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ABSTRACT 

 
 

Large structures are widely used in the modern construction industry for infra-structure 

facilities development. Among these, long span structures with cables are becoming 

increasingly popular. In this category of structures deformations are large and 

estimations based on small deformation theory in the normal analysis are inadequate.  

 

The large deformation analysis results in nonlinear behavior where principle of 

superposition does not hold. In geometrical nonlinear analysis, the equations of 

equilibrium are based on the deformed geometry after the load application. The length 

of a curved deflected line is longer than the initial length and the basic assumptions 

used in linear analysis may cause inaccuracies when the deformations are very large. It 

is also essential that bending effects of cables are considered.  

 

Here we deal with large deformations, but small strain problems with linear stress-

strain relationships. Although there are many methods found in literature to analyze 

cables exhibiting large deformation nonlinear behavior, it is hard to find a universal 

approach to describe the exact behavior of a cable considering all geometrical 

nonlinearity issues. 

 

The analysis described in this study recognizes all such influences contributing to 

geometrical non-linearity. The procedure developed is versatile and gives a state-of-

the-art analytical tool. This work fills a void in the current practice recognizing large 

deformation issues without any knowledge of small or large strains as opposed to what 

is required in commercial software. 

 

A numerical solution procedure has been evolved to solve the resulting nonlinear non-

homogeneous integral differential equation. The procedure is converging and a 

computer program has been developed for practical use. The results are compared with 

those in literature to validate the findings and to ensure the accuracy of the new large 

deformation nonlinear analysis technique. 
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