at ar a T 1 M va r 9. 0 9. 0 9. 0 9. 0 9. 5 9. 5 9. 5 9. 5 8. 5 8. 5 8. 5 9. 0 10 .0 11 .0 11 .0 11 .5 10 .0 8. 5 6. 5 6. 5 6. 5 6. 5 6. 5 T 2 M W 6. 5 6. 0 6. 0 7. 5 7. 5 5. 0 5. 0 5. 0 2. 5 3. 2 6. 0 9. 5 16 .0 17 .0 16 .5 15 .5 13 .0 11 .0 6. 5 6. 5 1. 5 1. 5 1. 0 T 2 M va r 9. 0 9. 0 9. 0 9. 0 9. 5 9. 5 9. 5 9. 5 8. 5 8. 5 8. 5 9. 0 10 .0 11 .0 11 .0 11 .5 10 .0 8. 5 6. 5 6. 5 6. 5 6. 5 6. 5 T ot al M W 13 .0 12 .0 12 .0 15 .0 15 .0 10 .0 10 .0 10 .0 5. 0 6. 4 12 .0 19 .0 32 .0 34 .0 33 .0 31 .0 26 .0 22 .0 13 .0 13 .0 3. 0 3. 0 2. 0 T ot al M va r 18 .0 18 .0 18 .0 18 .0 19 .0 19 .0 19 .0 19 .0 17 .0 17 .0 17 .0 18 .0 20 .0 22 .0 22 .0 23 .0 20 .0 17 .0 13 .0 13 .0 13 .0 13 .0 13 .0 B al an go da T 1 M W 3. 6 2. 9 2. 9 2. 9 1. 9 1. 9 3. 3 3. 3 3. 6 5. 4 4. 8 6. 6 9. 4 10 .4 10 .1 9. 7 8. 9 6. 4 4. 4 4. 4 3. 3 3. 0 2. 5 B al an go da T 1 M va r 3. 2 3. 2 2. 8 2. 8 2. 6 2. 6 2. 2 2. 2 2. 6 2. 6 2. 1 2. 2 2. 3 2. 7 3. 2 3. 1 3. 1 3. 1 2. 3 2. 3 1. 7 1. 7 1. 7 T 2 M W 3. 6 2. 9 2. 9 2. 9 1. 9 1. 9 3. 3 3. 3 3. 6 5. 4 4. 8 6. 6 9. 4 10 .4 10 .1 9. 7 8. 9 6. 4 4. 4 4. 4 3. 3 3. 0 2. 5 T 2 M va r 3. 2 3. 2 2. 8 2. 8 2. 6 2. 6 2. 2 2. 2 2. 6 2. 6 2. 1 2. 2 2. 3 2. 7 3. 2 3. 1 3. 1 3. 1 2. 3 2. 3 1. 7 1. 7 1. 7 T ot al M W 7. 2 5. 8 5. 8 5. 8 3. 8 3. 8 6. 6 6. 6 7. 2 10 .8 9. 6 13 .2 18 .8 20 .8 20 .2 19 .4 17 .8 12 .8 8. 8 8. 8 6. 6 6. 0 5. 0 T ot al M va r 6. 4 6. 4 5. 6 5. 6 5. 2 5. 2 4. 4 4. 4 5. 2 5. 2 4. 2 4. 4 4. 6 5. 4 6. 4 6. 2 6. 2 6. 2 4. 6 4. 6 3. 4 3. 4 3. 4 D en iy ay a T 1 M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 • 8. 0 6. 4 6. 4 7. 0 7. 8 11 .8 15 .0 15 .4 15 .0 14 .4 14 .0 12 .0 8. 0 8. 0 7. 5 7. 0 6. 8 D en iy ay a T 1 M va r 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 3. 1 3. 1 3. 4 3. 8 5. 7 7. 3 7. 5 7. 3 7. 0 6. 8 5. 8 3. 9 3. 9 3. 6 3. 4 3. 3 G al le T 1 M W 17 .7 17 .7 17 .4 17 .4 17 .4 17 .4 17 .7 17 .7 17 .2 17 .2 15 .5 15 .5 24 .5 24 .5 24 .0 24 .0 23 .0 18 .7 17 .4 17 .4 12 .5 12 .5 12 .0 G al le T 1 M va r 8. 6 8. 6 8. 4 8. 4 8. 4 8. 4 8. 6 8. 6 8. 3 8. 3 7. 5 7. 5 11 .9 11 .9 11 .6 11 .6 11 .1 9. 1 8. 4 8. 4 6. 1 6. 1 5. 8 T 2/ 21 M W 16 .0 16 .0 15 .5 15 .5 15 .5 15 .5 15 .5 15 .5 14 .2 14 .2 16 .0 16 .0 27 .2 27 .3 27 .2 26 .2 25 .0 22 .1 19 .0 19 .0 13 .0 13 .0 12 .0 T 2/ 21 M va r 7. 7 7. 7 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 6. 9 6. 9 7. 7 7. 7 13 .2 13 .2 13 .2 12 .7 12 .1 10 .7 9. 2 9. 2 6. 3 6. 3 5. 8 T ot al M W 33 .7 33 .7 32 .9 32 .9 32 .9 32 .9 33 .2 33 .2 31 .4 31 .4 31 .5 31 .5 51 .7 51 .8 51 .2 50 .2 48 .0 40 .8 36 .4 36 .4 25 .5 25 .5 24 .0 T ot al M va r 16 .3 16 .3 15 .9 15 .9 15 .9 15 .9 16 .1 16 .1 15 .2 15 .2 15 .3 15 .3 25 .0 25 .1 24 .8 24 .3 23 .2 19 .8 17 .6 17 .6 12 .4 12 .4 11 .6 H am ba nt ot a T 1 M W 3. 1 3. 0 3. 0 3. 0 3. 1 3. 1 3. 2 3. 2 3. 0 3. 0 4. 0 5. 0 6. 5 7. 0 7. 0 7. 0 6. 5 5. 0 4. 7 4. 7 3. 7 3. 7 3. 7 H am ba nt ot a T 1 M va r 2. 0 1. 9 1. 9 1. 9 1. 9 1. 9 1. 5 1. 5 1. 2 1. 2 1. 2 1. 2 2. 0 2. 0 2. 0 2. 0 2. 0 1. 5 1. 5 1. 5 1. 2 1. 2 1. 2 T 2 M W 3. 1 3. 0 3. 0 3. 0 3. 1 3. 1 3. 2 3. 2 3. 0 3. 0 4. 0 5. 0 6. 5 7. 0 7. 0 7. 0 6. 5 5. 0 4. 7 4. 7 3. 7 3. 7 3. 7 T 2 M va r 2. 0 1. 9 1. 9 1. 9 1. 9 1. 9 1. 5 1. 5 1. 2 1. 2 1. 2 1. 2 2. 0 2. 0 2. 0 2. 0 2. 0 1. 5 1. 5 1. 5 1. 2 1. 2 1. 2 T ot al M W 6. 2 6. 0 6. 0 6. 0 6. 2 6. 2 6. 4 6. 4 6. 0 6. 0 8. 0 10 .0 13 .0 14 .0 14 .0 14 .0 13 .0 10 .0 9. 4 9. 4 7. 4 7. 4 7. 4 T ot al M va r 4. 0 3. 8 3. 8 3. 8 3. 8 3. 8 3. 0 3. 0 2. 4 2. 4 2. 4 2. 4 4. 0 4. 0 4. 0 4. 0 4. 0 3. 0 3. 0 3. 0 2. 4 2. 4 2. 4 T im e 0:3 0 1:0 0 1:3 0 2: 00 2: 30 3:0 0 3:3 0 4:0 0 4:3 0 5:0 0 5:3 0 6:0 0 6:3 0 7:0 0 7:3 0 8:0 0 8:3 0 9:0 0 9:3 0 10 :00 10 :30 1 1 :00 1 1 :30 12 :00 12 :30 Ra tna pu ra T l M W 1. 1 1. 1 1. 1 2. 1 2. 1 2. 1 2. 1 2. 7 2. 7 0. 6 0. 6 1. 0 1. 0 0. 8 0. 8 0. 9 0. 9 0. 9 0. 9 1. 5 1. 5 1. 9 2. 5 1. 4 1. 4 Ra tna pu ra T l M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 T 2 M W 1. 1 1. 1 1. 1 2. 1 2. 1 2. 1 2. 1 2. 7 2. 7 0. 6 0. 6 1. 0 1. 0 0. 8 0. 8 0. 9 0. 9 0. 9 0. 9 1. 5 1. 5 1. 9 2. 5 1. 4 1. 4 T 2 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 T ot al M W 2. 2 2. 2 2. 2 4. 2 4. 2 4. 2 4. 2 5. 4 5. 4 1. 2 1. 2 2. 0 2. 0 1. 6 1. 6 1. 8 1. 8 1. 8 1. 8 3. 0 3. 0 3. 8 5. 0 2. 8 2. 8 T ot al M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 6. 0 6. 0 6. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 N ' E li ya T l M W 6. 0 5. 9 5. 7 5. 6 5. 6 5. 6 5. 8 6. 3 7. 1 8. 0 9. 2 9. 1 8. 2 7. 7 8. 3 9. 1 10 .0 9. 9 9. 8 10 .3 10 .6 10 .0 6. 9 6. 8 6. 7 N ' E li ya T l M va r 1. 2 1. 2 1. 2 1. 1 1. 0 2. 0 2. 1 2. 5 2. 8 3. 5 3. 0 3. 4 3. 2 3. 7 3. 0 • 3. 0 3. 6 3. 8 3. 9 4. 0 4. 2 4. 0 2. 9 2. 8 2. 7 T 2 M W 6. 0 5. 9 5. 7 5. 6 5. 6 5. 6 5. 8 6. 3 7. 1 8. 0 9. 2 9. 1 8. 2 7. 7 8. 3 9. 1 10 .0 9. 9 9. 8 10 .3 10 .6 10 .0 6. 9 6. 8 6. 7 T 2 M va r 1. 2 1. 2 1. 2 1. 1 1. 0 2. 0 2. 1 2. 5 2. 8 3. 5 3. 0 3. 4 3. 2 3. 7 3. 0 3. 0 3. 6 3. 8 3. 9 4. 0 4. 2 4. 0 2. 9 2. 8 2. 7 T ot al M W 12 .0 11 .9 11 .3 11 .2 11 .2 11 .3 11 .6 12 .6 14 .1 16 .0 18 .5 18 .2 16 .3 15 .3 16 .6 18 .3 20 .0 19 .8 19 .5 20 .6 21 .1 20 .0 13 .9 13 .5 13 .3 T ot al M va r 2. 4 2. 3 2. 4 2. 2 2. 1 4. 0 4. 2 4. 9 5. 5 7. 0 6. 0 6. 8 6. 5 7. 4 6. 0 6. 0 7. 3 7. 6 7. 8 8. 0 8. 3 8. 0 5. 9 5. 5 5. 3 A m pa ra T l M W 15 .0 14 .5 14 .5 ' 14 .5 14 .5 14 .5 14 .5 14 .5 14 .5 15 .9 17 .9 18 .0 17 .8 20 .0 15 .9 15 .0 13 .5 15 .7 15 .0 12 .5 16 .5 17 .5 17 .9 13 .5 14 .0 A m pa ra T l M va r 2. 5 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 9 2. 9 2. 3 2. 3 3. 1 3. 5 3. 5 3. 5 3. 5 3. 8 3. 8 3. 5 3. 1 4. 1 4. 1 T 2 M W 15 .0 14 .5 14 .5 14 .5 14 .5 14 .5 • 14 .5 14 .5 14 .5 15 .9 17 .9 18 .0 17 .8 20 .0 15 .9 15 .0 13 .5 15 .7 15 .0 12 .5 16 .5 17 .5 17 .9 13 .5 14 .0 T 2 M va r 2. 5 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4 2. 9 2. 9 2. 3 2. 3 3. 1 3. 5 3. 5 3. 5 3. 5 3. 8 3. 8 3. 5 3. 1 4. 1 4. 1 T ot al M W 30 .0 29 .0 29 .0 29 .0 29 .0 29 .0 29 .0 29 .0 29 .0 31 .8 35 .8 36 .0 35 .6 40 .0 31 .8 30 .0 27 .0 31 .4 30 .0 25 .0 28 .0 35 .0 35 .8 27 .0 28 .0 T ot al M va r 5. 0 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 5. 8 5. 8 4. 6 4. 6 6. 2 7. 0 7. 0 7. 0 7. 0 7. 6 7. 6 7. 0 6. 2 8. 2 8. 2 W P S T l M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 4. 0 4. 0 5. 0 4. 0 4. 0 4. 0 3. 0 3. 0 3. 0 4. 0 3. 0 W P S T l M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 B ad ul la T l M W 6. 0 6. 0 6. 0 6. 0 8. 0 8. 0 8. 0 8. 0 11 .0 12 .0 12 .0 11 .0 10 .0 10 .0 10 .0 10 .0 10 .0 11 .0 10 .0 11 .0 10 .0 10 .0 10 .0 10 .0 10 .0 B ad ul la T l M va r 2. 0 2. 0 2. 0 2. 0 2. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 4. 0 4. 0 4. 0 4. 0 T 2 M W 6. 0 6. 0 6. 0 6. 0 8. 0 8. 0 8. 0 8. 0 11 .0 12 .0 12 .0 11 .0 10 .0 10 .0 10 .0 10 .0 10 .0 11 .0 10 .0 11 .0 10 .0 10 .0 10 .0 10 .0 10 .0 T 2 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 4. 0 4. 0 4. 0 4. 0 T ot al M W 12 .0 12 .0 12 .0 !2 .0 16 .0 16 .0 16 .0 16 .0 22 .0 24 .0 24 .0 22 .0 20 .0 20 .0 20 .0 20 .0 20 .0 22 .0 20 .0 22 .0 20 .0 20 .0 20 .0 20 .0 20 .0 T ot al M va r 4. 0 4. 0 4. 0 4. 0 4. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 8. 0 8. 0 10 .0 10 .0 10 .0 10 .0 8. 0 8. 0 8. 0 8. 0 66 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 R at na pu ra T 1 M W 1. 2 1. 2 0. 6 0. 6 0. 8 0. 8 0. 5 0. 5 0. 7 0. 7 0. 2 0. 2 2. 9 3. 5 3. 6 3. 3 3. 0 2. 0 0. 8 0. 8 0. 5 0. 5 1. 1 R at na pu ra T 1 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4 0 2. 0 2. 0 3. 0 3. 0 2. 0 T 2 M W 1. 2 1. 2 0. 6 0. 6 0. 8 0. 8 0. 5 0. 5 0. 7 0. 7 0. 2 0. 2 2. 9 3. 5 3. 6 3. 3 3. 0 2. 0 0. 8 0. 8 0. 5 0. 5 1. 1 T 2 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 2. 0 2. 0 3. 0 3. 0 2. 0 T ot al M W 2. 4 2. 4 1. 2 1. 2 1. 6 1. 6 1. 0 1. 0 1. 4 1. 4 0. 4 0. 4 5. 8 7. 0 7. 2 6. 6 6. 0 4. 0 1. 6 1. 6 1. 0 1. 0 2. 2 T ot al M va r 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 4. 0 4. 0 6. 0 6. 0 4. 0 N 'E li ya T 1 M W 6. 5 6. 6 6. 8 6. 8 6. 8 6. 8 6. 9 6. 8 6. 9 7. 2 7. 7 9. 4 14 .0 13 .4 13 .0 12 .3 11 .4 9. 9 8. 4 7. 6 7. 2 6. 6 6. 6 N 'E li ya T 1 M va r 2. 7 2. 8 2. 9 2. 9 2. 9 2. 9 2. 8 2. 7 2. 6 2. 6 2. 8 3. 4 4. 0 3. 8 3. 6 3. 3 2. 8 2. 3 1. 8 1. 6 1. 4 1. 2 1. 2 T 2 M W 6. 5 6. 6 6. 8 6. 8 6. 8 6. 8 6. 9 6. 8 6. 9 7. 2 7. 7 9. 4 14 .0 13 .4 13 .0 12 .3 11 .4 9. 9 8. 4 7. 6 7. 2 6. 6 6. 6 T 2 M va r 2. 7 2. 8 2. 9 2. 9 2. 9 2. 9 2. 8 2. 7 2. 6 2. 6 2. 8 3. 4 4. 0 3. 8 3. 6 3. 3 2. 8 2. 3 1. 8 1. 6 1. 4 1. 2 1. 2 T ot al M W 13 .0 13 .3 13 .6 13 .7 13 .5 13 .7 13 .7 13 .6 13 .8 14 .3 15 .4 18 .8 28 .0 26 .8 26 .0 24 .7 22 .7 19 .9 16 .8 15 .2 14 .3 13 .3 13 .3 T ot al M va r 5. 4 5. 6 5. 8 5. 9 5. 8 5. 8 5. 6 5. 4 5. 2 5. 1 5. 7 6. 8 8. 0 7. 7 7. 1 6. 6 5. 5 4. 6 3. 6 3. 1 2. 7 2. 5 2. 5 A m pa ra T 1 M W 14 .5 15 .0 15 .0 16 .0 14 .0 15 .0 15 .5 15 .0 14 .5 17 .0 18 .0 24 .0 29 .0 29 .4 29 .4 29 .0 28 .4 25 .5 22 .0 20 .0 18 .0 17 .0 18 .0 A m pa ra T 1 M va r 3. 9 3. 6 3. 8 3. 7 3. 9 4. 0 4. 0 4. 0 4. 0 4. 0 3. 9 4. 2 4. 7 4. 5 4. 5 4. 5 4. 5 4. 0 4. 0 3. 5 3. 2 3. 0 3. 1 T 2 M W 14 .5 15 .0 15 .0 16 .0 14 .0 15 .0 15 .5 15 .0 14 .5 17 .0 18 .0 24 .0 29 .0 29 .4 29 .4 29 .0 28 .4 25 .5 22 .0 20 .0 18 .0 17 .0 18 .0 T 2 M va r 3. 9 3. 6 3. 8 3. 7 3. 9 4. 0 4. 0 4. 0 4. 0 4. 0 3. 9 4. 2 4. 7 4. 5 4. 5 4. 5 4. 5 4. 0 4. 0 3. 5 3. 2 3. 0 3. 1 T ot al M W 29 .0 30 .0 30 .0 32 .0 28 .0 30 .0 31 .0 30 .0 29 .0 34 .0 36 .0 48 .0 58 .0 58 .8 58 .8 58 .0 56 .8 51 .0 44 .0 40 .0 36 .0 34 .0 36 .0 T ot al M va r 7. 8 7. 2 7. 6 7. 4 7. 8 8. 0 8. 0 8. 0 8. 0 8. 0 7. 8 8. 4 9. 4 9. 0 9. 0 9. 0 9. 0 8. 0 8. 0 7. 0 6. 4 6. 0 6. 2 W P S M W 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 0 3. 0 5. 0 10 .0 12 .0 12 .0 11 .0 11 .0 10 .0 8. 0 7. 0 4. 0 2. 0 2. 0 2. 0 W P S M va r 4. 0 4. 0 4. 0 4. 0 3. 0 3. 0 3. 0 3. 0 2. 0 3. 0 3. 0 2. 0 3. 0 3. 0 4. 0 4. 0 3. 0 3. 0 3. 0 3. 0 2. 0 2. 0 2. 0 B ad ul la M W 10 .0 10 .0 10 .0 11 .0 11 .0 11 .0 12 .0 12 .0 15 .0 17 .0 20 .0 22 .0 22 .0 20 .0 18 .0 14 .0 12 .0 10 .0 9. 0 8. 0 8. 0 8. 0 8. 0 B ad ul la M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 0 3. 0 4. 0 5. 0 5. 0 5. 0 4. 0 4. 0 3. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T 2 M W 10 .0 10 .0 10 .0 11 .0 11 .0 11 .0 12 .0 12 .0 15 .0 17 .0 20 .0 22 .0 22 .0 20 .0 18 .0 14 .0 12 .0 10 .0 9. 0 8. 0 8. 0 8. 0 8. 0 T 2 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 0 3. 0 4. 0 5. 0 5. 0 5. 0 4. 0 4. 0 3. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T ot al M W 20 .0 20 .0 20 .0 22 .0 22 .0 22 .0 24 .0 24 .0 30 .0 34 .0 40 .0 44 .0 44 .0 40 .0 36 .0 28 .0 24 .0 20 .0 18 .0 16 .0 16 .0 16 .0 16 .0 T ot al M va r 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 6. 0 6. 0 8. 0 10 .0 10 .0 10 .0 8. 0 8. 0 6. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 67 1 im e 0 :3 0 1 : O O 1 :3 0 2 :0 0 2 :3 0 3 O O 3 JO 4 :0 0 [ 4 3 0 • - 1 6 :3 0 7 .0 0 1 7 :3 0 X : 0 0 9 :0 0 1 9: .l O 1 1 -O O ,, 3 0 M W 6. 0 6. 0 6 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 7. 5 8. 0 8. 5 8. 0 9. 0 8. 7 8. 7 9. 1 9. 5 9. 5 9. 6 9 9 10 .0 10 .0 a T 1 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 6. 0 6. 0 M W 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 7. 5 8. 0 8. 5 8. 0 9. 0 8. 7 8. 7 9. 1 9. 5 9. 5 9. 6 9. 9 10 .0 10 .0 T 2 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 6. 0 6. 0 T 3 M W 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 7. 5 8. 0 8. 5 8. 0 9. 0 8. 7 8. 7 9. 1 9. 5 9. 5 9. 6 9. 9 10 .0 10 .0 T 3 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 6. 0 6. 0 T ot al M W 18 .0 18 .0 18 .0 18 18 18 18 18 18 18 .0 21 .0 22 .5 24 .0 25 .5 24 .0 27 .0 26 .1 26 .1 27 .3 28 .5 28 .5 28 .8 29 .7 30 .0 30 .0 T ot al M va r 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 9. 0 9. 0 9. 0 9. 0 9. 0 12 .0 12 .0 15 .0 15 .0 15 .0 15 .0 15 .0 18 .0 18 .0 U ku w el a T 1 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 1 6. 4 7. 0 8. 0 8. 0 8. 0 8. 0 7. 0 8. 0 8. 2 8. 2 7. 5 8. 0 8. 2 8. 2 8. 3 8. 4 U ku w el a T 1 M va r 3. 0 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 4. 4 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 6 6. 0 6. 0 8. 0 6. 0 6. 0 6. 0 6. 0 5. 6 T 2 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 1 6. 4 7. 0 8. 0 8. 0 8. 0 8. 0 7. 0 8. 0 8. 2 8. 2 7. 5 8. 0 8. 2 8. 2 8. 3 8. 4 T 2 M va r 3. 0 3. 9 3. 9 3. 9 3. 9 3. 9 3. 9 4. 4 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 6 6. 0 6. 0 8. 0 6. 0 6. 0 6. 0 6. 0 5. 6 T ot al M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 10 .2 12 .8 14 .0 16 .0 16 .0 16 .0 16 .0 14 .0 16 .0 16 .4 16 .4 15 .0 16 .0 16 .4 16 .4 16 .6 16 .8 T ot al M va r 6. 0 7. 8 7. 8 7. 8 7. 8 7. 8 7. 8 8. 8 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 10 .0 10 .0 11 .2 12 .0 12 .0 16 .0 12 .0 12 .0 12 .0 12 .0 11 .2 K ir ib at hk ub ur a T 1 M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 9. 0 9. 0 10 .0 10 .0 15 .0 15 .0 15 .0 14 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 K ir ib at hk ub ur a T 1 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 T 2 M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 9. 0 9. 0 10 .0 10 .0 15 .0 15 .0 15 .0 14 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 T 2 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 ' 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 T 3 M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 9. 0 9. 0 10 .0 10 .0 15 .0 15 .0 15 .0 14 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 T 3 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 T ot al M W 24 .0 24 .0 24 .0 24 .0 24 .0 24 .0 24 .0 27 .0 27 .0 30 .0 30 .0 45 .0 45 .0 45 .0 42 .0 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 T ot al M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 ku ru na ga la T 1 M W 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 10 .0 11 .0 12 .5 14 .0 14 .0 12 .0 11 .0 11 .5 13 .5 13 .5 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 ku ru na ga la T 1 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T 2 M W 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 10 .0 11 .0 12 .5 14 .0 14 .0 12 .0 11 .0 11 .5 13 .5 13 .5 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 T 2 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T ot al M W 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 20 .0 22 .0 25 .0 28 .0 28 .0 24 .0 22 .0 23 .0 27 .0 27 .0 28 .0 28 .0 28 .0 28 .0 28 .0 28 .0 28 .0 T ot al M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 68 T im e T hu ll ii ri ya U ku w el a M va r M va r ku ru na ga la T l K ir ib at hk ub ur a T l M va r M va r T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 11 :0 0 1 1: 30 12 :0 0 12 :3 0 A nu ra dh ap ur a T 1 M W 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 4. 8 5. 5 6. 0 6. 2 6. 9 7. 2 6. 6 6. 3 6. 3 6. 3 6. 3 6. 3 6. 6 6. 6 6. 6 6. 6 6. 6 6. 6 A nu ra dh ap ur a T 1 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 8 0. 8 1. 1 1. 1 1. 1 1. 5 1. 5 1. 5 1. 5 1. 5 1. 5 1. 5 T 2 M W 3. 5 3. 5 3. 2 3. 2 3. 2 3. 2 3. 2 3. 2 3. 8 4. 2 4. 5 4. 7 4. 7 4. 4 4. 0 4. 0 4. 0 4. 0 2. 3 2. 3 2. 3 2. 2 2. 2 2. 4 2. 4 T 2 M va r 0. 4 0. 4 0. 3 0. 3 0. 2 0. 2 0. 2 0. 2 0. 3 0. 3 0. 5 0. 5 0. 5 0. 7 0. 5 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 5 0. 5 0. 7 0. 7 T 3 M W 1. 3 1. 3 1. 3 1. 2 1. 2 1. 2 1. 2 1. 2 1. 8 2. 2 2. 4 2. 5 2. 6 2. 4 2. 1 2. 0 2. 0 2. 0 2. 2 2. 2 2. 1 2. 5 2. 5 2. 5 2. 5 T 3 M va r 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 T ot al M W 9. 6 9. 6 9. 3 9. 2 9. 2 9. 2 9. 2 9. 2 11 .1 12 .4 13 .1 14 .1 14 .5 13 .4 12 .4 12 .3 12 .3 12 .3 10 .8 11 .1 11 .0 11 .3 11 .3 11 .5 11 .5 T ot al M va r 2. 2 2. 2 2. 1 2. 1 2. 0 2. 0 2. 0 2. 0 2. 1 2. 1 2. 3 2. 3 2. 3 3. 3 3. 1 3. 5 3. 5 3. 5 3. 9 3. 9 3. 9 3. 8 3. 8 4. 0 4. 0 N 'A nu ra da li ap ur a T 1 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 5 6. 0 6. 0 6. 0 6. 0 6. 0 5. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 N 'A nu ra da li ap ur a T 1 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 5 1. 5 1. 5 1. 5 1. 5 1. 8 1. 8 1. 8 1. 8 T 2 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 5 6. 0 6. 0 6. 0 6. 0 6. 0 5. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 T 2 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 5 1. 5 1. 5 1. 5 1. 5 1. 8 1. 8 1. 8 1. 8 T ot al M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 10 .0 10 .0 11 .0 12 .0 12 .0 12 .0 12 .0 12 .0 11 .6 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 T ot al M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 6 3. 6 3. 6 3. 6 A tl iu ru gi ri ya T M W 2. 0 2. 0 2. 0 2. 0 2. 0 2. Q 2. 0 2. 0 2. 5 2. 6 2. 9 3. 0 3. 0 3. 0 3. 2 3. 5 3. 6 3. 5 3. 5 4. 1 4. 1 4. 0 4. 2 4. 2 4. 1 A tl iu ru gi ri ya T M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T 2 M W 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 5 2. 6 2. 9 3. 0 3. 0 3. 0 3. 2 3. 5 3. 6 3. 5 3. 5 4. 1 4. 1 4. 0 4. 2 4. 2 4. 1 T 2 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 • 1. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T ot al M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 2 5. 8 6. 0 6. 0 6. 0 6. 4 7. 0 7. 2 7. 0 7. 0 8. 2 8. 2 8. 0 8. 4 8. 4 8. 2 T ot al M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 H ab ar an a T ! M W 8. 6 8. 6 8. 6 8. 6 8. 6 8. 8 8. 9 9. 3 9. 8 10 .7 12 .2 13 .7 13 .6 12 .8 11 .8 11 .4 13 .4 13 .6 13 .9 13 .6 13 .6 13 .7 14 .3 14 .6 14 .7 H ab ar an a T ! M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 4 2. 4 1. 0 1. 4 1. 8 1. 9 1. 9 2. 0 2. 3 2. 4 2. 0 T 2 M W 8. 6 8. 6 8. 6 8. 6 8. 6 8. 8 8. 9 9. 3 9. 8 10 .7 12 .2 13 .7 13 .6 12 .8 11 .8 11 .4 13 .4 13 .6 13 .9 13 .6 13 .6 13 .7 14 .3 14 .6 14 .7 T 2 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 1. 4 2. 4 1. 0 1. 4 1. 8 1. 9 1. 9 2. 0 2. 3 2. 4 2. 0 T ot al M W 17 .2 17 .2 17 .2 17 .2 17 .2 17 .6 17 .8 18 .6 19 .6 21 .4 24 .4 27 .4 27 .2 25 .6 23 .6 22 .8 26 .8 27 .2 27 .8 27 .2 27 .2 27 .4 28 .6 29 .2 29 .4 T ot al M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 2. 8 4. 8 2. 0 2. 8 3. 6 3. 8 3. 8 4. 0 4. 6 4. 8 4. 0 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 A nu ra dh ap ur a T l M W 3. 3 3. 3 3. 1 3. 1 3. 3 3. 3 3. 3 3. 3 3. 3 3. 3 3. 6 4. 5 5. 7 5. 7 5. 7 5. 7 5. 4 4. 5 4. 2 3. 6 3. 0 3. 0 2. 2 A nu ra dh ap ur a T l M va r 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 8 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 T 2 M W 2. 2 2. 2 2. 2 2. 2 2. 2 2. 4 2. 8 2. 8 2. 8 4. 5 5. 4 5. 8 7. 8 8. 4 8. 0 8. 8 7. 6 6. 4 5. 5 4. 5 4. 0 3. 6 3. 5 T 2 M va r 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 7 0. 7 0. 7 1. 4 1. 4 1. 4 1. 5 1. 8 1. 7 1. 6 1. 5 1. 1 1 0 0. 9 0. 6 0. 5 0. 5 T 3 M W 2. 1 2. 1 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 7 4. 0 4. 0 3. 9 3. 9 3. 7 2. 8 2. 5 2. 1 2. 8 2. 5 2. 4 T 3 M va r 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 T ot al M W 7. 6 7. 6 7. 8 7. 8 8. 0 8. 2 8. 6 8. 6 8. 6 10 .3 11 .5 13 .0 17 .5 . 18 .1 17 .6 18 .4 16 .7 13 .7 12 .2 10 .2 9. 8 9. 1 8. 1 T ot al M va r 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 3 3. 3 3. 3 4. 0 4. 0 4. 0 4. 1 4. 4 4. 3 4. 2 4. 1 2. 9 2. 8 2. 7 2. 4 2. 3 2. 3 N A nu ra da ha pu ra T l M W 6. 0 6. 0 6. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 6. 5 7. 0 9. 0 14 .0 14 .0 12 .5 12 .0 12 .0 10 .0 8. 0 8. 0 6. 0 6. 0 6. 0 N A nu ra da ha pu ra T l M va r 1. 8 1. 8 1. 8 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 5 1. 5 2. 0 2. 0 2. 0 T 2 M W 6. 0 6. 0 6. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 6. 5 7. 0 9. 0 14 .0 14 .0 12 .5 12 .0 12 .0 10 .0 8. 0 8. 0 6. 0 6. 0 6. 0 T 2 M va r 1. 8 1. 8 1. 8 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 5 1. 5 2. 0 2. 0 2. 0 T ot al M W 12 .0 12 .0 12 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 13 .0 14 .0 18 .0 28 .0 28 .0 25 .0 24 .0 24 .0 20 .0 16 .0 16 .0 12 .0 12 .0 12 .0 T ot al M va r 3. 6 3. 6 ' 3. 6 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 0 3. 0 4. 0 4. 0 4. 0 A th ur ug ir iy a T M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 8 3. 5 3. 6 4. 4 4. 4 4. 7 4. 5 4. 5 4. 1 4. 2 3. 8 3. 8 3. 2 3. 2 2. 6 A th ur ug ir iy a T M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T 2 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 8 3. 5 3. 6 4. 4 4. 4 4. 7 4. 5 4. 5 4. 1 4. 2 3. 8 3. 8 3. 2 3. 2 2. 6 T 2 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 T ot al M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 6 7. 0 7. 2 8. 8 8. 8 9. 4 9. 0 9. 0 8. 2 8. 4 7. 6 7. 6 6. 4 6. 4 5. 2 T ot al M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 H ab ar an a T l M W 13 .2 12 .8 13 .2 13 .6 14 .2 14 .0 14 .2 12 .9 13 .3 12 .7 13 .0 16 .5 23 .5 24 .2 24 .6 23 .0 22 .7 19 .8 15 .4 13 .4 11 .6 10 .1 9. 8 H ab ar an a T l M va r 1. 0 0. 5 1. 0 1. 5 2. 1 2. 0 2. 1 2. 6 1. 5 0. 8 0. 0 2. 4 4. 0 4. 3 4. 0 3. 5 2. 8 2. 3 1. 0 0. 8 0. 3 0. 0 0. 0 T 2 M W 13 .2 12 .8 13 .2 13 .6 14 .2 14 .0 14 .2 12 .9 13 .3 12 .7 13 .0 16 .5 23 .5 24 .2 24 .6 23 .0 22 .7 19 .8 15 .4 13 .4 11 .6 10 .1 9. 8 T 2 M va r 1. 0 0. 5 1. 0 1. 5 2. 1 2. 0 2. 1 2. 6 1. 5 0. 8 0. 0 2. 4 4. 0 4. 3 4. 0 3. 5 2. 8 2. 3 1. 0 0. 8 0. 3 0. 0 0. 0 T ot al M W 26 .4 25 .6 26 .4 27 .2 28 .4 28 .0 28 .4 25 .8 26 .6 25 .4 26 .0 33 .0 47 .0 48 .4 49 .2 46 .0 45 .4 39 .6 30 .8 26 .8 23 .2 20 .2 19 .6 T ot al M va r 2. 0 1. 0 2. 0 3. 0 4. 2 4. 0 4. 2 5. 2 3. 0 1. 6 0. 0 4. 8 8. 0 8. 6 8. 0 7. 0 5. 6 4. 6 2. 0 1. 6 0. 6 0. 0 0. 0 71 I T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 11 :0 0 11 :3 0 12 :0 0 12 :3 0 V av un ia T 1 M W 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 3. 1 3. 1 3. 6 3. 6 3. 6 3. 6 3. 2 3. 2 3. 3 3. 3 3. 4 3. 4 3. 6 3. 6 3. 4 3. 4 V av un ia T 1 M va r 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 1 1. 1 1. 1 1 1 1. 1 1. 1 1. 1 1. 1 T 2 M W 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 3. 1 3. 1 3. 6 3. 6 3. 6 3. 6 3. 2 3. 2 3. 3 3. 3 3. 4 3. 4 3. 6 3. 6 3. 4 3. 4 T 2 M va r 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 1 1. 1 1. 1 11 1. 1 1. 1 1. 1 1. 1 T ot al M W 5. 4 5. 4 5. 4 5. 4 5. 4 5. 4 5. 4 5. 4 5. 4 6. 2 6. 2 7. 2 7. 2 7. 2 7. 2 6. 4 6. 4 6. 6 6. 6 6. 8 6. 8 7. 2 7. 2 6. 8 6. 8 T ot al M va r 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 T ri nc o T 1 M W 9. 5 9. 5 9. 4 9. 4 9. 4 9. 4 9. 4 9. 4 9. 4 10 .0 10 .5 11 .0 10 .4 9. 5 8. 7 8. 6 8. 1 8. 5 8. 7 oo 9. 5 9. 5 9. 5 9. 5 9. 0 T ri nc o T 1 M va r 2. 0 2. 0 2. 0 1. 9 1. 9 1. 9 1. 9 1. 9 2. 0 2. 0 2. 2 2. 0 2. 0 2. 0 2. 1 2. 1 2. 0 2. 1 2. 5 2. 4 2. 4 2. 4 2. 4 2. 4 2. 2 T 2 M W 11 .0 10 .8 10 .9 10 .7 10 .0 10 .0 10 .0 9. 2 9. 0 9. 0 9. 0 9. 0 9. 5 9. 0 9. 0 9. 1 8. 8 8. 4 8. 4 8. 8 10 .0 9. 5 10 .5 10 .2 9. 0 T 2 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 5 1. 5 1. 5 1. 7 1. 5 1. 7 1. 7 1. 5 1. 5 1. 5 1. 5 1. 5 1. 9 2. 4 2. 4 2. 1 T ot al M W 20 .5 20 .3 20 .3 20 .1 19 .4 19 .4 19 .4 18 .6 18 .4 19 .0 19 .5 20 .0 19 .9 18 .5 17 .7 17 .7 16 .9 16 .9 17 .1 17 .7 19 .5 19 .0 20 .0 19 .7 18 .0 T ot al M va r 4. 0 4. 0 4. 0 3. 9 3. 9 3. 9 3. 9 3. 9 4. 0 3. 5 3. 7 3. 5 3. 7 3. 5 3. 8 3. 8 3. 5 3. 6 4. 0 3. 9 3. 9 4. 3 4. 8 4. 8 4. 3 V al ac hc he na T 1 M W 8. 9 8. 9 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 9 10 .3 10 .5 10 .3 9. 9 9. 9 9. 7 9. 7 9. 7 9. 7 9. 9 10 .9 10 .9 10 .9 10 .9 10 .9 V al ac hc he na T 1 M va r 4. 3 4. 3 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 8 5. 0 5. 1 5. 0 4. 8 4. 8 4. 7 4. 7 4. 7 4. 7 4 8 5. 3 5. 3 5. 3 5. 3 5. 3 T 2 M W 8. 9 8. 9 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 9 10 .3 10 .5 10 .3 9. 9 9. 9 9. 7 9. 7 9. 7 9. 7 9. 9 10 .9 10 .9 10 .9 10 .9 10 .9 T 2 M va r 4. 3 4. 3 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 4 4. 8 5. 0 5. 1 5. 0 4. 8 4. 8 4. 7 4. 7 4. 7 4. 7 4. 8 5. 3 5. 3 5. 3 5. 3 5. 3 T ot al M W 17 .8 17 .8 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 19 .8 20 .6 21 .1 20 .6 19 .8 19 .8 19 .4 19 .4 19 .4 19 .4 19 .8 21 .9 21 .9 21 .9 21 .9 21 .9 T ot al M va r 8. 6 8. 6 8. 8 8. 8 8. 8 8. 8 8. 8 8. 8 8. 8 9. 6 10 .0 10 .2 10 .0 9. 6 9. 6 9. 4 9. 4 9. 4 9. 4 9. 6 10 .6 10 .6 10 .6 10 .6 10 .6 B iy ag am a T I M W 20 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 22 .0 23 .0 25 .0 24 .0 25 .0 24 .0 26 .0 28 .0 30 .0 30 .0 30 .0 30 .0 31 .0 32 .0 32 .0 31 .0 B iy ag am a T I M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 11 .0 12 .0 13 .0 15 .0 15 .0 15 .0 15 .0 17 .0 17 .0 17 .0 16 .0 T 2 M W 20 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 21 .0 22 .0 23 .0 25 .0 24 .0 25 .0 24 .0 26 .0 28 .0 30 .0 30 .0 30 .0 30 .0 31 .0 32 .0 32 .0 31 .0 T 2 M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 11 .0 12 .0 13 .0 15 .0 15 .0 15 .0 15 .0 17 .0 17 .0 17 .0 16 .0 T ot al M W 40 .0 42 .0 42 .0 42 .0 42 .0 42 .0 42 .0 42 .0 42 .0 44 .0 46 .0 50 .0 48 .0 50 .0 48 .0 52 .0 56 .0 60 .0 60 .0 60 .0 60 .0 62 .0 64 .0 64 .0 62 .0 T ot al M va r 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 22 .0 24 .0 26 .0 30 .0 30 .0 30 .0 30 .0 34 .0 34 .0 34 .0 32 .0 R an ta be T 1 M W 2. 3 2. 4 2. 4 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 6 1. 6 3. 0 3. 0 2. 5 2. 5 3. 2 3. 2 3. 3 3. 3 3. 5 3. 5 3. 5 3. 5 3. 3 3. 3 R an ta be T 1 M va r 1. 1 1. 2 1. 2 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 0. 8 0. 8 1. 5 1. 5 1. 2 1. 2 1. 5 1. 5 1. 6 1. 6 1. 7 1. 7 1. 7 1. 7 1. 6 1. 6 T 2 M W 2. 3 2. 4 2. 4 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 1. 6 1. 6 3. 0 3. 0 2. 5 2. 5 3. 2 3. 2 3. 3 3. 3 3. 5 3. 5 3. 5 3. 5 3. 3 3. 3 T 2 M va r 1. 1 1. 2 1. 2 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 0. 8 0. 8 1. 5 1. 5 1. 2 1. 2 1. 5 1. 5 1. 6 1. 6 1. 7 1. 7 1. 7 1. 7 1. 6 1. 6 T ot al M W 4. 6 4. 8 4. 8 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 2 3. 2 6. 0 6. 0 5. 0 5. 0 6. 4 6. 4 6. 6 6. 6 7. 0 7. 0 7. 0 7. 0 6. 6 6. 6 T ot al M va r 2. 2 2. 3 2. 3 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 5 1. 5 2. 9 2. 9 2. 4 2. 4 3. 1 3. 1 3. 2 3. 2 3. 4 3. 4 3. 4 3. 4 3. 2 3. 2 72 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 V av un ia T l M W 3. 2 3. 2 3. 2 3. 2 3. 1 3. 1 3. 3 3. 3 3. 3 3. 3 3. 6 4. 3 6. 6 6. 8 6. 8 6. 4 6. 0 5. 1 4. 5 4. 2 4. 7 3. 3 3. 2 V av un ia T l M va r 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 4 1. 4 1. 4 1. 2 1. 1 1. 0 0. 9 0. 8 0. 8 0. 7 0. 6 T 2 M W 3. 2 3. 2 3. 2 3. 2 3. 1 3. 1 3. 3 3. 3 3. 3 3. 3 3. 6 4. 3 6. 6 6. 8 6. 8 6. 4 6. 0 5. 1 4. 5 4. 2 4. 7 3. 3 3. 2 T 2 M va r 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 4 1. 4 1. 4 1. 2 1. 1 1. 0 0. 9 0. 8 0. 8 0. 7 0. 6 T ot al M W 6. 4 6. 4 6. 4 6. 4 6. 2 6. 2 6. 6 6. 6 6. 6 6. 6 7. 2 8. 6 13 .2 13 .6 13 .6 12 .8 12 .0 10 .2 9. 0 8. 4 9. 4 6. 6 6. 4 T ot al M va r 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2 2. 8 2. 8 2. 8 2. 4 2. 2 2. 0 1. 8 1. 6 1. 7 1. 4 1. 2 T ri nc o T l M W 9. 0 9. 0 9. 0 8. 8 9. 1 9. 2 9. 2 9. 2 9. 2 8. 8 9. 9 15 .0 18 .0 17 .5 17 .5 17 .2 16 .3 14 .9 13 .3 12 .5 11 .2 10 .3 1, 0. 0 T ri nc o T l M va r 2. 1 2. 2 2. 2 2. 2 2. 2 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 2. 8 3. 0 3. 1 3. 1 3. 0 3. 0 2. 9 2. 8 2. 8 2. 5 2. 5 2. 2 T 2 M W 9. 5 10 .0 10 .0 8. 5 9. 8 8. 0 8. 0 8. 0 8. 0 8. 4 9. 8 10 .8 12 .0 11 .8 11 .0 11 .0 12 .2 12 .0 11 .7 11 .2 11 .4 11 .5 11 .5 T 2 M va r 2. 5 2. 5 2. 5 2. 1 2. 5 2. 0 2. 0 2. 0 2. 1 2. 2 2. 2 2. 8 2. 8 ' 2. 4 2. 8 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 2. 7 T ot al M W 18 .5 19 .0 19 .0 17 .3 18 .9 17 .2 17 .2 17 .2 17 .2 17 .2 19 .7 25 .8 30 .0 29 .3 28 .5 28 .2 28 .5 26 .9 25 .0 23 .7 22 .6 21 .8 21 .5 T ot al M va r 4. 6 4. 7 4. 7 4. 3 4. 7 4. 3 4. 3 4. 3 4. 4 4. 5 4. 5 5. 6 5. 8 5. 5 5. 9 5. 7 5. 7 5. 6 5. 5 5. 5 5. 2 5. 2 4. 9 M W 10 .1 9. 7 9. 7 9. 7 9. 7 8. 9 9. 3 9. 3 9. 9 9. 9 9. 9 12 .4 12 .4 12 .4 12 .4 12 .4 12 .4 12 .4 10 .3 11 .4 9. 9 9. 3 9. 7 M va r 4. 9 4. 7 4. 7 4. 7 4. 7 4. 3 4. 5 4. 5 4. 8 4. 8 4. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 0 5. 5 4. 8 4. 5 4. 7 T 2 M W 10 .1 9. 7 9. 7 9. 7 9. 7 8. 9 9. 3 9. 3 9. 9 9. 9 9. 9 12 .4 12 .4 12 .4 12 .4 12 .4 12 .4 12 .4 10 .3 11 .4 9. 9 9. 3 9. 7 T 2 M va r 4. 9 4. 7 4. 7 4. 7 4. 7 4. 3 4. 5 4. 5 4. 8 4. 8 4. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 0 5. 5 4. 8 4. 5 4. 7 T ot al M W 20 .2 19 .4 19 .4 19 .4 19 .4 17 .8 18 .6 18 .6 19 .8 19 .8 19 .8 24 .8 24 .8 24 .8 24 .8 24 .8 24 .8 24 .8 20 .6 22 .7 19 .8 18 .6 19 .4 T ot al M va r 9. 8 9. 4 9. 4 9. 4 9. 4 8. 6 9. 0 9. 0 9. 6 9. 6 9. 6 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 10 .0 11 .0 9. 6 9. 0 9. 4 B iy ag am a T l M W 32 .0 32 .0 32 .0 31 .0 31 .0 30 .0 32 .0 32 .0 30 .0 30 .0 30 .0 30 .0 34 .0 35 .0 34 .0 34 .0 33 .0 31 .0 30 .0 26 .0 25 .0 22 .5 21 .0 B iy ag am a T l M va r 16 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 16 .0 16 .0 16 .0 15 .0 16 .0 17 .0 17 .0 17 .0 16 .0 16 .0 14 .0 14 .0 12 .0 12 .0 12 .0 T 2 M W 32 .0 32 .0 32 .0 31 .0 31 .0 30 .0 32 .0 32 .0 30 .0 30 .0 30 .0 30 .0 34 .0 35 .0 34 .0 34 .0 33 .0 31 .0 30 .0 26 .0 25 .0 22 .5 21 .0 T 2 M va r 16 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 16 .0 16 .0 16 .0 15 .0 16 .0 17 .0 17 .0 17 .0 16 .0 16 .0 14 .0 14 .0 12 .0 12 .0 12 .0 T ot al M W 64 .0 64 .0 64 .0 62 .0 62 .0 60 .0 64 .0 64 .0 60 .0 60 .0 60 .0 60 .0 68 .0 70 .0 68 .0 68 .0 66 .0 62 .0 60 .0 52 .0 50 .0 45 .0 42 .0 T ot al M va r 32 .0 36 .0 36 .0 36 .0 36 .0 36 .0 36 .0 36 .0 32 .0 32 .0 32 .0 30 .0 32 .0 34 .0 34 .0 34 .0 32 .0 32 .0 28 .0 28 .0 24 .0 24 .0 24 .0 R an ta be T l M W 3. 2 3. 2 3. 2 3. 2 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 4. 0 5. 6 5. 7 5. 8 5. 8 4. 8 4. 8 3. 7 3. 7 2. 5 2. 5 2. 3 R an ta be T l M va r 1. 5 1. 5 1. 5 1. 5 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 9 2. 7 2. 8 2. 8 2. 8 2. 3 2. 3 1. 8 1. 8 1. 2 1. 2 1. 1 T 2 M W 3. 2 3. 2 3. 2 3. 2 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 4. 0 5. 6 5. 7 5. 8 5. 8 4. 8 4. 8 3. 7 3. 7 2. 5 2. 5 2. 3 T 2 M va r 1. 5 1. 5 1. 5 1. 5 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 9 2. 7 2. 8 2. 8 2. 8 2. 3 2. 3 1. 8 1. 8 1. 2 1. 2 1. 1 T ot al M W 6. 4 6. 4 6. 4 6. 4 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 8. 0 11 .2 11 .4 11 .6 11 .6 9. 6 9. 6 7. 4 7. 4 5. 0 5. 0 4. 6 T ot al M va r 3. 1 3. 1 3. 1 3. 1 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 9 5. 4 5. 5 5. 6 5. 6 4. 6 4. 6 3. 6 3. 6 2. 4 2. 4 2. 2 73 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 Sa pu ga s. T l M W 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 10 .0 10 .0 9. 0 10 .8 14 .0 14 .0 14 .0 13 8 13 .0 12 .0 11 .0 17 0 15 .1 14 .9 6. 5 Sa pu ga s. T l M va r 10 .5 10 .5 10 .8 11 .0 1 1 0 10 .3 10 .2 10 .5 10 .5 10 .2 8. 5 9. 0 11 .0 11 .0 11 .0 11 0 10 .0 10 .0 8. 5 11 .0 10 .0 10 .0 10 .0 T 2 M W 10 .9 10 .9 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 10 .2 10 .2 9. 1 11 .0 14 .2 16 .2 14 .5 14 .0 13 .2 12 .0 11 .0 14 .5 16 .2 15 .8 8. 0 T 2 M va r 10 .8 11 .0 11 .5 12 .0 11 .0 11 .0 11 .0 11 .5 11 .0 10 .0 9. 5 9. 8 11 .8 11 .5 11 .8 12 .0 10 .2 10 .0 8. 5 10 .8 12 .0 11 .5 11 .0 T 3 M W 10 .4 10 .6 10 .6 10 .6 10 .8 10 .9 10 .9 10 .2 10 .0 10 .0 10 .2 10 .2 14 .0 14 .0 14 .0 13 .0 13 .0 12 .0 10 .0 17 .0 15 .0 14 .7 8. 0 T 3 M va r 10 .8 11 .0 11 .3 11 .5 11 .5 11 .7 11 .7 12 .0 11 .0 10 .5 10 .5 10 .5 10 .8 11 .5 11 .8 12 .0 10 .2 10 .5 10 .5 1 1. 0 10 .5 10 .5 10 .5 T ot al M W 32 .3 32 .5 32 .6 32 .6 32 .8 32 .9 32 .9 32 .2 30 .2 30 .2 28 .3 32 .0 42 .2 44 .2 42 .5 40 .8 39 .2 36 .0 32 .0 48 .5 46 .3 45 .4 22 .5 T ot al M va r 32 .1 32 .5 33 .6 34 .5 33 .5 33 .0 32 .9 34 .0 32 .5 30 .7 28 .5 29 .3 33 .6 34 .0 34 .6 35 .0 30 .4 30 .5 27 .5 32 .8 32 .5 32 .0 31 .5 K el an iy a T l M W 12 .2 13 .4 13 .4 13 .5 13 .5 14 .0 14 .0 15 .7 15 .7 13 .5 13 .5 15 .2 15 .2 16 .4 16 .4 15 .8 15 .8 13 .4 13 .4 10 .8 10 .8 10 .8 10 .8 K el an iy a T l M va r 8. 3 8. 9 8. 9 8. 8 8. 8 8. 2 8. 2 6. 8 6. 8 8. 5 8. 5 8. 0 8. 0 8. 4 8. 4 8. 2 8. 2 6. 8 6. 8 6. 1 6. 1 5. 6 5. 6 K ot ug od a T l M W 44 .0 45 .0 45 .0 45 .0 55 .0 44 .0 44 .0 40 .0 44 .0 44 .0 43 .0 43 .0 43 .0 43 .0 38 .0 38 .0 35 .0 35 .0 33 .0 33 .0 30 .0 30 .0 28 .0 K ot ug od a T l M va r 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 8. 0 8. 0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 13 .0 13 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 T 2 M W 40 .0 55 .0 54 .0 54 .0 46 .0 46 .0 45 .0 30 .0 45 .0 45 .0 45 .0 45 .0 43 .0 43 .0 45 .0 42 .0 42 .0 42 .0 35 .0 35 .0 35 .0 35 .0 36 .0 T 2 M va r 6. 0 11 .0 11 .0 11 .0 13 .0 13 .0 12 .0 12 .0 11 .0 11 .0 20 .0 20 .0 17 .0 17 .0 17 .0 17 .0 12 .0 12 .0 11 .0 11 .0 11 .0 11 .0 11 .0 T ot al M W 84 .0 10 0. 0 99 .0 99 .0 10 1. 0 90 .0 89 .0 70 .0 89 .0 89 .0 88 .0 88 .0 86 .0 86 .0 83 .0 80 .0 77 .0 77 .0 68 .0 68 .0 65 .0 65 .0 64 .0 T ot al M va r 17 .0 22 .0 22 .0 22 .0 24 .0 24 .0 20 .0 20 .0 26 .0 26 .0 35 .0 35 .0 32 .0 32 .0 30 .0 30 .0 22 .0 22 .0 21 .0 21 .0 21 .0 21 .0 21 .0 B ol aw at ta T l M W 15 .0 15 .0 15 .0 15 .0 14 .8 14 .8 15 .1 15 .1 13 .7 13 .7 13 .2 13 .2 19 .0 19 .0 18 .5 18 .5 17 .2 17 .2 14 .7 14 .7 11 .7 11 .7 10 .7 B ol aw at ta T l M va r 8. 2 8. 2 9. 0 9. 0 8. 5 8. 5 8. 5 8. 5 8. 0 8. 0 7. 5 7. 5 9. 5 9. 5 9. 5 9. 5 8. 0 8. 0 7. 0 7. 0 6. 0 6. 0 5. 5 T 2 M W 15 .0 15 .0 15 .0 15 .0 14 .8 14 .8 15 .1 15 .1 13 .7 13 .7 13 .2 13 .2 19 .0 19 .0 18 .5 18 .5 17 .2 17 .2 14 .7 14 .7 11 .7 11 .7 10 .7 T 2 M va r 8. 2 8. 2 9. 0 9. 0 8. 5 8. 5 8. 5 8. 5 8. 0 8. 0 7. 5 7. 5 9. 5 9. 5 9. 5 9. 5 8. 0 8. 0 7. 0 7. 0 6. 0 6. 0 5. 5 T 3 M W 15 .0 15 .0 15 .0 15 .0 14 .8 14 .8 15 .1 15 .1 13 .7 13 .7 13 .2 13 .2 19 .0 19 .0 18 .5 18 .5 17 .2 17 .2 14 .7 14 .7 11 .7 11 .7 10 .7 T 3 M va r 8. 2 8. 2 9. 0 9. 0 8. 5 8. 5 8. 5 8. 5 8. 0 8. 0 7. 5 7. 5 9. 5 9. 5 9. 5 9. 5 8. 0 8. 0 7. 0 7. 0 6. 0 6. 0 5. 5 T ot al M W 45 .0 45 .0 45 .0 45 .0 44 .4 44 .4 45 .3 45 .3 41 .1 41 .1 39 .6 39 .6 57 .0 57 .0 55 .5 55 .5 51 .6 51 .6 44 .1 44 .1 35 .1 35 .1 32 .1 T ot al M va r 24 .6 24 .6 27 .0 27 .0 25 .5 25 .5 25 .5 25 .5 • 24 .0 24 .0 22 .5 22 .5 28 .5 28 .5 28 .5 28 .5 24 .0 24 .0 21 .0 21 .0 18 .0 18 .0 16 .5 Pu tt al am T l M W 9. 5 9. 5 9. 5 13 .0 13 .0 13 .0 13 .0 14 .0 14 .0 14 .0 14 .0 18 .0 15 .0 14 .0 13 .0 17 .0 16 .0 15 .0 14 .0 12 .0 11 .0 10 .0 9. 0 Pu tt al am T l M va r 5. 0 5. 0 5. 0 6. 0 6. 0 6. 0 6. 0 7. 0 7. 0 7. 0 7. 0 7. 0 6. 0 6. 0 5. 0 6. 0 5. 0 5. 0 5. 0 4. 0 4. 0 3. 0 3. 0 T 2 M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 5 8. 5 7. 5 7. 5 9. 0 9. 0 8. 5 8. 5 8. 5 8. 0 7. 0 T 2 M va r 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 T ot al M W 17 .5 17 .5 17 .5 21 .0 21 .0 21 .0 21 .0 22 .0 22 .0 22 .0 22 .0 26 .0 23 .5 22 .5 20 .5 24 .5 25 .0 24 .0 22 .5 20 .5 19 .5 18 .0 16 .0 T ot al M va r 8. 0 8. 0 8. 0 9. 0 9. 0 9. 0 9. 0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 0 9. 0 8. 0 9. 0 8. 0 8. 0 8. 0 7. 0 7. 0 6. 0 6. 0 T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 1 1: 00 11 :3 0 12 :0 0 12 :3 0 M ad am pe T 1 M W 8. 6 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 8 10 1 11 .1 11 .8 11 .8 11 .5 11 .0 11 .0 12 .0 13 .0 13 .0 10 .0 12 .0 12 .0 12 .0 12 .0 12 .0 M ad am pe T 1 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 2. 5 5. 1 5. 2 5. 5 6. 0 6. 0 5. 5 5. 2 5. 5 5. 5 6. 0 6. 0 5. 2 5. 2 5. 2 5. 2 5. 2 7. 5 T 2 M W 8. 6 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 8 10 .1 11 .1 11 .8 11 .8 11 .5 11 .0 11 .0 12 .0 13 .0 13 .0 10 .0 12 .0 12 .0 12 .0 12 .0 12 .0 T 2 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 2. 5 5. 1 5. 2 5. 5 6. 0 6. 0 5. 5 5. 2 5. 5 5. 5 6. 0 6. 0 5. 2 5. 2 5. 2 5. 2 5. 2 7. 5 T ot al M W 17 .2 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 17 .6 20 .2 22 .2 23 .6 23 .6 23 .0 22 .0 22 .0 24 .0 26 .0 26 .0 20 .0 24 .0 24 .0 24 .0 24 .0 24 .0 T ot al M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 5. 0 10 .2 10 .4 11 .0 12 .0 12 .0 11 .0 10 .4 11 .0 11 .0 12 .0 12 .0 10 .4 10 .4 10 .4 10 .4 10 .4 15 .0 V ey an go da T 1 M W 8. 3 8. 3 8. 3 8. 3 8. 3 8. 3 8. 3 9. 0 10 .2 11 .2 12 .8 13 .5 13 .5 13 .5 13 .5 14 .8 15 .6 14 .2 14 .1 14 .2 14 .2 14 .2 15 .2 15 .2 1. 5. 0 V ey an go da T 1 M va r 4. 7 4. 7 4. 7 4. 7 4. 7 4. 7 2. 7 4. 7 5. 0 5. 2 5. 3 5. 3 5. 3 5. 3 6. 3 7. 5 8. 5 8. 2 8. 2 8. 4 8. 4 8. 0 9. 0 9. 0 8. 3 T 2 M W 8. 3 8. 3 8. 3 8. 3 8. 3 8. 3 8. 3 9. 0 10 .2 11 .2 12 .8 13 .5 13 .5 13 .5 13 .5 14 .8 15 .6 14 .2 14 .1 14 .2 14 .2 14 .2 15 .2 15 .2 15 .0 T 2 M va r 4. 7 4. 7 4. 7 4. 7 4. 7 4. 7 2. 7 4. 7 5. 0 5. 2 5. 3 5. 3 5. 3 5. 3 6. 3 7. 5 8. 5 8. 2 8. 2 8. 4 8. 4 8. 0 9. 0 9. 0 8. 3 T ot al M W 16 .6 16 .6 16 .6 16 .6 16 .6 16 .6 16 .6 18 .0 20 .4 22 .4 25 .6 27 .0 27 .0 27 .0 27 .0 29 .6 31 .2 28 .4 28 .2 28 .4 28 .4 28 .4 30 .4 30 .4 30 .0 T ot al M va r 9. 4 9. 4 9. 4 9. 4 9. 4 9. 4 5. 4 9. 4 10 .0 10 .4 10 .6 10 .6 10 .6 10 .6 12 .6 15 .0 17 .0 16 .4 16 .4 16 .8 16 .8 16 0 18 .0 18 .0 16 .6 S it ha w ak a T 1 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 6. 0 6. 0 6. 0 7. 0 6. 0 7. 0 8. 0 od ; 9. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 S it ha w ak a T 1 M va r 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 3. 0 3. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 T 2 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 6. 0 6. 0 6. 0 7. 0 6. 0 7. 0 8. 0 8. 5 9. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 T 2 M va r 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 3. 0 3. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 T ot al M W 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 10 .0 10 .0 12 .0 12 .0 12 .0 14 .0 12 .0 14 .0 16 .0 17 .0 18 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 T ot al M va r 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 6. 0 6. 0 8. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 Pa nn ip it iy a T 1 M W 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 9. 0 10 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 12 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 Pa nn ip it iy a T 1 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 7. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 T 2 M W 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 9. 0 10 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 12 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 T 2 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 5. 0 5. 0 5. 0 5. 0 5. 0 7. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 T ot al M W 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 18 .0 20 .0 22 .0 22 .0 22 .0 22 .0 22 .0 22 .0 24 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 T ot al M va r 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 10 .0 10 .0 10 .0 10 .0 10 .0 14 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 R at m al an a T 1 M W 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 7. 0 7. 0 7. 0 7. 0 13 .8 13 .8 13 .8 13 .8 13 .8 13 .8 12 .4 12 .4 11 .6 11 .6 R at m al an a T 1 M va r 2. 3 2. 0 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 2. 3 4. 0 4. 0 4. 0 4. 0 6. 0 6. 0 6. 0 6. 0 6. 5 6. 5 6. 5 7. 0 7. 0 7. 0 T 2 M W 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 7. 0 7. 0 7. 0 7. 0 13 .8 13 .8 13 .8 13 .8 13 .8 13 .8 11 .7 11 .5 10 .9 10 .9 T 2 M va r 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 6. 0 6. 0 6. 0 6. 0 6. 0 8. 0 8. 0 8. 5 8. 0 8. 0 T 3 M W 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 6. 4 7. 0 7. 0 7. 0 7. 0 13 .8 13 .8 13 .8 13 .8 12 .0 12 .0 11 .2 11 .2 11 .2 11 .2 T 3 M va r 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 4. 0 4. 0 4. 0 4. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 9. 5 9. 0 9. 0 9. 0 T ot al M W 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 19 .2 21 .0 21 .0 21 .0 21 .0 41 .4 41 .4 41 .4 41 .4 39 .6 39 .6 35 .3 35 .1 33 .7 33 .7 T ot al M va r 8. 9 8. 6 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9 12 .0 12 .0 12 .0 16 .0 18 .0 18 .0 18 .0 18 .0 18 .5 20 .5 24 .0 24 .5 24 .0 24 .0 76 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 3 0 0: 00 M ad am pe T l M W 12 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 11 .0 11 .5 11 .5 11 .5 15 .5 20 .0 18 .0 18 .5 18 .0 18 .0 16 .0 12 .0 12 .0 11 .5 11 .5 M ad am pe T l M va r 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 6. 0 6. 0 6. 0 8. 0 8. 0 10 .0 11 .0 10 .5 10 .0 10 .0 10 .0 6. 0 6. 0 6. 0 6. 0 T 2 M W 12 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 11 .0 11 .5 11 .5 11 .5 15 .5 20 .0 18 .0 18 .5 18 .0 18 .0 16 .0 12 .0 12 .0 11 .5 11 .5 T 2 M va r 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 6. 0 6. 0 6. 0 8. 0 8. 0 10 .0 11 .0 10 .5 10 .0 10 .0 10 .0 6. 0 6. 0 6. 0 6. 0 T ot al M W 24 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 22 .0 23 .0 23 .0 23 .0 31 .0 40 .0 36 .0 37 .0 36 .0 36 .0 32 .0 24 .0 24 .0 23 .0 23 .0 T ot al M va r 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 12 .0 12 .0 12 .0 16 .0 16 .0 20 .0 22 .0 21 .0 20 .0 20 .0 20 .0 12 .0 12 .0 12 .0 12 .0 V ey an go da T 1 M W 14 .3 14 .7 14 .2 15 .4 15 .6 15 .6 16 .0 16 .4 14 .8 14 .8 14 .0 17 .0 21 .0 21 .0 20 .4 20 .1 19 .6 16 .8 15 .4 12 .9 11 .4 10 .3 10 .0 V ey an go da T 1 M va r 8. 3 8. 7 8. 3 9. 0 9. 0 9. 0 9. 3 10 .0 9. 0 8. 5 7. 0 8. 0 8. 5 8. 5 8. 8 7. 8 7. 8 7. 2 6. 5 5. 8 5. 5 5. 2 10 .0 T 2 M W 14 .3 14 .7 14 .2 15 .4 15 .6 15 .6 16 .0 16 .4 14 .8 14 .8 14 .0 17 .0 21 .0 21 .0 20 .4 20 .1 19 .6 16 .8 15 .4 12 .9 11 .4 10 .3 10 .0 T 2 M va r 8. 3 8. 7 8. 3 9. 0 9. 0 9. 0 9. 3 10 .0 9. 0 8. 5 7. 0 8. 0 8. 5 8. 5 8. 8 7. 8 7. 8 7. 2 6. 5 5. 8 5. 5 5. 2 10 .0 T ot al M W 28 .6 29 .4 28 .4 30 .8 31 .2 31 .2 32 .0 32 .8 29 .6 29 .6 28 .0 34 .0 42 .0 42 .0 40 .8 40 .2 39 .2 33 .6 30 .8 25 .8 22 .8 20 .6 20 .0 T ot al M va r 16 .6 17 .4 16 .6 18 .0 18 .0 18 .0 18 .6 20 .0 18 .0 17 .0 14 .0 16 .0 17 .0 17 .0 17 .6 15 .6 15 .6 14 .4 13 .0 11 .6 11 .0 10 .4 20 .0 Si th av va ka T l M W 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 0 9. 0 8. 0 8. 0 8. 0 9. 0 11 .0 12 .0 12 .0 10 .0 10 .0 9. 0 7. 0 6. 0 6. 0 5. 0 Si th av va ka T l M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 4. 5 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 5 3. 5 3. 0 3. 0 3. 0 1. 5 1. 5 2. 5 T 2 M W 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 0 9. 0 8. 0 8. 0 8. 0 9. 0 11 .0 12 .0 12 .0 10 .0 10 .0 9. 0 7. 0 6. 0 6. 0 5. 0 T 2 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 4. 5 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 3. 5 3. 5 3. 0 3. 0 3. 0 1. 5 1. 5 2. 5 T ot al M W 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 18 .0 18 .0 16 .0 16 .0 16 .0 18 .0 22 .0 24 .0 24 .0 20 .0 20 .0 18 .0 14 .0 12 .0 12 .0 10 .0 T ot al M va r 10 .0 10 .0 10 .0 10 .0 10 .0 •1 0. 0 10 .0 10 .0 9. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 0 7. 0 6. 0 6. 0 6. 0 3. 0 3. 0 5. 0 Pa nn ip it iy a T l M W 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 11 .0 14 .0 17 .0 17 .0 17 .0 16 .0 16 .0 15 .0 13 .0 12 .0 12 .0 10 .0 9. 0 Pa nn ip it iy a T l M va r 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 6. 0 6. 0 5. 0 5. 0 5. 0 T 2 M W 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 13 .0 11 .0 14 .0 17 .0 17 .0 17 .0 16 .0 16 .0 15 .0 13 .0 12 .0 12 .0 10 .0 9. 0 T 2 M va r 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 6. 0 6. 0 5. 0 5. 0 5. 0 T ot al M W 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 26 .0 . 26 .0 26 .0 26 .0 22 .0 28 .0 34 .0 34 .0 34 .0 32 .0 32 .0 30 .0 26 .0 24 .0 24 .0 20 .0 18 .0 T ot al M va r 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 12 .0 12 .0 10 .0 10 .0 10 .0 R at m al an a T l M W 11 .6 11 .6 11 .6 10 .7 10 .7 10 .7 10 .7 10 .7 .1 0. 2 10 .0 10 .0 9. 5 11 .0 11 .0 11 .0 11 .0 10 .0 9. 6 9. 0 8. 5 8. 2 7. 0 7. 0 R at m al an a T l M va r 7. 0 7. 0 7. 0 6. 0 6. 0 6. 0 6. 0 5. 8 5. 5 5. 5 4. 2 4. 2 5. 0 5. 0 4. 5 4. 5 4. 2 4. 2 4. 0 3. 8 3. 5 3. 0 3. 0 T 2 M W 10 .9 10 .9 10 .9 10 .5 10 .0 10 .0 10 .5 10 .1 9. 6 9. 6 8. 6 9. 0 10 .5 10 .5 10 .5 10 .5 10 .5 10 .0 8. 8 8. 0 7. 6 7. 0 6. 8 T 2 M va r 8. 0 8. 0 8. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 2 7. 2 6. 2 6. 0 7. 0 7. 0 6. 5 6. 2 6. 2 6. 0 5. 8 5. 2 5. 0 5. 0 5. 0 T 3 M W 11 .2 11 .2 10 .3 10 .3 10 .3 10 .3 10 .3 10 .0 9. 6 9. 6 8. 8 9. 2 10 .0 10 .0 10 .0 10 .0 10 .0 9. 5 8. 2 8. 0 7. 6 7. 0 6. 3 T 3 M va r 9. 0 9. 0 9. 0 8. 0 8. 0 8. 0 8. 0 7. 8 7. 5 7. 5 8. 5 7. 8 7. 8 7. 8 7. 8 7. 8 7. 8 6. 8 6. 5 6. 2 6. 0 6. 0 6. 0 T ot al M W 33 .7 33 .7 32 .8 31 .5 31 .0 31 .0 31 .5 30 .8 29 .4 29 .2 27 .4 27 .7 31 .5 31 .5 31 .5 31 .5 30 .5 29 .1 26 .0 24 .5 23 .4 21 .0 20 .1 T ot al M va r 24 .0 24 .0 24 .0 21 .0 21 .0 21 .0 21 .0 20 .6 20 .2 20 .2 18 .9 18 .0 19 .8 19 .8 18 .8 18 .5 18 .2 17 .0 16 .3 15 .2 14 .5 14 .0 14 .0 77 T im e 0:3 0 4.0 0 Pa na du ra T I 10 :0 0 10 :30 12 :0 0 12 :30 K os ga m a T l H or an a M at ug am a T l 78 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 Pa na du ra T 1 M W 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 15 .0 15 .0 15 .0 18 .0 19 .0 19 .0 22 .0 22 .0 22 .0 22 .0 20 .0 14 .0 14 .0 11 .0 11 .0 10 .0 10 .0 Pa na du ra T 1 M va r 3. 0 3. 0 3. 0 3. 0 3. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 T 2 M W 16 .0 16 .0 16 .0 16 .0 16 .0 16 .0 15 .0 15 .0 15 .0 18 .0 19 .0 19 .0 22 .0 22 .0 22 .0 22 .0 20 .0 14 .0 14 .0 11 .0 11 .0 10 .0 10 .0 T 2 M va r 3. 0 3. 0 3. 0 3. 0 3. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 4. 0 4. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 T ot al M W 32 .0 32 .0 32 .0 32 .0 32 .0 32 .0 30 .0 30 .0 30 .0 36 .0 38 .0 38 .0 44 .0 44 .0 44 .0 44 .0 40 .0 28 .0 28 .0 22 .0 22 .0 20 .0 20 .0 T ot al M va r 6. 0 6. 0 6. 0 6. 0 6. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 8. 0 8. 0 8. 0 8. 0 2. 0 2. 0 2. 0 2. 0 4. 0 4. 0 K os ga m a T 1 M W 12 .7 15 .8 16 .3 16 .3 17 .3 17 .5 17 .5 17 .5 16 .3 15 .8 16 .2 19 .0 23 .6 23 .8 23 .1 22 .8 21 .6 18 .6 16 .0 14 .3 13 .2 11 .6 11 .1 K os ga m a T 1 M va r 8. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 0 9. 0 9. 0 10 .0 ' 10 .0 10 .0 10 .0 9. 0 7. 0 7. 0 7. 0 7. 0 6. 0 6. 0 T 2 M W 12 .7 15 .8 16 .3 16 .3 17 .3 17 .5 17 .5 17 .5 16 .3 15 .8 16 .2 19 .0 23 .6 23 .8 23 .1 22 .8 21 .6 18 .6 16 .0 14 .3 13 .2 11 .6 11 .1 T 2 M va r 8. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 0 9. 0 9. 0 10 .0 10 .0 10 .0 10 .0 9. 0 7. 0 7. 0 7. 0 7. 0 6. 0 6. 0 T ot al M W 25 .4 31 .6 32 .6 32 .6 34 .6 35 .0 35 .0 35 .0 32 .6 31 .6 32 .4 38 .0 47 .2 47 .6 46 .2 45 .6 43 .2 37 .2 32 .0 28 .6 26 .4 23 .2 22 .2 T ot al M va r 16 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 20 .0 18 .0 18 .0 18 .0 20 .0 20 .0 20 .0 20 .0 18 .0 14 .0 14 .0 14 .0 14 .0 12 .0 12 .0 H or an a T l M W 0. 7 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 0. 0 2. 0 2. 0 -2 .0 -2 .0 -1 .0 0. 0 1. 0 2. 0 3. 0 3. 0 3. 0 H or an a T l M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 7. 0 8. 0 8. 0 8. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 T 2 M W 0. 7 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 0. 0 2. 0 2. 0 -2 .0 -2 .0 -1 .0 0. 0 1. 0 2. 0 3. 0 3. 0 3. 0 T 2 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 7. 0 8. 0 8. 0 8. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 T ot al M W 1. 4 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 0. 0 4. 0 4. 0 -4 .0 -4 .0 -2 .0 0. 0 2. 0 4. 0 6. 0 6. Q 6. 0 T ot al M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 14 .0 16 .0 16 .0 16 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 M at ug am a T l M W 12 .2 12 .2 12 .0 12 .0 12 .5 12 .5 12 .8 12 .8 12 .0 12 .0 12 .3 13 .2 21 .9 22 .5 21 .1 20 .6 20 .3 18 .4 15 .1 11 .7 11 .7 11 .7 8. 0 M at ug am a T l M va r 2. 2 2. 2 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 0 3. 6 3. 9 3. 5 3. 4 3. 0 2. 5 1. 8 0. 6 0. 6 0. 6 0. 4 0. 2 T 2 M W 12 .2 12 .2 12 .0 12 .0 12 .5 12 .5 12 .8 12 .8 12 .0 12 .0 12 .3 13 .2 21 .9 22 .5 21 .1 20 .6 20 .3 18 .4 15 .1 11 .7 11 .7 11 .7 8. 0 T 2 M va r 2. 2 2. 2 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 0 3. 6 3. 9 3. 5 3. 4 3. 0 2. 5 1. 8 0. 6 0. 6 0. 6 0. 4 0. 2 T 3 M W 12 .2 12 .2 12 .0 12 .0 12 .5 12 .5 12 .8 12 .8 12 .0 12 .0 12 .3 13 .2 21 .9 22 .5 21 .1 20 .6 20 .3 18 .4 15 .1 11 .7 11 .7 11 .7 8. 0 T 3 M va r 2. 2 2. 2 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 0 3. 6 3. 9 3. 5 3. 4 3. 0 2. 5 1. 8 0. 6 0. 6 0. 6 0. 4 0. 2 T ot al M W 36 .6 36 .6 36 .0 36 .0 37 .5 37 .5 38 .4 38 .4 36 .0 36 .0 36 .9 39 .6 65 .7 67 .5 63 .3 61 .8 60 .9 55 .2 45 .3 35 .1 35 .1 35 .1 24 .0 T ot al M va r 6. 6 6. 6 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 7. 5 6. 0 10 .8 11 .7 10 .5 10 .2 9. 0 7. 5 5. 4 1. 8 1. 8 1. 8 1. 2 0. 6 79 : * / T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 11 :0 0 11 :3 0 12 :0 0 12 :3 0 K ol on na w a T l M W 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 3 5. 3 5. 5 5. 6 5. 8 7. 6 9. 7 11 .0 11 .7 12 .3 12 .7 12 .7 12 .8 13 .0 12 .6 12 .7 K ol on na w a T l M va r 1. 8 1. 8 1. 8 1. 7 1. 8 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 18 2. 0 3. 0 4. 0 5. 6 5. 0 6. 0 6. 0 6. 6 6. 0 6. 8 6. 8 6. 0 T 2 M W 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 3 5. 3 5. 5 5. 6 5. 8 7. 6 9. 7 11 .0 11 .7 12 .3 12 .7 12 .7 12 .8 13 .0 12 .6 12 .7 T 2 M va r 1. 8 1. 8 1. 8 1. 7 1. 8 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 8 2. 0 3. 0 4. 0 5. 6 5. 0 6. 0 6. 0 6. 6 6. 0 6. 8 6. 8 6. 0 T 3 M W 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 3 5. 3 5. 5 5. 6 5. 8 7. 6 9. 7 11 .0 11 .7 12 .3 12 .7 12 .7 12 .8 13 .0 12 .6 12 .7 T 3 M va r 1. 8 1. 8 1. 8 1. 7 1. 8 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 8 2. 0 3. 0 4. 0 5. 6 5. 0 6. 0 6. 0 6. 6 6. 0 6. 8 6. 8 6. 0 T ot al M W 15 .3 15 .3 15 .3 15 .3 15 .3 15 .3 15 .3 15 .3 15 .3 15 .9 15 .9 16 .5 16 .8 17 .4 22 .8 29 .1 33 .0 35 .1 36 .9 38 .1 38 .1 38 .4 39 .0 37 .8 38 .1 T ot al M va r 5. 4 5. 4 5. 4 5. 1 5. 4 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 1 5. 4 6. 0 9. 0 12 .0 16 .8 15 .0 18 .0 18 .0 19 .8 18 .0 20 .4 20 .4 18 .0 T 4 M W 10 .4 10 .4 10 .4 10 .4 10 .4 10 .5 10 .5 10 .7 10 .7 10 .8 11 .0 11 .0 11 .3 11 .7 12 .0 13 .4 15 .4 16 .7 17 .0 17 .5 18 .1 18 .2 18 .1 18 .3 18 .7 T 4 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 7. 2 9. 0 9. 7 10 .0 10 .0 10 .9 10 .0 11 .1 10 .5 10 .0 T 5 M W 10 .1 10 .1 10 .1 10 .1 10 .1 10 .1 10 .1 10 .8 10 .8 10 .4 10 .6 10 .7 11 .5 11 .4 11 .8 11 .9 14 .8 16 .1 16 .4 16 .9 17 .4 17 .4 17 .5 17 .6 17 .2 T 5 M va r 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 6. 9 8. 6 9. 2 9. 0 9. 0 10 .0 10 .4 10 .0 10 .5 10 .1 T ot al M W 20 .5 20 .5 20 .5 20 .5 20 .5 20 .6 20 .6 21 .5 21 .5 21 .2 21 .6 21 .7 22 .8 23 .1 23 .8 25 .3 30 .2 32 .8 33 .4 34 .4 35 .5 35 .6 35 .6 35 .9 35 .9 T ot al M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 14 .1 17 .6 18 .9 19 .0 19 .0 20 .9 20 .4 21 .1 21 .0 20 .1 S. Jp ur a T l M W 10 .5 10 .0 9. 6 9. 4 9. 5 10 .2 9. 4 11 .8 13 .8 18 .3 19 .7 18 .0 18 .4 18 .9 19 .8 20 .1 16 .3 15 .7 15 .7 18 .8 19 .1 18 .2 16 .2 13 .6 10 .0 S. Jp ur a T l M va r 7. 2 7. 3 7. 2 6. 9 6. 9 6. 8 6. 7 6. 8 6. 8 6. 7 7. 0 6. 9 6. 7 6. 9 7. 4 8. 9 10 .4 11 .7 12 .2 12 .5 12 .8 10 .5 12 .0 12 .0 11 .7 T 2 M W 10 .5 10 .0 9. 6 9. 4 9. 5 10 .2 9. 4 11 .8 13 .8 18 .3 19 .7 18 .0 18 .4 18 .9 19 .8 20 .1 16 .3 15 .7 15 .7 18 .8 19 .1 18 .2 16 .2 13 .6 10 .0 T 2 M va r 7. 2 7. 3 7. 2 6. 9 6. 9 6. 8 6. 7 6. 8 6. 8 6. 7 7. 0 6. 9 6. 7 6. 9 7. 4 8. 9 10 .4 11 .7 12 .2 12 .5 12 .8 10 .5 12 .0 12 .0 11 .7 T ot al M W 21 .0 20 .0 19 .2 18 .8 19 .0 20 .4 23 .8 23 .6 27 .6 36 .6 39 .4 36 .0 36 .8 37 .8 39 .6 40 .2 32 .6 31 .4 31 .4 37 .6 38 .2 36 .4 32 .4 27 .2 20 .0 T ot al M va r 14 .4 14 .6 14 .4 13 .8 13 .8 13 .6 13 .4 13 .6 13 .6 13 .4 14 .0 13 .8 13 .4 13 .8 14 .8 17 .8 20 .8 23 .4 24 .4 25 .0 25 .6 21 .0 24 .0 24 .0 23 .4 H av T ow n- A T l M W 5. 8 5. 6 5. 6 5. 5 5. 3 5. 3 5. 2 5. 1 5. 2 5. 4 5. 7 5. 8 5. 9 6. 7 8. 0 11 .6 14 .0 16 .2 17 .5 18 .7 18 .7 18 .7 18 .7 18 .7 18 .7 H av T ow n- A T l M va r 2. 8 1. 7 1. 7 1. 7 1. 5 1. 5 1. 4 1. 4 1. 4 1. 5 1. 6 1. 5 1. 5 1. 9 2. 7 4. 5 5. 5 6. 5 7. 0 7. 4 7. 3 7. 2 7. 4 7. 8 7. 7 T 2 M W 2. 7 2. 6 2. 6 2. 6 2. 5 2. 5 2. 5 2. 5 2. 5 2. 6 2. 7 2. 8 2. 8 3. 1 3. 8 4. 8 5. 8 6. 4 6. 8 7. 2 7. 1 7. 2. 7. 0 7. 1 7. 0 T 2 M va r 1. 3 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 8 2. 3 2. 8 3. 0 3. 4 3. 6 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 T ot al M W 8. 5 8. 2 8. 2 8. 1 7. 8 7. 8 7. 7 7. 6 7. 7 8. 0 8. 4 8. 6 8. 7 9. 8 11 .8 16 .4 19 .8 22 .6 24 .3 25 .9 25 .8 25 .9 25 .7 25 .8 25 .7 T ot al M va r 4. 1 2. 9 2. 9 2. 9 2. 7 2. 7 2. 6 2. 6 2. 6 2. 7 2. 8 2. 7 2. 7 3. 7 5. 0 7. 3 8. 5 9. 9 10 .6 10 .9 10 .8 10 .7 10 .9 11 .3 11 .2 M ar ad li an a- 1 T l M W 3. 0 2. 9 2. 9 2. 8 2. 8 2. 8 2. 8 2. 8 3. 1 3. 2 3. 2 3. 3 3. 5 4. 4 5. 7 7. 2 8. 4 9. 1 9. 5 9. 7 9. 7 9. 4 9. 7 9. 7 9. 5 M ar ad li an a- 1 T l M va r 1. 3 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 3 1. 3 1. 3 1. 3 1. 5 2. 6 2. 6 3. 2 3. 6 4. 0 4. 1 4. 3 4. 4 4. 2 4. 3 4. 2 4. 2 T 2 M W 4. 5 4. 3 4. 4 4. 4 4. 3 4. 2 4. 2 4. 2 4. 2 4. 4 4. 5 4. 7 4. 8 5. 7 7. 0 9. 4 11 .8 13 .2 13 .3 13 .8 13 .6 13 .4 13 .6 13 .7 13 .7 T 2 M va r 1. 8 1. 8 1. 8 1. 8 1. 8 1. 6 1. 6 1. 6 1. 6 1. 6 1. 6 1. 8 1. 8 2. 2 2. 3 4. 0 4. 8 5. 4 5. 6 5. 8 5. 8 5. 8 5. 7 5. 9 5. 8 T ot al M W 7. 5 7. 2 7. 3 7. 2 7. 1 7. 0 7. 0 7. 0 7. 3 7. 6 7. 7 8. 0 8. 3 10 .1 12 .7 16 .6 20 .2 22 .3 22 .8 23 .5 23 .3 22 .8 23 .3 23 .4 23 .2 T ot al M va r 3. 1 3. 0 3. 0 3. 0 3. 0 2. 8 2. 8 2. 8 2. 9 2. 9 2. 9 3. 1 3. 3 4. 8 4. 9 7. 2 8. 4 9. 4 9. 7 10 .1 10 .2 10 .0 10 .0 10 .1 10 .0 T im e 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 :3 0 22 :0 0 22 :3 0 23 :0 0 23 :3 0 0: 00 K ol on na vv a T l M W 12 .5 12 .7 12 .7 12 .8 12 .6 12 .3 11 .6 11 .5 9. 1 8. 7 8. 7 8. 6 8. 5 8. 3 8. 0 8. 8 8. 5 8. 2 6. 3 6. 3 5. 7 5. 7 5. 4 K ol on na vv a T l M va r 6. 0 6. 2 6. 7 6. 0 6. 0 6. 0 6. 0 5. 0 4. 7 4. 6 4. 4 4. 3 4. 2 4. 1 3. 9 3. 8 3. 5 3. 1 2. 4 2. 4 2. 1 2. 1 2. 1 T 2 M W 12 .5 12 .7 12 .7 12 .8 12 .6 12 .3 11 .6 11 .5 9. 1 8. 7 8. 7 8. 6 8. 5 8. 3 8. 0 8. 8 8. 5 8. 2 6. 3 6. 3 5. 7 5. 7 5. 4 T 2 M va r 6. 0 6. 2 6. 7 6. 0 6. 0 6. 0 6. 0 5. 0 4. 7 4. 6 4. 4 4. 3 4. 2 4. 1 3. 9 3. 8 3. 5 3. 1 2. 4 2. 4 2. 1 2. 1 2. 1 T 3 M W 12 .5 12 .7 12 .7 12 .8 12 .6 12 .3 11 .6 11 .5 9. 1 8. 7 8. 7 8. 6 8. 5 8. 3 8. 0 8. 8 8. 5 8. 2 6. 3 6. 3 5. 7 5. 7 5. 4 T 3 M va r 6. 0 6. 2 6. 7 6. 0 6. 0 6. 0 6. 0 5. 0 4. 7 4. 6 4. 4 4. 3 4. 2 4. 1 3. 9 3. 8 3. 5 3. 1 2. 4 2. 4 2. 1 2. 1 2. 1 T ot al M W 37 .5 38 .1 38 .1 38 .4 37 .8 36 .9 34 .8 34 .5 27 .3 26 .1 26 .1 25 .8 25 .5 24 .9 24 .0 26 .4 25 .5 24 .6 18 .9 18 .9 17 .1 17 .1 16 .2 T ot al M va r 18 .0 18 .6 20 .1 18 .0 18 .0 18 .0 18 .0 15 .0 14 .1 13 .8 13 .2 12 .9 12 .6 12 .3 11 .7 11 .4 10 .5 9. 3 7. 2 7. 2 6. 3 6. 3 6. 3 T 4 M W 18 .3 18 .7 18 .1 18 .1 18 .1 17 .8 17 .8 17 .1 16 .6 15 .4 15 .1 14 .3 18 .9 18 .0 18 .4 17 .1 16 .8 16 .2 15 .4 12 .9 11 .9 11 .8 11 .8 T 4 M va r 11 .0 11 2 11 .0 11 .0 10 .0 10 .0 10 .0 10 .0 10 .0 9. 2 9. 3 10 .5 10 .9 10 .8 10 .4 10 .1 9. 6 9. 1 8. 1 6. 7 6. 7 6. 2 6. 2 T 5 M W 16 .7 16 .9 16 .2 17 .5 17 .5 17 .5 17 .2 17 .2 16 .5 15 .9 14 .8 14 .7 16 .6 ' 17 .3 17 .3 16 .8 16 .5 16 .1 15 .6 14 .8 12 .5 12 .5 11 .3 T 5 M va r 10 .0 10 .0 10 .0 10 .7 10 .0 10 .0 10 .0 10 .0 10 .0 9. 5 8. 7 8. 9 10 .1 10 .4 10 .3 10 .0 9. 6 9. 2 8. 5 7. 8 6. 4 6. 4 5. 9 T ot al M W 35 .0 35 .6 34 .3 35 .6 35 .6 35 .3 35 .0 34 .3 33 .1 31 .3 29 .9 29 .0 35 .5 35 .3 35 .7 33 .9 33 .3 32 .3 31 .0 27 .7 24 .4 24 .3 23 .1 T ot al M va r 21 .0 21 .2 21 .0 21 .7 20 .0 20 .0 20 .0 20 .0 20 .0 18 .7 18 .0 19 .4 21 .0 21 .2 20 .7 20 .1 19 .2 18 .3 16 .6 14 .5 13 .1 12 .6 12 .1 S. Jp ur a T l M W 9. 9 9. 5 9. 4 9. 7 11 .1 12 .1 12 .0 16 .3 18 .9 19 .7 17 .8 18 .0 19 .2 20 .0 19 .8 18 .3 15 .7 18 .8 19 .6 18 .2 17 .1 14 .7 12 .3 S. Jp ur a T l M va r 12 .0 12 .7 13 .1 13 .2 12 .9 10 .6 12 .5 12 .5 10 .8 10 .8 10 .8 11 .6 11 .6 12 .1 11 .6 10 .8 10 .8 10 .1 9. 6 9. 0 8. 5 8. 0 8. 0 T 2 M W 9. 9 9. 5 9. 4 9. 7 11 .1 12 .1 12 .0 16 .3 18 .9 19 .7 17 .8 18 .0 19 .2 20 .0 19 .8 18 .3 15 .7 18 .8 19 .6 18 .2 17 .1 14 .7 12 .3 T 2 M va r 12 .0 12 .7 13 .1 13 .2 12 .9 10 .6 12 .5 12 .5 10 .8 10 .8 10 .8 11 .6 11 .6 12 .1 11 .6 10 .8 10 .8 10 .1 9. 6 9. 0 8. 5 8. 0 8. 0 T ot al M W 19 .8 19 .0 18 .8 19 .4 22 .2 " 24 .2 24 .0 32 .6 37 .8 39 .4 35 .6 36 .0 38 .4 40 .0 39 .6 36 .6 31 .4 37 .6 39 .2 36 .4 34 .2 29 .4 24 .6 T ot al M va r 24 .0 25 .4 26 .2 26 .4 25 .8 21 .2 25 .0 25 .0 21 .6 21 .6 21 .6 23 .2 23 .2 24 .2 23 .2 21 .6 21 .6 20 .2 19 .2 18 .0 17 .0 16 .0 16 .0 H av el oc k T ow n- A T l M W 18 .7 18 .7 19 .0 19 .3 18 .8 18 .2 17 .2 15 .8 14 .1 12 .9 12 .9 12 .0 11 .4 10 .3 9. 4 8. 9 8. 5 8. 1 7. 6 7. 0 6. 6 6. 5 6. 0 H av el oc k T ow n- A T l M va r 8. 0 8. 0 8. 0 8. 0 8. 0 7. 5 7. 2 6. 8 6. 0 5. 5 5. 2 5. 0 4. 7 4. 0 3. 6 3. 4 3. 1 2. 8 2. 5 2. 2 2. 1 2. 2 2. 2 T 2 M W 6. 9 7. 0 7. 2 7. 3 7. 3 7. 0 6. 5 5. 9 5. 6 4. 9 4. 6 4. 7 4. 6 4. 5 4. 4 4. 1 4. 0 3. 8 3. 7 3. 5 3. 3 3. 1 3. 1 T 2 M va r 3. 5 3. 5 3. 6 3. 6 3. 6 3. 5 3. 3 3. 0 2. 8 2. 5 2. 4 2. 3 2. 2 2. 2 2. 1 1. 9 1. 8 1. 7 1. 6 1. 6 1. 4 1. 4 1. 4 T ot al M W 25 .6 25 .7 26 .2 26 .6 26 .1 25 .2 23 .7 21 .7 19 .7 17 .8 17 .5 16 .7 16 .0 14 .8 13 .8 13 .0 12 .5 11 .9 11 .3 10 .5 9. 9 9. 6 9. 1 T ot al M va r 11 .5 11 .5 11 .6 11 .6 11 .6 11 .0 10 .5 9. 8 8. 8 8. 0 7. 6 7. 3 6. 9 6. 2 5. 7 5. 3 4. 9 4. 5 4. 1 3. 8 3. 5 3. 6 3. 6 M ar ad ha na -I T l M W 9. 6 9. 7 9. 8 9. 5 9. 5 9. 5 9. 3 9. 0 8. 3 7. 2 6. 7 6. 2 5. 7 5. 4 5. 1 4. 8 4. 4 4. 3 4. 2 3. 0 3. 7 3. 4 3. 2 M ar ad ha na -I T l M va r 4. 3 4. 4 4. 4 4. 4 4. 3 4. 3 4. 3 4. 2 3. 7 3. 4 3. 2 2. 8 2. 5 2. 4 2. 4 2. 3 2. 0 1. 9 1. 8 1. 7 1. 6 1. 5 1. 4 T 2 M W 13 .4 13 .4 13 .7 13 .6 13 .9 13 .8 13 .4 12 .4 11 .2 10 .0 9. 1 8. 5 8. 2 7. 7 7. 2 6. 8 6. 4 6. 1 6. 0 5. 7 5. 3 5. 1 4. 9 T 2 M va r 5. 8 5. 7 5. 7 5. 7 5. 8 5. 6 5. 6 5. 3 4. 8 4. 0 4. 0 3. 8 3. 6 3. 5 3. 3 3. 1 3. 0 2. 8 2. 8 2. 5 2. 3 2. 1 2. 1 T ot al M W 23 .0 23 .1 23 .5 23 .1 23 .4 23 .3 22 .7 21 .4 19 .5 17 .2 15 .8 14 .7 13 .9 13 .1 12 .3 11 .6 10 .8 10 .4 10 .2 8. 7 9. 0 8. 5 8. 1 T ot al M va r 10 .1 10 .1 10 .1 10 .1 10 .1 9. 9 9. 9 9. 5 8. 5 7. 4 7. 2 6. 6 6. 1 5. 9 5. 7 5. 4 5. 0 4. 7 4. 6 4- 2. 3. 9 3. 6 3. 5 81 T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 1 1: 00 11 :3 0 12 :0 0 12 :3 0 D eh iw al a T l M W 10 .0 10 .0 10 .0 7. 0 7. 0 7. 0 7. 0 10 .0 10 .0 7. 0 7. 0 10 .0 10 .0 7. 0 7. 0 11 .0 11 .0 7. 0 7. 0 12 .0 12 .0 7. 0 7. 0 7. 0 7. 0 D eh iw al a T l M va r 8. 0 7. 5 7. 5 3. 0 3. 0 3. 0 3. 0 5. 0 5. 0 2. 0 2. 0 4. 0 4. 0 2. 0 2. 0 0. 0 0. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 T 2 M W 10 .0 10 .0 10 .0 7. 0 7. 0 7. 0 7. 0 10 .0 10 .0 7. 0 7. 0 10 .0 10 .0 7. 0 7. 0 11 .0 1 1. 0 7. 0 7. 0 12 .0 12 .0 7. 0 7. 0 7. 0 7. 0 T 2 M va r 8. 0 7. 5 7. 5 3. 0 3. 0 3. 0 3. 0 5. 0 5. 0 2. 0 2. 0 4. 0 4. 0 2. 0 2. 0 0. 0 0. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 T ot al M W 20 .0 20 .0 20 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 14 .0 20 .0 20 .0 14 .0 14 .0 22 .0 22 .0 14 .0 14 .0 24 .0 24 .0 14 .0 14 .0 14 .0 14 .0 T ot al M va r 16 .0 15 .0 15 .0 6. 0 6. 0 6. 0 6. 0 10 .0 10 .0 4. 0 4. 0 8. 0 8. 0 4. 0 4. 0 0. 0 0. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 K ol lu pi ti ya -E T l M W 4. 2 4. 0 4. 0 3. 9 3. 9 3. 9 3. 9 4. 0 4. 3 4. 3 4. 6 4. 6 5. 5 6. 0 6. 8 9. 6 11 .0 11 .8 11 .8 11 .8 11 .0 11 .2 11 .2 11 .2 11 .2 K ol lu pi ti ya -E T l M va r 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 8 2. 8 3. 0 3. 0 3. 2 3. 8 4. 5 6. 8 8. 0 8. 5 9. 0 9. 5 9. 0 9. 2 9. 0 9. 2 9. 5 T 2 M W 6. 0 6. 0 6. 0 5. 8 5. 8 5. 8 5. 6 5. 6 5. 6 5. 6 5. 6 6. 0 6. 6 8. 0 8. 8 13 .0 14 .8 15 .8 16 .2 17 .0 17 .0 17 .2 17 .2 17 .0 16 .8 T 2 M va r 2. 5 2. 5 2. 4 2. 3 2. 3 2. 3 2. 2 2. 2 2. 2 2. 2 2. 2 2. 5 3. 0 3. 5 4. 2 4. 0 8. 0 9. 0 9. 5 10 .0 9. 5 9. 8 10 .0 10 .0 9. 8 T 3 M W 6. 0 6. 0 6. 0 5. 8 5. 8 5. 5 5. 5 5. 4 5. 4 5. 5 5. 5 5. 8 6. 3 7. 0 8. 0 12 .0 15 .0 16 .5 17 .6 --J oo 18 .0 18 .2 18 .2 18 .0 18 .0 T 3 M va r 2. 5 2. 5 2. 3 2. 3 2. 3 2. 2 2. 0 2. 0 2. 0 2. 1 2. 1 2. 1 2. 9 3. 2 4. 2 7. 5 8. 0 11 .4 11 .8 11 .2 12 .0 12 .4 12 .4 12 .0 12 .0 T ot al M W 16 .2 16 .0 16 .0 15 .5 15 .5 15 .2 15 .0 15 .0 15 .3 15 .4 15 .7 16 .4 18 .4 21 .0 23 .6 34 .6 40 .8 44 .1 45 .6 46 .6 46 .0 46 .6 46 .6 46 .2 46 .0 T ot al M va r 7. 5 7. 5 7. 2 7. 1 7. 1 7. 0 6. 7 6. 7 7. 0 7. 1 7. 3 7. 6 9. 1 10 .5 12 .9 18 .3 24 .0 28 .9 30 .3 30 .7 30 .5 31 .4 31 .4 31 .2 31 .3 Fo rt -F T l M W 6. 2 6. 4 5. 8 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 5 6. 0 6. 4 7. 8 9. 0 10 .5 13 .0 15 .2 16 .2 16 .2 17 .8 17 .8 17 .8 17 .8 17 .8 17 .8 Fo rt -F T l M va r 0. 5 0. 4 0. 4 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 5 0. 7 0. 8 0. 8 1. 2 2. 3 3. 2 4. 0 4. 8 5. 6 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 T 2 M W 7. 5 7. 2 7. 0 7. 0 6. 8 6. 8 6. 8 6. 8 6. 8 7. 0 7. 5 8. 0 8. 8 10 .0 12 .2 15 .8 17 .2 18 .4 18 .8 19 .5 19 .5 19 .6 19 .6 19 .6 19 .6 T 2 M va r 3. 2 3. 1 3. 0 2. 9 2. 8 2. 8 2. 8 2. 8 2. 8 3. 0 3. 8 4. 8 4. 8 4. 8 7. 2 8. 2 11 .4 13 .8 14 .8 14 .5 14 .5 14 .2 14 .2 14 .2 14 .2 T ot al M W 13 .7 13 .6 12 .8 12 .0 11 .8 11 .8 11 .8 11 .8 11 .8 12 .5 13 .5 14 .4 16 .6 19 .0 22 .7 28 .8 32 .4 34 .6 35 .0 37 .3 37 .3 37 .4 37 .4 37 .4 37 .4 T ot al M va r 3. 7 3. 5 3. 4 3. 2 3. 1 3. 1. 3. 1 3. 1 3. 1 3. 5 4. 5 5. 6 5. 6 6. 0 9. 5 11 .4 15 .4 18 .6 20 .4 20 .5 20 .5 20 .2 20 .2 20 .2 20 .2 S U B C T l M W 7. 5 7. 5 7. 5 7. 4 7. 3 7. 3 7. 3 7. 4 7. 8 8. 5 9. 1 9. 9 10 .0 9. 8 10 .0 10 .4 11 .3 11 .0 11 .9 12 .3 12 .3 12 .5 12 .1 12 .5 12 .2 S U B C T l M va r 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 4. 0 4. 6 5. 3 5. 5 5. 7 5. 7 5. 8 5. 8 6. 0 5. 8 5. 7 T 2 M W 7. 5 7. 5 7. 5 7. 4 7. 3 7. 3 7. 3 7. 4 7. 8 8. 5 9. 1 9. 9 10 .0 9. 8 10 .0 10 .4 11 .3 11 .0 11 .9 12 .3 12 .3 12 .5 12 .1 12 .5 12 .2 T 2 M va r 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 4. 0 4. 6 5. 3 5. 5 5. 7 5. 7 5. 8 5. 8 6. 0 5. 8 5. 7 T 3 M W 7. 5 7. 5 7. 5 7. 4 7. 3 7. 3 7. 3 7. 4 7. 8 8. 5 9. 1 9. 9 10 .0 9. 8 10 .0 10 .4 11 .3 11 .0 11 .9 12 .3 12 .3 12 .5 12 .1 12 .5 12 .2 T 3 M va r 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 3. 7 4. 0 4. 6 5. 3 5. 5 5. 7 5. 7 5. 8 5. 8 6. 0 5. 8 5. 7 T ot al M W 22 .5 22 .6 22 .5 22 .1 22 .0 21 .9 21 .8 22 .2 23 .4 25 .5 27 .4 29 .6 30 .0 29 .3 29 .9 31 .2 33 .9 33 .0 35 .7 36 .9 36 .8 37 .5 36 .4 37 .4 36 .5 T ot al M va r 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 11 .1 12 .0 13 .8 15 .9 16 .5 17 .1 17 .1 17 .4 17 .4 18 .0 17 .4 17 .1 S U B H T l M W 8. 0 8. 0 8. 2 7. 7 7. 7 7. 7 7. 1 7. 1 7. 1 7. 8 7. 7 8. 4 7. 1 7. 2 7. 6 8. 4 8. 6 8. 9 9. 4 9. 8 10 .0 11 .0 10 .0 9. 0 9. 3 S U B H T l M va r 4. 0 4. 0 4. 1 3. 9 3. 9 3. 9 3. 6 3. 6 3. 6 3. 9 3. 9 4. 2 3. 6 3. 6 3. 8 4. 2 4. 3 4. 5 4. 7 4. 9 5. 0 5. 5 5. 0 4. 9 4. 7 T 2 M W 6. 3 6. 1 6. 1 5. 8 5. 8 5. 8 5. 5 5. 5 5. 5 5. 9 5. 9 6. 3 6. 0 6. 0 6. 6 7. 8 8. 1 8. 4 8. 7 9. 2 8. 8 9. 0 8. 0 8. 0 7. 4 T 2 M va r 3. 2 3. 1 3. 1 2. 9 2. 9 2. 9 2. 8 2. 8 2. 8 3. 0 3. 0 3. 2 3. 0 3. 0 3. 3 3. 9 4. 1 4. 2 4. 4 4. 6 4. 4 4. 5 4. 0 4. 1 3. 7 T ot al M W 14 .3 14 .1 14 .3 13 .5 13 .5 13 .5 . 12 .6 12 .6 12 .6 13 .7 13 .6 14 .7 13 .1 13 .2 14 .2 16 .2 16 .7 17 .3 18 .1 19 .0 18 .8 20 .0 18 .0 17 .0 16 .7 T ot al M va r 7. 2 7. 1 7. 2 6. 8 6. 8 6. 8 6. 3 6. 3 6. 3 6. 9 6. 8 7. 4 6. 6 6. 6 7. 1 8. 1 8. 4 8. 7 9. 1 9. 5 9. 4 10 .0 9. 0 9. 0 8. 4 K E L A N I (C + H ) M W 36 .8 36 .7 36 .8 35 .6 35 .5 35 .4 34 .4 34 .8 36 .0 39 .2 41 .0 44 .3 43 .1 42 .5 44 .1 47 .4 50 .6 50 .3 53 .8 55 .9 55 .6 57 .5 54 .4 54 .4 53 .2 K E L A N I (C + H ) M va r 18 .3 18 .2 18 .3 17 .9 17 .9 17 .9 17 .4 17 .4 17 .4 18 .0 17 .9 18 .5 17 .7 17 .7 19 .1 21 .9 24 .3 25 .2 26 .2 26 .6 26 .8 27 .4 27 .0 26 .4 25 .5 8 2 T im e 13 :00 13 :30 14 :00 14 :30 15 :00 15 :30 16 :00 16 :30 17 :00 1 7 :30 1 8 :00 1 8 :30 19 :00 19 :30 20 :00 20 :30 21 :00 21 .3 0 22 0 0 22 :30 23 :00 23 :30 0:0 0 D eh iw al a T l M W 7. 0 7. 0 14 .0 14 .0 9. 0 9. 0 12 .0 12 .0 11 .0 I 1. 0 17 .0 17 .0 11 .0 1 1. 0 18 .0 18 .0 18 .0 18 .0 18 .0 1 1. 0 11 .0 11 .0 1 1. 0 D eh iw al a T l M va r 2. 0 2. 0 4. 0 4. 0 0. 0 0. 0 1. 0 1. 0 7. 0 7. 0 3. 0 3. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 7. 0 7. 0 8. 0 8. 0 8. 0 T 2 M W 7. 0 7. 0 14 .0 14 .0 9. 0 9. 0 12 .0 12 .0 11 .0 11 .0 17 .0 17 .0 11 .0 11 .0 18 .0 18 .0 18 .0 18 .0 18 .0 11 .0 11 .0 11 .0 11 .0 T 2 M va r 2. 0 2. 0 4. 0 4. 0 0. 0 0. 0 1. 0 1. 0 7. 0 7. 0 3. 0 3. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 7. 0 7. 0 8. 0 8. 0 8. 0 T ot al M W 14 .0 14 .0 28 .0 28 .0 18 .0 18 .0 24 .0 24 .0 22 .0 22 .0 34 .0 34 .0 22 .0 22 .0 36 .0 36 .0 36 .0 36 .0 36 .0 22 .0 22 .0 22 .0 22 .0 T ot al M va r 4. 0 4. 0 8. 0 8. 0 0. 0 0. 0 2. 0 2. 0 14 .0 14 .0 6.0 6.0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 14 .0 14 .0 16 .0 16 .0 16 .0 K ol lu pi ti ya -E T l M W 12 .2 12 .0 12 .1 12 .2 12 .2 12 .2 12 .0 12 .8 10 .2 10 .0 8. 0 8. 0 8. 0 8. 9 7. 0 7. 0 6. 8 6. 5 6. 0 6. 0 6. 0 6. 0 5. 2 K ol lu pi ti ya -E T l M va r 9. 0 9. 0 9. 2 9. 0 9. 0 9. 2 9. 0 8. 8 7. 5 7. 0 5. 8 5. 3 5. 6 5. 5 4. 9 4. 8 4. 5 4. 2 4. 0 4. 0 4. 0 4. 0 3. 2 T 2 M W 16 .8 16 .8 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 15 .0 14 .7 12 .0 11 .0 10 .0 10 .0 8. 6 8. 2 8. 2 7. 5 7. 3 7. 0 7. 0 7. 0 4. 0 T 2 M va r 9. 8 9. 8 9. 8 10 .0 10 .0 9. 8 9. 8 9. 5 8. 5 8. 8 6. 0 5. 3 5. 0 4. 3 4. 0 4. 0 3. 8 3. 5 3. 0 3. 0 3. 0 2. 8 2. 8 T 3 M W 17 .8 17 .8 18 .0 18 .0 18 .0 17 .8 17 .5 15 .0 16 .0 12 .0 11 .8 11 .7 10 .0 9. 8 9. 0 8. 8 8. 5 8. 0 7. 8 7. 5 7. 0 6. 8 6. 8 T 3 M va r 12 .2 12 .2 12 .5 12 .5 12 .5 12 .5 12 .4 12 .2 10 .0 9. 0 7. 2 7. 0 6. 8 6. 0 5. 2 5. 0 4. 8 4. 5 4. 2 3. 8 3. 5 3. 7 3. 0 T ot al M W 46 .8 46 .6 47 .1 47 .2 47 .2 47 .0 46 .5 44 .8 41 .2 36 .7 31 .8 30 .7 28 .0 28 .7 24 .6 24 .0 23 .5 22 .0 21 .1 20 .5 20 .0 19 .8 16 .0 T ot al M va r 31 .0 31 .0 31 .5 31 .5 31 .5 31 .5 31 .2 30 .5 26 .0 24 .8 19 .0 17 .6 17 .4 15 .8 14 .1 13 .8 13 .1 12 .2 11 .2 10 .8 10 .5 10 .5 9. 0 Fo rt -F T l M W 17 .8 17 .8 17 .8 17 .8 17 .8 17 .8 17 .0 16 .5 15 .0 14 .0 12 .0 11 .0 10 .0 9. 8 10 .0 9. 5 8. 0 7. 8 7. 6 6. 8 6. 5 6. 5 6. 4 Fo rt -F T l M va r 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 7. 0 8. 0 6. 0 4. 0 3. 0 2. 2 1. 8 2.0 2.0 2.0 1. 8 1. 2 1. 2 1. 2 1. 2 1. 2 T 2 M W 19 .6 19 .6 19 .6 19 .6 19 .8 19 .0 17 .5 16 .0 15 .0 14 .0 12 .8 11 .8 10 .8 11 .0 10 .5 9. 5 9. 0 8. 2 8. 0 8. 0 7. 8 7. 8 7. 8 T 2 M va r 14 .2 14 .2 14 .2 14 .2 14 .2 13 .0 12 .0 10 .5 9. 2 8. 0 7. 5 7. 4 5. 5 6. 0 5. 5 5. 0 4. 5 3. 8 3. 7 3. 5 3. 5 3. 2 3. 2 T ot al M W 37 .4 37 .4 37 .4 37 .4 37 .6 36 .8 34 .5 32 .5 30 .0 28 .0 24 .8 22 .8 20 .8 20 .8 20 .5 19 .0 17 .0 16 .0 15 .6 14 .8 14 .3 14 .3 14 .2 T ot al M va r 20 .2 20 .2 20 .2 20 .2 20 .2 19 .0 18 .0 17 .5 17 .2 14 .0 11 .5 10 .4 7. 7 7. 8 7. 5 7. 0 6. 5 5. 6 4. 9 4. 7 4. 7 4. 4 4. 4 S U B C T l M W 11 .9 12 .0 12 .1 12 .0 12 .5 11 .9 12 .1 11 .9 11 .7 11 .2 11 .3 12 .8 16 .0 16 .2 15 .8 15 .4 14 .8 13 .0 11 .9 10 .2 9. 2 8. 7 8. 5 S U B C T l M va r 5. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 8 5. 5 5. 3 5. 0 5. 3 5. 7 5. 2 5. 2 5. 0 5. 0 5. 0 5. 0 4. 8 4. 5 4. 3 4. 1 T 2 M W 11 .9 12 .0 12 .1 12 .0 12 .5 • 11 .9 12 .1 11 .9 11 .7 11 .2 11 .3 12 .8 16 .0 16 .2 15 .8 15 .4 14 .8 13 .0 11 .9 10 .2 9. 2 8. 7 8. 5 T 2 M va r 5. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 8 5. 5 5. 3 5. 0 5. 3 5. 7 5. 2 5. 2 5. 0 5. 0 5. 0 5. 0 4. 8 4. 5 4. 3 4. 1 T 3 M W 11 .9 12 .0 12 .1 12 .0 12 .5 11 .9 12 .1 11 .9 11 .7 11 .2 11 .3 12 .8 16 .0 16 .2 15 .8 15 .4 14 .8 13 .0 11 .9 10 .2 9. 2 8. 7 8. 5 T 3 M va r 5. 8 6. 0 6. 0 6. 0 6. 0 6. 0 6. 0 5. 8 5. 5 5. 3 5. 0 5. 3 5. 7 5. 2 5. 2 5. 0 5. 0 5. 0 5. 0 4. 8 4. 5 4. 3 4. 1 T ot al M W 35 .7 36 .0 36 .3 36 .1 37 .5 35 .8 36 .4 35 .6 35 .2 33 .6 33 .9 38 .4 48 .0 48 .5 47 .5 46 .2 44 .3 39 .1 35 .6 30 .7 27 .6 26 .1 25 .5 T ot al M va r 17 .4 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 17 .4 16 .5 15 .9 15 .0 15 .9 17 .1 15 .6 15 .6 15 .0 15 .0 15 .0 15 .0 14 .4 13 .5 12 .9 12 .3 S U B H T l M W 9. 6 9. 6 9. 5 9. 5 9. 3 9. 3 9. 1 8. 1 8. 7 8. 5 8. 2 10 .3 9. 8 10 .2 9. 3 9. 2 9. 1 9. 0 8. 9 8. 6 8. 3 7. 9 7. 3 S U B H T l M va r 4. 8 4. 8 4. 8 4. 8 4. 7 4. 7 4. 6 4. 1 4. 4 4. 3 4. 1 5. 2 4. 9 5. 1 4. 7 4. 6 4. 6 4. 5 4. 5 4. 3 4. 2 4. 0 3. 7 T 2 M W 7. 7 7. 4 7. 2 6. 9 6. 6 6. 4 6. 1 5. 8 5. 6 5. 4 5. 3 6. 0 6. 0 6. 0 6. 0 5. 8 5. 7 5. 5 5. 1 5. 2 4. 7 4. 7 4. 6 T 2 M va r 3. 9 3. 7 3. 6 3. 5 3. 3 3. 2 3. 1 2. 9 2. 8 2. 7 2. 7 3. 0 3. 0 3. 0 3. 0 2. 9 2. 9 2. 8 2. 6 2. 6 2. 4 2. 4 2. 3 T ot al M W 17 .3 17 .0 16 .7 16 .4 15 .9 15 .7 15 .2 13 .9 14 .3 13 .9 13 .5 16 .3 15 .8 16 .2 15 .3 15 .0 14 .8 14 .5 14 .0 13 .8 13 .0 12 .6 11 .9 T ot al M va r 8. 7 8. 5 8. 4 8. 2 8. 0 7. 9 7. 6 7. 0 7. 2 7. 0 6. 8 8. 2 7. 9 8. 1 7. 7 7. 5 7. 4 7. 3 7. 0 6. 9 6. 5 6. 3 6. 0 K .E L A N I( C + H ) M W 53 .0 53 .0 53 .0 52 .5 53 .4 51 .5 51 .6 49 .5 49 .5 47 .5 47 .4 54 .7 63 .8 64 .7 62 .8 61 .2 59 .1 53 .6 49 .6 44 .5 40 .6 38 .7 37 .4 K .E L A N I( C + H ) M va r 26 .1 26 .5 26 .4 26 .2 26 .0 25 .9 25 .6 24 .4 23 .7 22 .9 21 .8 24 .1 25 .0 23 .7 23 .3 22 .5 22 .4 22 .3 22 .0 21 .3 20 .0 19 .2 18 .3 83 , V -/ A ct iv e p ow er ( P ) an d R ea ct iv e P ow er ( Q ) G en er at io n An ne x 14 T im e 13 /0 8/ 08 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9: 30 10 :0 0 10 :3 0 11 :0 0 11 3 0 12 00 12 3 0 V ic to ri a 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 20 .0 50 .0 69 .0 68 .0 68 .0 68 .0 68 .0 68 .0 68 0 69 0 69 0 V ic to ri a 01 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 4. 0 10 .0 26 .0 30 .0 31 .0 21 .0 20 .0 21 .0 20 .0 20 0 21 0 V ic to ri a 02 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 40 .0 63 .0 62 .0 62 .0 62 .0 62 .0 62 0 62 0 63 0 V ic to ri a 02 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 18 .0 25 .0 25 .0 25 .0 23 .0 25 .0 24 0 23 0 25 0 V ic to ri a 03 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 70 .0 70 .0 69 .0 69 .0 69 .0 70 .0 69 0 70 0 70 0 V ic to ri a 03 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 30 .0 35 .0 30 .0 22 .0 20 .0 21 0 20 0 20 0 20 0 R an de . 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 36 0 36 0 R an de . 01 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 8 0 7 0 R an de . 02 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 50 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 0 46 0 46 0 46 0 R an de . 02 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 7. 0 11 .0 10 .0 11 .0 11 .0 16 .0 4. 0 4. 0 6. 0 6. 0 22 .0 20 .0 20 0 20 0 20 0 20 0 R an te m be 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 0 0 0 0 R an te m be 01 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 0 0 0 0 R an te m be 02 M W 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 15 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 0 25 0 25 0 25 0 R an te m be 02 M va r 2. 0 2. 0 2^ 0 0. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 3. 0 2. 0 2. 0 2. 0 2. 0 7. 0 9. 0 12 .0 12 .0 12 .0 II 0 12 0 11 0 8 0 8 0 K ot m al e 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 40 0 50 0 65 0 K ot m al e 01 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 . 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 15 0 45 0 46 0 K ot m al e 02 M W 45 .0 45 .0 42 .0 44 .0 40 .0 40 .0 42 .0 46 .0 50 .0 52 .0 45 .0 42 .0 40 .0 45 .0 42 .0 42 .0 42 .0 40 .0 36 .0 34 .0 40 .0 40 0 30 0 20 0 20 0 K ot m al e 02 M va r 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 13 .0 13 .0 15 .0 15 .0 30 .0 30 .0 40 .0 40 .0 45 .0 45 .0 44 0 40 0 35 0 40 0 K ot m al e 03 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 15 .0 35 .0 35 .0 40 .0 45 .0 45 .0 30 .0 30 .0 40 .0 30 .0 20 .0 30 .0 30 .0 40 0 10 0 10 0 10 0 K ot m al e 03 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 10 .0 5. 0 10 .0 10 .0 10 .0 10 .0 15 .0 30 .0 30 .0 40 .0 40 .0 40 .0 40 0 40 0 40 0 36 0 40 0 U ku w el a 01 M W 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 2 18 2 18 2 U ku w el a 01 M va r 2. 0 2. 0 1. 0 1. 0 1. 0 1. 0 1. 0 2. 0 3. 0 3. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 7. 0 4. 0 4. 0 4. 0 3 0 3 0 3 0 4 0 U ku w el a 02 M W 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 0 17 0 17 0 17 0 U ku w el a 02 M va r 2. 0 1. 0 1. 0 1. 0 1. 0 2. 0 2. 0 3. 0 4. 0 4. 0 5. 0 4. 0 4. 0 5. 0 5. 0 5. 0 7. 0 7. 0 7. 0 7 0 7 0 4 0 4 0 5 0 B ow at en na M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 0 0 B ow at en na M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 3. 0 4. 0 4. 0 5. 0 5. 0 5. 0 4. 0 4. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 84 I T im e | -1 13 :0 0 13 :3 0 14 :0 0 14 :3 0 15 :0 0 15 :3 0 16 :0 0 16 :3 0 17 :0 0 17 :3 0 18 :0 0 18 :3 0 19 :0 0 19 :3 0 20 :0 0 20 :3 0 21 :0 0 21 3 0 22 '0 0 22 3 0 23 0 0 V ic to ri a 01 M W 69 .0 60 .0 60 .0 60 .0 70 .0 70 .0 60 .0 40 .0 30 .0 15 .0 15 .0 40 .0 40 .0 60 .0 60 .0 42 .0 35 .0 44 .0 20 0 30 0 30 0 0 V ic to ri a 01 M va r 20 .0 20 .0 20 .0 20 .0 21 .0 20 .0 20 .0 19 .0 15 .0 10 .0 6. 0 9. 0 20 .0 25 .0 24 .0 20 .0 17 .0 20 0 15 0 15 0 13 0 V ic to ri a 02 M W 62 .0 55 .0 60 .0 63 .0 69 .0 69 .0 60 .0 45 .0 30 .0 24 .0 23 .0 40 .0 45 .0 59 .0 60 .0 50 .0 32 .0 40 .0 33 .0 63 0 21 0 0 0 0 0 V ic to ri a 02 M va r 22 .0 20 .0 21 .0 24 .0 25 .0 24 .0 22 .0 20 .0 16 .0 12 .0 9. 0 10 .0 21 .0 26 .0 25 .0 21 .0 18 .0 20 .0 16 0 17 0 15 0 0 0 V ic to ri a 03 M W 70 .0 60 .0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 40 .0 60 .0 60 .0 50 .0 30 .0 16 0 16 0 0 0 0 o V ic to ri a 03 M va r 20 .0 17 .0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 17 .0 21 .0 20 .0 17 .0 15 .0 15 0 11 0 0 0 0 0 R an de . 01 M W 46 .0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 0 46 0 46 0 36 0 R an de . 01 M va r 6. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 20 .0 10 .0 10 .0 8. 0 6 0 8 0 6 0 7 0 R an de .0 2 M W 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 .0 46 0 46 0 46 0 36 0 R an de .0 2 M va r 18 .0 18 .0 18 .0 20 .0 20 .0 20 .0 19 .0 18 .0 15 .0 10 .0 9. 0 12 .0 10 .0 22 .0 21 .0 18 .0 16 .0 16 0 15 0 9 0 R an te m be 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 25 .0 25 .0 25 .0 15 .0 15 .0 15 0 15 0 15 0 15 o R an te m be 01 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 8. 0 8. 0 8. 0 3. 0 3. 0 3 0 2 0 ~> 0 R an te m be 02 M W 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 25 .0 15 .0 15 .0 0. 0 0 0 0 0 0 0 R an te m be 02 M va r 8. 0 9. 0 10 .0 10 .0 11 .0 1- 1. 0 10 .0 10 .0 9. 0 7. 0 10 .0 10 .0 8. 0 8. 0 7. 0 3. 0 3. 0 0 0 0 0 0 o K ot m al e 01 M W 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 65 .0 6< i 0 65 0 65 0 K ot m al e 01 M va r 46 .0 45 .0 45 .0 45 .0 45 .0 45 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 0 40 0 40 0 40 0 K ot m al e 02 M W 20 .0 32 .0 44 .0 43 .0 42 .0 26 .0 30 .0 30 .0 35 .0 40 .0 37 .0 35 .0 50 .0 35 .0 35 .0 20 .0 20 .0 0. 0 0 0 0 0 0 o K ot m al e 02 M va r 40 .0 40 .0 40 .0 40 .0 44 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 0 0 0 0 0 0 K ot m al e 03 M W 10 .0 10 .0 30 .0 20 .0 20 .0 10 .0 20 .0 20 .0 10 .0 20 .0 10 .0 20 .0 65 .0 15 .0 20 .0 20 .0 20 .0 0. 0 0 0 0 0 0 o K ot m al e 03 M va r 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 40 .0 0 0 0 0 0 0 U ku w el a 01 M W 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .2 18 .3 18 .3 18 3 18 3 18 3 u. u M va r 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 0 2. 0 5. 0 8. 0 8. 0 7. 0 5. 0 6. 0 3 0 1 0 1 0 7 0 U ku w el a 02 M W 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .0 17 .2 17 .2 17 2 17 2 17 2 M va r 3. 0 3. 0 3. 0 3. 0 4. 0 4. 0 4. 0 3. 0 2. 0 2. 0 3. 0 5. 0 7. 0 7. 0 7. 0 4. 0 3 0 2 0 1 0 B ow at en na M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 .0 11 0 11 0 11 0 1. 0 1. 0 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 | 0. 0 0. 0 0. 0 7. 0 6. 0 8. 0 12 .0 12 .0 | 12 .0 11 .0 10 .0 9. 0 7. 0 6. 0 5. 0 5. 0 1 l.U 5. 0 85 T im e 0: 30 1: 00 1: 30 2: 00 2: 30 3: 00 3: 30 4: 00 4: 30 5: 00 5: 30 6: 00 6: 30 7: 00 7: 30 8: 00 8: 30 9: 00 9- 30 ] 0 0 0 10 -3 0 N ' L ax . 01 M W 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 20 .0 45 .0 50 .0 50 .0 50 .0 50 .0 50 .0 50 .0 50 0 50 0 50 0 12 :0 0 12 :3 0 M va r 11 .0 10 .0 11 .0 2. 0 1. 0 1. 0 1. 0 0. 0 0. 0 1. 0 4. 0 11 .0 13 .0 13 .0 15 .0 20 .0 29 .0 22 0 23 0 23 0 21 0 30 .0 10 .0 N 'L ax . 02 M W 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 20 .0 45 .0 50 .0 50 .0 50 .0 50 .0 0. 0 0. 0 0 0 0 0 0 0 20 .0 12 .0 6. 0 M va r 12 .0 10 .0 10 .0 6. 0 3. 0 3. 0 3. 0 3. 0 3. 0 4. 0 2. 0 11 .0 10 .0 10 .0 21 .0 28 .0 0. 0 0 0 0 0 0 0 0 0 0. 0 0. 0 0. 0 P ol pi ti ya 01 M W 33 .6 37 .0 36 .0 37 .0 37 .5 37 .5 35 .0 34 .0 35 .0 37 .0 33 .0 33 .4 34 .5 33 .0 36 .2 37 5 37 .2 38 .1 37 1 38 0 i7 8 0. 0 0. 0 0. 0 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 6. 0 6. 0 6. 0 6. 0 6 0 14 .0 14 .0 14 0 14 o 14 0 38 .1 37 .9 P ol pi ti ya 02 M W 4. 7 5. 0 5. 6 5. 0 5. 5 5. 0 5. 0 5. 0 5. 0 5. 1 33 .0 34 .2 34 .7 34 .2 35 .1 37 .1 0. 0 0. 0 0 0 0 0 0 0 n n 14 .0 14 .0 M va r 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 4. 0 6. 0 6. 0 6. 0 6. 0 6. 0 0. 0 0. 0 0 0 0 0 0 0 o n 0. 0 0. 0 O 'L ax 01 M W 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 2. 0 2. 0 2. 0 2 0 2 0 1 n 0. 0 0. 0 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 5 1. 5 1. 0 1. 5 1. 5 1. 0 1. 0 0. 5 0. 5 0 5 0 5 0 5 2. 0 2. 0 O 'L ax 02 M W 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 2. 0 2. 0 2 0 2 0 2 0 0. 5 0. 5 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 5 1. 5 1. 0 1. 0 1. 0 1. 0 1. 0 0. 5 0. 5 0 5 0 5 0 5 2. 0 2. 0 O 'L ax 03 M W 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 8. 0 8. 0 8. 0 8. 0 8. 0 8. 0 2. 0 2 0 2 0 2 0 7 0 0. 5 0. 5 M va r 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0* 1. 0 1. 0 1. 0 1. 5 1. 5 1. 0 1. 5 0. 5 1. 5 1. 0 0. 5 0. 5 0 5 0 5 0 5 2. 0 2. 0 2. 0 O 'L ax 04 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 12 .0 12 .0 12 .0 12 .0 12 .0 12 .0 4. 0 4. 0 4 0 4 0 4 0 0. 5 0. 5 M va r 2. 0 2. 0 1. 5 1. 5 1. 5 2. 0 2. 5 2. 5 2. 5 2. 5 2. 5 1. 5 2. 0 2. 0 2. 0 1. 0 1. 0 1. 0 1. 0 1 0 1 0 I 0 4. 0 4. 0 O 'L ax 05 M W 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 12 .5 12 .5 12 .0 12 .0 12 .0 12 .0 4. 0 4. 0 4 0 4 0 4 0 1. 0 M va r 2. 0 2. 0 1. 5 1. 5 1. 5 2. 0 2. 5 2. 5 2. 5 2. 5 2. 5 1. 5 2. 0 2. 0 2. 0 2. 0 1. 0 1. 0 1. 0 1 0 1 0 1 0 4. U 4. 0 4. 0 C an yo n 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 0 fi 1. 0 1. 0 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 0 0 0. 0 0. 0 C an yo n 02 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 10 .0 10 .0 10 .0 10 .0 10 .0 10 0 10 0 0. 0 0. 0 0. 0 M va r 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 4. 0 10 .0 10 .0 9. 0 8 0 8 0 10 0 10 .0 10 .0 29 .0 W P S 01 M W 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 10 .0 10 .0 8. 0 M va r 0. 0 0: 0 0, 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 u. u 0. 0 0. 0 0. 0 W P S 02 M W 0. 0 Q 8 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0 0 u. u 0. 0 0. 0 0. 0 M va r 0. 0 0. 0 ' 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 | 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 86 Time 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 2 1 3 0 22 00 22 '30 23 00 N ' Lax. 01 M W 10.0 10.0 50.0 50.0 50.0 50.0 50.0 50.0 30.0 30.0 30.0 40.0 40.0 50.0 50.0 45.0 45.0 20.0 15.0 1 0 0 10 0 10 0 10 0 Mvar 7.0 6.0 8.0 8.0 10.0 8.0 9.0 7.0 6.0 5.0 2.0 10.0 20.0 20.0 16.0 13.0 11.0 6.0 10 0 2 0 2 0 2 0 N ' Lax. 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 30.0 30.0 40.0 40.0 50.0 50.0 45.0 45.0 20.0 15.0 10.0 1 0 0 1 0 0 10 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 15.0 15.0 10.0 15.0 16.0 13.0 12.0 9.0 13.0 11 0 5 0 5 0 5 0 5 0 Polpitiya 01 M W 37.7 37.6 34.6 36.5 36.2 36.6 35.1 34.7 5.2 5.3 5.2 4.4 5.0 5.2 5.0 32.9 32.1 5.1 5.0 5 1 5 0 4 9 4 8 Mvar 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1 0 0 10 0 10 0 8 0 6 0 Polpitiya 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 5.3 5.2 37.5 37.7 37.8 37.8 35.3 34.4 38.1 36 1 34 8 32 8 35 7 36 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 5.0 5.0 5.0 10.0 •10.0 10.0 12.0 12.0 12.0 12 0 12 0 10 0 8 0 R 0 O ' L a x 01 M W 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 4.0 8.0 8.0 8.0 6.0 6.0 4.0 2.0 2 0 2 0 2 0 2 0 Mvar 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 0.5 1.0 1.0 1 0 1 0 1 0 1 0 O ' L a x 02 M W 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 4.0 8.0 8.0 8.0 6.0 6.0 4.0 2 0 2 0 2 0 2 0 2 0 Mvar 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1 0 1 0 1 0 1 0 O ' L a x 03 M W 2.0 2.0 2.0 2.0 2.0 2 .0 2.0 2.0 2.0 2.0 2.0 4.0 8.0 8.0 8.0 6.0 6.0 4.0 2 0 2 0 2 0 2 0 2 0 Mvar 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 0.5 1.0 1.0 1 0 1 0 1 0 1 0 O ' L a x 04 M W 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4 .0 4.0 4.0 4.0 12.0 12.0 12.0 8.0 8.0 4.0 4 0 4 0 4 0 4 0 Mvar 1.0 1.0 1.0 1.0 1.0 ' l . O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1 0 1 0 1 0 1 0 O ' L a x 05 M W 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 4.0 4.0 4 0 4 0 4 0 4 0 Mvar 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 I 0 1 0 1 0 Canyon 01 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 20.0 20.0 24.0 24.0 24.0 24.0 15.0 15 0 0 0 0 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 4.0 4.0 2.0 2.0 1.0 1 0 1 0 1 0 Canyon 02 M W 10.0 29.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0 23.0 23.0 23.0 23 0 15 0 15 0 Mvar 8.0 8.0 8.0 8.0 8.0 8.0 8.0 6.0 4.0 2.0 2.0 2.0 8.0 8.0 8.0 5.0 4.0 2 0 1 0 1 0 WPS 01 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 20.0 20.0 20.0 25.0 25.0 25 0 25 0 15 0 0 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 5.0 5.0 4.0 4.0 6.0 6.0 6 0 6 0 7 0 W P S 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 • 0.0 0.0 0 .0 0.0 0.0 0.0 20.0 20.0 20.0 23.0 23.0 23 0 23 0 15 0 15 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 0.0 0.0 87 Time 0:30 1:00 1:30 2 :00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 Samanalawevva 01 MW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 60.0 30.0 30.0 30.0 30.0 40.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.0 18.0 17.0 15.0 17.0 16.0 16.0 Sam anal awe wa 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 30.0 30.0 12.0 30.0 30.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 6.0 5.0 7.0 6.0 4.0 Kukule 01 MW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 6.0 7.0 7.0 7.0 6.0 7.0 3.0 Kukule 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Kps - Gt 04 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 6.0 9.0 9.0 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 K p s - G t 05 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 10.0 9.0 9.0 11.0 10.0 9.0 9.0 10.0 10.0 10.0 10.0 K p s - G t 08 [JBIC] M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.0 109.0 109.0 109.0 109.0 109.0 110.0 108.0 67.0 0.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 36.0 60.0 59.0 66.0 64.0 65.0 68.0 67.0 0.0 KPS JBIC ( S T E A M ) MW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sapti 01 M W 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 Mvar 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 8.0 7.0 8.0 8.0 8.0 8.0 7.0 Sapu 02 M W 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.5 14.5 14.5 15.0 15.0 15.0 15.0 Mvar 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 8.0 9.0 10.0 10.0 10.0 9.0 9.0 10.0 9.0 9.0 8.0 Sapu 03 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sapu 04 M W 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Mvar 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 8.0 9.0 10.0 10.0 10.0 9.0 9.0 10.0 9.0 8.0 9.0 Sapu 05 MW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sapu 06 M W 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.0 Mvar 2.0 2.0 2.0 2.0 2.0 2 .0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 Time 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 2 2 0 0 22 30 23 00 2 3 3 0 Samanalawewa 01 M W 12.0 13.0 30.0 30.0 30.0 30.0 12.0 12.0 12.0 12.0 12.0 30.0 60.0 60.0 40.0 40.0 30.0 12.0 0 0 0 0 0 0 0 0 0 0 Mvar 13.0 15.0 13.0 13.0 13.0 13.0 16.0 15.0 13.0 10.0 12.0 11.0 16.0 17.0 17.0 15.0 12.0 10.0 0.0 0 0 0 0 0 0 0 0 Samanalawewa 02 M W 30.0 11.0 11.0 11.0 12.0 11.0 12.0 12.0 12.0 12.0 30.0 30.0 60.0 60.0 40.0 40.0 30.0 18.0 0.0 0.0 0 0 0 0 0 0 Mvar 3.0 3.0 3.0 4.0 2.0 3.0 4.0 4.0 0.0 0.0 7.0 7.0 15.0 15.0 14.0 12.0 8.0 5 0 0 0 0 0 0 0 0 D Kukule 01 M W 30.0 30.0 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37 5 0 0 0 0 0 0 n o Mvar 4.0 4.0 5.0 5.0 6.0 4.0 4.0 2.0 -1.0 -3.0 -3.0 1.0 6.0 7.0 3.0 2.0 0.0 -2.0 -5 0 0 0 0 0 0 0 0 0 Kukule 02 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Kps - Gt 04 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Mvar 9.0 9.0 9.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 8.0 10.0 10.0 10.0 9.0 7.0 7.0 8 0 8 0 8 0 5 0 Kps - Gt 05 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Mvar 8.0 8.0 8.0 9.0 9.0 9.0 8.0 8.0 6.0 6.0 6.0 8.0 10.0 9.0 8.0 7.0 6.0 6 0 7 0 7 0 7 0 Kps - Gt 08 [JBIC] M W 20 110 108.0 108 110 108 101 101 108 108 108 107 108 108 108 108 108 107 109 109 109 109 Mvar 3.0 9.0 52.0 56.0 54.0 55.0 49.0 43.0 34.0 16.0 5.0 18.0 52.0 51.0 48.0 39.0 30.0 24 0 13 0 8 0 13 0 KPS.IB1C ( S T E A M ) M W 0.0 0.0 0.0 0.0 0.0 0.0 48.0 47.0 52.0 57.0 57.0 57.0 57.0 57.0 57.0 58.0 57.0 57.0 58.0 58 0 58 0 58 0 o Mvar 0.0 0.0 0.0 0.0 0.0 0.0 -10.0 15.0 12.0 6.0 -7.0 6.0 21.0 21.0 18.0 15.0 11.0 8.0 5.0 -6 0 6 0 2 0 2 0 Sapu 01 M W 1.6.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16 0 16 0 16 0 16 0 Mvar 7.0 7.0 7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 4.0 3.0 4 0 5 0 5 0 5 0 Sapu 02 M W 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15 0 15 0 15 0 15 0 Mvar 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0 7.0 7.0 7.0 8.0 7.0 6.0 6.0 5.0 4.0 5.0 5 0 5 0 5 0 Sapu 03 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Sapu 04 M W 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15 0 15 0 15 0 Mvar 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0 6.0 6.0 7.0 8.0 7.0 6.0 5.0 4.0 3.0 4 0 5 0 5 0 Sapu 05 M W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Sapu 06 M W 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.5 8.5 8.5 9.0 9.0 9 0 9 0 9 0 Mvar 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | 4 .0 4.0 4 .0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 89 9( > 7 12:30 12:00 10:00 Time Mvar Mvar Asia Power Mvar Lakdanavi Mvar Heladhanavi- Putalam A C E - Embilipitiya Mvar A E S - C C Y A C E - Matara A C E - Horana T i m e 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 0:00 Sapu 07 M W 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Sapu 08 M W 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Sapu 09 M W 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Sapu 10 M W 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 . 8.5 Mvar 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Sapu 11 M W 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Sapu 12 M W 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Asia Power M W 47.1 47.1 47.2 46.7 47 .0 47 .0 43.0 43.3 47.3 47.3 47.3 47.3 47.8 47.8 47.8 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9 Mvar 19.0 18.0 18.0 20.0 18.0 20.0 20.0 18.0 14.0 14.0 15.0 20.0 22.0 18.0 16.0 16.0 14.0 19.0 18.0 17.0 19.0 19.0 19.0 Lakdanavi M W 22.5 22.5 ' 22 .5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 0.0 0.0 0.0 Mvar 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 0.0 0.0 0.0 Barge M W 60.3 60.5 60.4 60.4 60.6 60.4 60.3 60.4 60.3 60.4 60.6 60.4 60.4 60.2 60.5 60.4 60.4 60.5 60.1 60.4 60.3 60.3 60.2 Mvar 37 .6 37.5 37.7 39.3 38.3 "39 .5 38.4 38.6 28.0 26.6 22.8 23.4 26.1 38.4 37.8 38.2 29.1 30.9 29.7 23.1 25.3 23.7 23.2 A E S - C C Y M W 162 161 161 162 162 162 162 161 162 162 162 162 163 162 163 163 162 161 105 105 61 61 61 Mvar 83.0 84.0 82.0 83.0 84.0 89.0 85.0 82.0 83.0 82.0 72.0 76.0 74.0 73.0 69.0 67.0 67.0 70.0 60.0 44.0 0.0 0.0 0.0 A C E - Matara M W 18.2 18.2 18.2 18.2 18.2 18.2 23.8 24.3 24.2 24.2 24.3 24.2 24.3 24.3 24.3 24.3 24.3 24.2 24.4 24.3 24.3 24.4 24.4 Mvar 0.6 0.5 0.9 1.3 1.0 1.0 0.3 4.8 0.4 0.6 0.6 1.5 0.8 0.6 0.1 1.0 0.1 0.5 1.4 0.7 0.1 0.1 1.0 A C E - Horana M W 24.0 23.4 24.1 24.0 24 .0 24.0 23.9 23.9 23.9 24.0 24.1 24.0 24.0 24.0 24.0 24.1 24.1 24.1 24.1 24.1 24.0 24.0 24.0 Mvar 0.8 2.1 0.9 0.7 1.4 1.7 0.8 0.7 -0.9 -4.2 -5.0 -5.8 -5.1 -3.8 -3.4 -4.1 -4.3 -4.3 -4.2 -5.7 -5.7 -5.8 -5.8 Heladhanavi- Putalam M W 83.1 83.1 83.2 83.2 83.0 83.0 83.2 83.2 82.9 83.2 83.3 83.2 83.3 83.4 83.4 83.1 83.3 83.1 83.4 83.3 83.4 83.4 68.7 Mvar 27.9 29.4 27.0 27.0 26 .6 27.0 26.7 26.9 26.9 26.9 19.0 19.1 16.8 18.7 26.6 26.6 26.6 26.6 23.9 16.6 14.4 12.4 13.8 A C E - Embilipit iya M W 85.3 83.7 84.6 84.2 84.5 84.7 78.5 79.0 78.8 79.2 79.1 80.0 84.7 93.1 92.7 93.4 92.9 95.6 95.7 71.3 70.9 72.1 72.2 Mvar 6.8 7.2 6.4 6.9 7.1 7.8 7.5 5.6 4.9 5.8 7.8 9.1 10.4 16.6 16.4 15.0 16.0 17.0 16.0 -2.6 -2.4 -2.1 -2.5 91 React ive Power Generat ion (Capac i tor Banks) Time 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 Galle S V C Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Gal ie-Caps Mvar 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 Anuradhapura Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Habarana Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Kotugoda Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 25.0 25.0 25.0 20.0 Kir ibatkumbura Mvar 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 15.0 15.0 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 Kurunegala Mvar 5.0 5.0 5.0 5.0 5.0 5.(3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Ma tugama Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Panadura Mvar 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 Puttalama Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 Pannipitiya Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 T O T A L Mvar 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 65.0 65.0 70.0 85.0 95.0 95.0 95.0 95.0 120.0 120.0 120.0 120.0 115.0 » •> Time 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 2 3 3 0 0 0 0 Galle S V C Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 Caps Mvar 20 .0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20 0 20 0 20 0 20 0 Anuradhapura Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 Habarana Mvar 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 5.0 5.0 - 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 0 5 0 Kotugoda Mvar 20 .0 20.0 20.0 20 .0 20.0 25.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 0.0 0 0 0 0 Kir ibatkumbura Mvar 20 .0 20.0 20.0 20.0 20.0 20 .0 20.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 5.0 15.0 15.0 15.0 15.0 15.0 15.0 15 0 1 0 0 Kurunegala Mvar 10.0 10.0 10.0 10.0 10.0 • 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5 0 5 0 M a t u g a m a Mvar 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15 0 15 0 Panadura Mvar 20 .0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 15.0 15.0 15 0 15 0 Puttalama Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Pannipit iya Mvar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T O T A L (^Mvar M \ 115.0 115.0 115.0 115.0 115.0 120.0 105.0 105.0 105.0 105.0 95.0 95.0 90.0 90.0 80.0 85.0 85.0 85.0 85.0 75.0 75.0 75.0 70.0 1 93 I