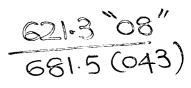
13/DON/50/09

(1)

IDENTIFICATION OF DIFFERENT TERRAINS USING OPTICAL ENCODERS IN A MOBILE ROBOT

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Masters Degree in Industrial Automation

by


University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations PATHIRAGE DONISAMANTHA PUSHPAKUMARA

> LERARY URIVERSITY OF INCRATEWA, SRI LANKA MCPATUWA

Supervised by: Dr. Lanka Udawatta 🦯

Department of Electrical Engineering University of Moratuwa, Sri Lanka

TH

September 2008

92956

92956

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

atuwa, Sri Lanka. PDS Pushapakumara Date: 03/09/2008^{WWW.lib.mrt.ac.lk}

I endorse the declaration by the candidate.

UOM Verified Signature

Jr. UKDLP Udawatta

i

CONTENTS

ĺ
,
ĺ
l
l

Chapters

۰,

3

1. Introduction	1
1.1 History of Mobile Robot Research	1
1.2 The Significance of Mobile Robotics Research	2
1.3 Terrain Navigation	3
1.4 Research Objective	6
1.5 Justifying Terrain Detection Lectronic Theses & Dissertations 1.5.1 Different Terrains Require Different Driving Techniques	6
	6
1.6 Thesis Objective	7
1.7 Chapter Summaries	8
2. Literature Review and Research Summary	9
2.1 Vision Based Terrain Categorization and Traversability Assessment Index	9

2.2 Terrain Parameter Identification via Wheel Terrain Interaction Analysis	10
2.3 Environment Identification for a Running Robot Using Inertial and Actuator Cues	10
2.4 Multi Sensor Estimation for Mobile Robot Rough Terrain Traversability	11
2.5 Terrain Characterization with Mobile Robot	13
2.6 Identification of Terrains Using Eigen space and Neural Network Methods	13
2.7 Research Summary	15

ii

3. Robotic Platform and Sensors	17
3.1 Integration of the R1 Mobile Robot Kit	17
3.1.1 The Servomotor	18
3.1.2 The Optical Encoder	20
3.2 The IR Proximity Sensor	22
3.3 Ultrasonic Sensor	22
3.4 Vibration Sensor	23
3.5 The Microcontroller and Serial Data Transmission via Wireless Data Link	24
3.5.1 Main Controller	24
3.5.2 Wireless Data Link	28
3.6 Developed Algorithms and Protocols	28
3.6.1 Servomotor Driver Algorithms	28
3.6.2 Communication Protocols and Algorithms	30
3.7 Wireless Data to RS232 Interface Module	35
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
4. Experimental Results	36
4.1 Test Bed	36
4.2 Experimental Procedure	36
4.3 Experimental Results with Optical Encoder for Known Distances	37
4.3.1 Drive on Carpet Floor	37
4.3.2 Drive on Gravel Path	40
4.3.3 Experimental Results for Five Different Terrains	41
4.4 Optical Encoder Pulse Variations for Signal to Noise Ratio Calculation	42
4.5 Experimental Results with Vibration Sensor	48
4.5.1 Z-axis Vibration Data on Carpet Floor	48

iii

	5. Proposed Method	49
· • •	5.1 Using Confidence Interval Statistical Analysis for Encoder Pulse Count	49
	5.2 Using the Signal to Noise Ratio (SNR) Calculation for Encoder Pulse Count	52
	5.3 Assumptions	53
	6. Conclusion and Future Works	54
	6.1 Conclusion	54
	6.2 Future Works	54
	References	55
	Appendix	58
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	

. . . .

•

۰.

Abstract

This research is mainly focused on identifying terrains for autonomous mobile robot navigation. When compared with other terrain identification researches this is a fully sensor based practical approach for terrain identification with a mobile robot named 'R1'. For the robotic navigation the terrain behavior is one of the most important factors to reach the target without any failure. The results obtained from this research can be used to develop the intelligence of the robot controller board to adapt according to the terrain environment.

An experimental study has been carried out for the system using R1 mobile robot by traveling various kinds of real terrains and collecting data online via a wireless data link.

University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

The performance of autonomous navigation improves when the vehicle's control system takes into account the type of terrain on which the vehicle is traveling. For example, if the ground is covered with sand, a reduction of acceleration is necessary to avoid wheel slip. So many researchers have developed algorithms based on vision and digital signal processing (DSP) to categorize the traversability of the terrain. Others have used classical terramechanics equations to identify the key terrain parameters.

This thesis presents a statistical algorithm that uses the vehicle's internal sensors to qualitatively categorize the terrain type in real-time. The algorithm was successful in identifying carpet, cement, gravel, sand and grass terrains.

٧

Acknowledgement

I specially would like to thanks my supervisor, Dr. Lanka Udawatta, for his great insights, perspectives, and correct guidance. My sincere thanks go to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance.

Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office. I lengthen my gratefulness to Board of Directors, Arthur C Clarke Institute for Modern Technology (ACCIMT) Sri Lanka for giving funds to follow this course.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

One's work in this world can hardly be visualized as his own achievements but a result of the hopes and strength given to him by those who are around him, those who want him to succeed and this report of mine is no difference. So I would like to take this opportunity to thank those who have given me so much in this period of research.

This research activity was mainly done in the Communication Division and ACCIMT premises. Therefore, I would like to thank Mr. K Jayawardena (HOD–Communication, ACCIMT) and all the other staff members, trainees of ACCIMT who helped me in so many ways in achieving my objective. I also express thanks to Mr. Jayathu Fernando, Mr Kumara Jayawickrama and many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success.

Finally I would like to thank to my parents, wife, daughter, sister and all my teachers who have contributed so much for my success and for being there with me through the ups and downs of my life.

List of Figures

Figur	ure	
3.1:	R1 Robot module	17
3.2:	Servomotor (FUTABA S3104)	18
3.3:	Function or task of servomotor	19
3.4:	After assembling the two servo motors	19
3.5:	Free wheels and two servomotors	20
3.6 a:	Hamamatsu P5587 photo reflector IC	20
3.6 b:	P5587 IR photo reflector encoder module	21
3.6 c:	IR photo reflector module mounted near the servomotor	21
3.6 d:	Mounting the encoder unit to the servomotor unit	21
3.7 a:	Sharp IR proximity sensor	22
3.7 b:	Mounted to the base	22
3.8 a:	Turck RU100 ultrasonic sensor	22
3.8 b:	Current output vs. measuring range of RU100	22
3.9 : ¹	Vibration sensor	23
3.11:	Functional block diagram of main controllerva, Sri Lanka.	26
3.12:	Schematic diagram of main controllers & Dissertations	27
3.13:	Pin configuration of PIC16F876A microcontroller	25
3.14:	RF transmitter and receiver modules	28
3.15:	Timing diagram of servomotor	29
3.16:	Pulse width vs. speed graph for servomotor	30
3.17:	Initializing processes of main controller	32
3.18:	Handling of receive data in main controller	34
3.19:	Wireless data to RS232 converter	35
4.1:	Controlling and data collecting software interface (PC side)	37
4.2:	Graph of pulse/m vs. attempt on carpet floor for five different times	39
4.3:	Graph of results on gravel path	40
4.4:	Graph of average encoder pulses for five different terrains	42
4.5:	Graph of average encoder pulses vs. time for carpet terrain	46
4.6:	Graph of average encoder pulses vs. time for gravel terrain	46
4.7:	Graph of average encoder pulses vs. time for grass terrain	47
4.8:	Graph of average encoder pulses vs. time for sand terrain	47
4.9:	Graph of vibration sensor output to carpet floor	48
5.1:	Error bar chart	51

vii

List of Tables

يوند و 1

Table

Page

3.1: Data identification protocols for error free RF communication	30
3.2: Data format for commands and information	32
4.1: Experimental results on carpet floor	38
4.2: Average pulses for five attempts on carpet floor	39
4.3: Experimental results on gravel path	40
4.4: Experimental results for five different terrains	41
4.5: The encoder pulse variations for carpet and gravel terrains	43
4.6: The encoder pulse variations for grass and sand terrains	44
5.1: Ten readings for five different terrains	49
5.2: SNR values for five different terrains	52

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk