
2B/JON/54./33

# $\langle g \rangle$

# PERFORMANCE OF THE WASTE STABILIZATION POND SYSTEM AT DIGANA

# A Dissertation submitted in partial fulfillment of the requirement for the Master of Engineering Degree in Environmental Engineering and Management



72256 624 "00" 628.35

Department of Civil Engineering University of Moratuwa Sri Lanka

**July 2000** 

TH

72256

This Thesis has not been previously presented in whole or part to any University or Institution for a higher degree. ÷,

R.A.P.Rupasingha July 2000 www.lib.mrt.ac.lk

#### **Acknowledgement**

First and foremost I express my grateful thanks to the Panel of Lecturers, Department of Civil Engineering, University of Moratuwa for creating this opportunity which enabled me to participate in this course on the Master of Engineering degree in Environmental Engineering and Management. Also I wish to pay my gratitude to the Natural Resources and Environmental Policy Project (NAREPP) for providing financial assistance to cover the course fee for the PGDip/MEng course.

My special grateful thanks are also extended to the Course Coordinator (95/96) & the Project Supervisor, Mr. S. Pathinather and the Co-Supervisor, Prof. Mrs. N. Ratnayake who were gracious enough to spend their valuable time and ably imparted their knowledge in a professional manner.

I wish to express my gratitude to the Mahaweli Authority of Sri Lanka for providing funds and necessary assistance to this investigation. Also special thanks goes to the Executive Director (Technical Services), Mr. S. Karunaratne and the Maintenance Staff of Digana Village and the staff of HAO&M Division of Mahaweli for giving their whole hearted support and for assisting me to carry out this investigation successfully.

A special word of thanks go to the staff of the National Water Supply and Drainage Board, Peradeniya Laboratory for assisting me in different ways and time spent on behalf of me. Finally I extend my profound thanks to all those who had a hand either directly or indirectly for the successful completion of this project, which I consider as an experience of a lifetime.

\*

## **CONTENTS**

| Abstract                                                         |        |
|------------------------------------------------------------------|--------|
| CHAPTER 1.0                                                      | 1-8    |
| Introduction and an overview of the wastewater treatment systems |        |
| 1.1 Introduction                                                 | 1      |
| 1.2 Waste Water Treatment Systems                                | 3      |
| 1.3 Waste Stabilization Ponds                                    | 4      |
| 1.4 Scope of the project                                         | 8      |
| 1.5 Arrangement of this Dissertation                             | 8      |
| CHAPTER 2.0                                                      | 9-18   |
| Literature Review                                                |        |
| 2.1 Facultative and Anaerobic Ponds                              | 9      |
| 2.2 Ponds System                                                 | 10     |
| 2.3 Factors Affecting Ponds Performance                          | 11     |
| 2.4 Methods for Ponds System improvements Lanka                  | 14     |
| CHAPTER 3.0                                                      | 19- 31 |
| Materials and Methods                                            |        |
| 3.1 Materials                                                    | 19     |
| Digana Village and its Wastewater Treatment System               |        |
| 3.1.1 Introduction                                               | 19     |
| 3.1.2 Digana Village                                             | 19     |
| 3.1.3 Water Supply System                                        | 20     |
| 3.1.4 Wastewater Treatment System                                | 20     |
| 3.2 Methodology                                                  | 27     |
| 3.2.1 Ground Survey                                              | 27     |
| 3.2.2 Estimation of Wastewater Flow                              | 27     |
| 3.2.3 Characteristics of Wastewater                              | 28     |
| 3.2.4 Experimental Technique                                     | 29     |
| 3.2.5 BOD Determination                                          | 30     |
| 3.2.6 COD Determination                                          | 31     |

X

7

.4

| CHAPTER 4.0                                | 31-45 |
|--------------------------------------------|-------|
| Calculations and Results                   |       |
| 4.1 Estimation of wastewater flow          | 32    |
| 4.2 Capacities of the Ponds System         | 33    |
| 4.3 Characteristics of wastewater          | 35    |
| 4.3.1 BOD and COD                          | 36    |
| 4.3.2 DO, PH and Temperature               | 37    |
| 4.3.3 TSS                                  | 38    |
| 4.3.4 Process Efficiency                   | 39    |
| 4.3.5 BOD & COD Loading to the System      | 41    |
| 4.3.6 BOD/COD Ratio and Treatability Index | 44    |
| 4.3.7 Sulphide Production                  | 45    |
| 4.3.8 Nutrients and Algal Speciation       | 45    |
|                                            |       |

| CHAPTER 5.0                                  | 46-60 |
|----------------------------------------------|-------|
| Discussions, Conclusions and Recommendations |       |
| 5.1 Discussions www.lib.mrt.ac.lk            | 46    |
| 5.2 Conclusions                              | 57    |
| 5.3 Recommendations                          | 58    |

REFERENCES ANNEXURES APPENDICES FIGURES PLATES TABLES ABBREVIATIONS

**`X** 



### LIST OF ANNEXES

\*

M

| Annex 3-1 | - Digana Village Location Map                            |
|-----------|----------------------------------------------------------|
| Annex 3-2 | - Digana Village Layout Map and its WW collection system |
| Annex 3-3 | - Digana Village Waste Stabilization Ponds System        |

## LIST OF APPENDICES

| Appendix 4-1         | - Estimation of population and water consumption                  |
|----------------------|-------------------------------------------------------------------|
| Appendix 4-2         | - Estimation of water consumption from household meter readings   |
| Appendix 4-3         | - Estimation of water consumption from main supply to the Village |
| Appendix 4-4         | - Estimation of water consumption from Village main tank          |
| Appendix 4-5 & 4-6   | - Calculation of Ponds capacities as designed                     |
| Appendix 4-7 to 4-19 | - Calculation of Pond capacities during the study period          |
| Appendix 4-20        | - Meteorological data from Victoria Station                       |
| Appendix 4-21to 4-23 | - BOD, COD, TSS, pH, DO, Nitrate and Phosphate data               |
| Appendix 4-24        | - Nitrate, Phosphate and Algae types                              |
| Appendix A           | - Operation and Maintenance Manuals                               |

III

### **LIST OF FIGURES:**

•

4

| Figure 3-1 | - Flow Diagram - Wastewater Treatment System  |
|------------|-----------------------------------------------|
| Figure 3-2 | - Waste Stabilization Ponds System            |
| Figure 3-3 | - Details of Waste Stabilization Ponds System |
| Figure 4-1 | - Biochemical Oxygen Demand Variation         |
| Figure 4-2 | - Chemical Oxygen Demand Variation            |
| Figure 4-3 | - Dissolved Oxygen Variation                  |
| Figure 4-4 | - P <sup>H</sup> Analysis Variation           |
| Figure 4-5 | - Maximum and minimum temperature             |
| Figure 4-6 | - TSS Variation                               |

.

### LIST OF PLATES:

| Plate 1 | - Digana Village Waste Stabilization Ponds        |
|---------|---------------------------------------------------|
| Plate 2 | - Screening arrangement                           |
| Plate 3 | - Screening arrangement                           |
| Plate 4 | - Inlet arrangement to the anaerobic pond         |
| Plate 5 | - Two compartments divided by Rubble masonry wall |
| Plate 6 | - Detention Well                                  |

.

### LIST OF TABLES:

+

+

¥

`

.

| Table 3-1  | - Sampling Locations                              |
|------------|---------------------------------------------------|
| Table 3-2  | - Experimental Technique                          |
| Table 4-1  | - Estimation of Water Consumption                 |
| Table 4-2  | - Designed capacities only for single compartment |
| Table 4-3  | - Pond Capacities during the study period         |
| Table 4-4  | - Comparison of the existing ground measurements  |
| Table 4-5  | - BOD Removal Efficiency                          |
| Table 4-6  | - COD Removal Efficiency                          |
| Table 4-7  | - TSS Removal Efficiency                          |
| Table 4-8  | - Average % Removals                              |
| Table 4-9  | - BOD Loading to the 1 <sup>st</sup> Pond         |
| Table 4-10 | - BOD Loading to the 2 <sup>nd</sup> Pond         |
| Table 4-11 | - BOD Loading to the 3 <sup>rd</sup> Pond         |
| Table 4-12 | - BOD Loading to the overall System               |
| Table 4-13 | - Average Loading to the System                   |
| Table 4-14 | - BOD/COD Ratio                                   |
| Table 4-15 | - Treatability Index in Final Effluent            |
| Table 4-16 | - BOD Removal Rate Constants                      |
| Table 4-17 | - Hydraulic Retention Time                        |
| Table 4-18 | - BOD Removal                                     |
| Table 4-19 | - Sulphide Production (Influent to the system)    |
| Table 5-1  | - Inspection and Maintenance Sequence             |
| 14010 5 1  | inspection and maintenance sequence               |

v

# **Abbreviations**

| WSP  | - Waste Stabilization Ponds                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------|
| DP   | - Duckweed Ponds                                                                                                       |
| SP   | - Stabilization Ponds                                                                                                  |
| BOD  | - Biochemical Oxygen Demand                                                                                            |
| COD  | - Chemical Oxygen Demand                                                                                               |
| TSS  | - Total Suspended Soilds                                                                                               |
| DO   | - Dissolved Oxygen                                                                                                     |
| WW   | - Wastewater                                                                                                           |
| HRT  | - Hydraulic Retention Time                                                                                             |
| BWSP | - Baffled Waste Stabilization Ponds                                                                                    |
| FC   | - Fecal Coliform                                                                                                       |
| MCM  | - Million Cubic Meters<br>University of Moratuwa, Sri Lanka,<br>Electronic Theses & Dissertations<br>www.lib.mrt.ac.lk |

.

+

Į.

-4

#### <u>Abstract</u>

This dissertation describes an investigation into the performance of a waste stabilization pond system designed to treat the wastewater at Digana village, near Kandy. This system was designed, constructed and put into operation in 1980 as a combination of anaerobic pond followed by a facultative and a maturation pond.

The main objective of this study was to evaluate the performance of the pond system in relation to the design and to suggest methods of improving the efficiency. A secondary objective was to prepare some guidelines for operation and maintenance of the pond system.

With respect to the design, the only data available were that the pond system was to function as an anaerobic, facultative and maturation pond in series, with the total HRT of 21 days and expected to produce a final effluent BOD of less than 20 mg/l. Hence the study concentrated firstly on determining the existing physical state and capacities. Based on the outcome of the above study, interpond connections were closed to operate only half the pond system to study the performance related to removal of BOD, COD, TSS and Nutrients.

The study indicated that due to the capacity reduction caused by the accumulation of sludge in combination with the entire flow being treated only by half the pond system, the effective total HRT was only 6.27 days. Further it was revealed that the first pond was not fully anaerobic, desirable algal species were absent and the anaerobicity in the detention well contributed to the lowering of the final effluent quality.

However, the performance of the pond system was reasonably good inspite of a few disadvantages. These shortcomings are identified and discussed in the report and detailed recommendations have been made regarding the operation and maintenance of the system in addition to suggestions made for immediate remedial measures to improve the performance.

7