LB/DON/30/09

(13

COIR PITH ACTIVATED CARBON FOR THE REMOVAL OF DYES, ORGANICS AND HEAVY METALS FROM AQUEOUS SOLUTIONS

LIBRARY UNIVERSITY OF MORATOWA. SDI LANKA | MORATUWA

by

D.W.DHANUSEKERA

Universities the bis was submitted both a. Electronic Transmical Discosts in partial fulfillment of the requirements

66 06 66(04

TH

Department of Chemical & Process Engineering

University of Moratuwa

Sri Lanka

July 2008 University of Moratuwa 92926

92926

92926

DECLARATION

i

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except, where due reference is made in the text.

UOM Verified Signature

D.W.Dhanusekera (07/8009)

University of Moratuwa, Sri Lanka. UOM Verified Signature /.lib.mrt.ac.lk

Supervisor Dr.B.M.W.P.K. Amarasinghe

ACKNOWLEDGEMENT

I would fall short in my duty, if I fail to thank several people without whose help my research wouldn't be a success. So I would like to express my heartfelt gratitude to;

- My supervisor, Dr (Mrs.) B.M.W.P.K. Amarasinghe, Senior Lecturer, Department of Chemical & Process Engineering, University of Moratuwa for being a guiding light right through the research.
- My progress review committee members, Prof. Ajith de Alwis and Dr. Shantha Walpolage Senior Lecturers, Department of Chemical & Process Engineering, University of Moratuwa for their encouragement and valuable suggestions.
- National Science Foundation and University Research Grant for providing me the research funding.
- Post graduate studies division, University of Moratuwa for approving my research project.
- Coir mill/1Waskaduwal for providing, mei coir pith right throughout the research, without which couldn't carry my research.
- Mrs. Dinusha Martino of Environmental Engineering laboratory and all the staff of Energy Engineering, Chemistry, Latex Technology laboratories, Server Room, Department of Chemical & Process Engineering, University of Moratuwa for offering me their sincere help without any hesitation.
- My beloved mother, father and husband for their encouragement right throughout the research.
- Post graduate students of the Department of Chemical & Process Engineering, University of Moratuwa; Ms. Gayanee Karunarathna, Ms. Gayani Jayatunga and Ms.Irosha Kularathna, for helping me in formatting the thesis and encouraging me by thought word or deed.

ii

CONTENTS

DECLARATION	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ANNEXURES	vii
ABSTRACT	viii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	7
2.1 INTRODUCTION	7
2.2 ADSORPTION	7
2.3 ADSORBENTS	9
2.4 ADSORPTION KINETICS	9
2.5 ADSORPTION EQUILIBRIA	11
2.5.1 Freundlich Adsorption Isotherm	
2.5.2 Langmuir Adsorption Isotherm, Sri Lanka.	
2.5.3) Tempkin Adsorptionets othermssertations	
2.6 FIXED BED ADSORPTION	14
2.6.1 Fixed bed adsorption process	14
2.6.2 Determination of length of unused bed	16
2.6.3 Bed depth service time (BDST) model	
2.7 SCALE UP THEORY	17
2.8 PAST STUDIES ON REMOVAL OF DYES	19
2.8.1 Preparation of adsorbent	19
2.8.2 Effect of parameters	19
2.8.2.1 Effect of agitation time	
2.8.2.2 Effect of adsorbent dosage	19
2.8.2.3 Effect of adsorbate pH	20
2.8.3 Adsorption kinetics	20
2.8.4 Adsorption equilibria	20
2.9 PAST STUDIES ON REMOVAL OF ORGANICS	20
2.9.1 Preparation of adsorbent	
	iii

.

5

Ĺ

2.9.2 Effect of parameters	.21
2.9.2.1 Effect of agitation time	.21
2.9.2.2 Effect of adsorbent dosage	. 22
2.9.2.3 Effect of adsorbate pH	. 22
2.9.2.4 Effect of adsorbate temperature	. 22
2.9.3 Adsorption kinetics	. 22
2.9.4 Adsorption equilibria	. 22
2.10 PAST STUDIES ON REMOVAL OF HEAVY METALS	.23
2.10.1 Preparation of adsorbent	. 23
2.10.2 Effect of parameters	. 23
2.10.2.1 Effect of agitation time	. 23
2.10.2.2 Effect of adsorbent dosage	.24
2.10.2.3 Effect of adsorbate pH	. 24
2.10.2.4. Effect of adsorbate temperature	. 24
2.10.3 Adsorption kinetics	. 25
2.10.4 Adsorption equilibria	. 25
CHAPTER 3. METHODOLOGY	.26
3.1 PREPARATION OF THE ADSORBENT Lanka.	.26
3.2 PREPARATION OF THE ADSORBATE	.27
3.3 BATCH EXPERIMENTS	.28
3.3.1 Removal of dyes	.28
3.3.2 Removal of organics	. 30
3.3.3 Removal of heavy metals	
3.4 FIXED BED EXPERIMENTS	31
	33
	33
4.1 ADSORDENT OF AUX CONTENTS	
4.2.1 Removal of dves	33
4.2.1.1 Effect of adsorbent dosage	33
4.2.1.2 Effect of agitation time	37
4 2 1 3 Effect of adsorbate pH	40
4 2 1 4 Effect of initial dve concentration	41
4 2 1 5 Adsorption kinetics	42
4.2.1.0 Addiption Anotice	
	iv

.

•

4.2.1.6 Adsorption equlibria	44
4.2.2 Removal of organics	47
4.2.3 Removal of heavy metals	48
4.3 FIXED BED EXPERIMENTS	50
4.3.1 Breakthrough curves	50
4.3.1.1 Effect of bed depth	51
4.3.1.2 Effect of adsorbent type	53
4.3.2 BDST analysis	56
4.4 SCALE UP	57
CHAPTER 5: CONCLUSION	
REFERENCES	
ANNEXURE	62

.

LIST OF TABLES

Table Sources of heavy metalsratuwa, Sri Lanka.	2
Table 4.1: Characteristics of raw and activated toir pith	33
Table 4.2: First and second order kinetic parameters	42
Table 4.3: Freundlich, Langmuir and Tempkin isotherm parameters	45
Table 4.4: Bed capacity & LUB with varying bed depth	53
Table 4.5: Bed capacity & LUB with varying adsorbent	55
Table 4.6: Comparison of adsorption capacities in batch & fixed bed	
operations	55
Table 4.7: BDST parameters for MB, MG and NB	57
Table 4.8: Pilot scale parameters for batch operation	57
Table 4.9: Pilot scale parameters for fixed bed operation	57

v

LIST OF FIGURES

Fig 2.1: Breakthrough curve of a fixed bed adsorption column	.14
Fig 2.2: Breakthrough curve	. 16
Fig 3.1: Muffle furnace	. 27
Fig 3.2: Orbital shaker	. 28
Fig 3.3: Spectrophotometer	. 29
Fig 3.4: pH meter	. 29
Fig 3.5: Fixed bed adsorption column	. 32
Fig 4.1: Effect of activated coir pith dosage on MB adsorption	. 34
Fig 4.2: Effect of activated coir pith dosage on MG adsorption	. 34
Fig 4.3: Effect of activated coir pith dosage on NB adsorption	.35
Fig 4.4:Comparison of raw and activated coir pith dosage on MB adsorption	35
Fig 4.5:Comparison of raw and activated coir pith dosage on MG adsorption	136
Fig 4.6:Comparison of raw and activated coir pith dosage on NB adsorption	36
Fig 4.7: Comparison of adsorption capacity with various dosages	. 37
Fig 4.8: Effect of agitation time on MB adsorption on to activated coir pith	. 37
Fig 4 9 Effect of agitation time on MG adsorption on to activated coir pith	.38
Fig 4.10. Effect of agitation time on NB adsorption on to activated coir pith	. 38
Fig 4.11: Comparison of % removal with adsorbent type	. 39
Fig 4.12: Effect of pH on dye adsorption	.40
Fig 4.13: Effect of initial concentration on adsorption capacity of MB	.41
Fig 4.14: Effect of initial concentration on adsorption capacity of MG	. 41
Fig 4.15: Effect of initial concentration on adsorption capacity of NB	. 42
Fig 4.16: Second order kinetics for MB adsorption on to activated coir pith	.43
Fig 4.17: Second order kinetics for MG adsorption on to activated coir pith	.44
Fig 4.18: Second order kinetics for NB adsorption on to activated coir pith	.44
Fig 4.19: Fit of Freundlich isotherm for MB adsorption	.45
Fig 4.20: Fit of Freundlich isotherm for MG adsorption	.46
Fig 4.21: Fit of Freundlich isotherm for NB adsorption	.46
Fig 4.22: Adsorption capacity of phenol with activated & raw coir pith	.47
Fig 4.23:Second order kinetics for phenol adsorption onto activated coir pith	48
Fig 4.24: Adsorption of zinc on to activated and raw coir pith	.48

-

Fig 4.25: Adsorption of lead on to activated and raw coir pith	49
Fig 4.26: Second order kinetics for zinc adsorption on to activated coir pith	49
Fig 4.27: Second order kinetics for lead adsorption on to activated coir pith	50
Fig 4.28: Break through curve for MB with activated coir pith	51
Fig 4.29: Break through curve for MG with activated coir pith	52
Fig 4.30: Break through curve for NB with activated coir pith	52
Fig 4.31: Effect of adsorbent on breakthrough curve of MB	53
Fig 4.32: Effect of adsorbent on breakthrough curve of MG	54
Fig 4.33: Effect of adsorbent on breakthrough curve of NB	54
Fig 4.34: Fit of BDST model for MB, MG and NB	56

-

١.

 $\mathbf{u}^{\mathbf{i}}$

LIST OF ANNEXURES

1.Kinetic data of MB	62
2.Kinetic data of NB	62
3. Kinetic data of MG	63
4.Kinetic data of zinersity of Moratuwa, Sri Lanka	63
5. Kinetic data of teadonic Theses & Dissertations	63
6. Kinetic data of phenop.mrt.ac.lk	63
7. Equilibrium data of MB	64
8. Equilibrium data of MG	64
9. Equilibrium data of NB	64

ABSTRACT

Adsorption of textile dves, organics and heavy metals onto coir pith based adsorbents from aqueous solutions were studied. Raw coir pith and thermally activated coir pith at 700°C were used as adsorbents. Batch experiments showed that both adsorbents are capable of binding appreciable amounts of impurities from aqueous solutions. Thermally activated coir pith was superior to raw coir pith for dyes and phenol removal. Heavy metal adsorption capacities for both adsorbents were similar. Batch adsorption experiments were conducted in detail for dye removal to determine the factors affecting adsorption and kinetics of the process. Fixed bed column experiments were performed to study practical applicability and breakthrough curves were obtained. The maximum adsorption was observed at solution pH values between 5-9 for Methylene blue and Malachite green. Solution pH value of 2 showed maximum adsorption for Nylosan blue. The adsorbent to solution ratio and the dye concentration in the solution affect the degree of dye removal. The equilibrium data were satisfactorily fitted to Freundlich isotherm. The kinetic data fits to pseudo second orden model and kinetic parameters were calculated. Column experiments showed 'S' shaped breakthrough curves and the results followed Bed Depth Service Time (BDST) model. Fixed bed adsorption capacities were lower compared to batch experiments.