Declaration

“I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.”

Signature of Candidate
30/01/09
Date

To the best of my knowledge, the above particulars are correct

Supervisor
2.8.1 The friction force
2.8.2 Surface texture properties and pavement friction
2.8.3 Measuring of skid resistance
 2.8.3.1 Method 1- Lock wheel testing
 2.8.3.2 Method 2- Sand patch testing
2.9 Traffic
 2.9.1 Traffic management
 2.9.2 Methods of traffic control
 2.9.3 Traffic control and singing
2.10 Machines used for chip seals.
 2.10.1 Spreaders
 2.10.2 Distributors
 2.10.2.1 Pressurized tank distributor
 2.10.2.2 Constant rate of spread distributors
 2.10.2.3 Bitumen binder spray bars
 2.10.3 Rollers
 2.10.4 Sweepers
2.11 Health and Safety
2.12 The surface dressing operation
2.13 The surface dressing process
2.14 Job sheet
2.15 Quality control
2.16 Evaluation of pavement surface properties
2.17 Noise and wear
2.18 After care

Chapter 3.0: Methodology

3.1. Introduction
3.2. Selection of road
3.3. Determination of aggregate size and spread rate
3.4 Selection of binder
3.5 Determination of CRS2 emulsion spray rate
3.6 Comparisons with RDA specifications and TRL rates
3.7 Calculation of number of test spots and their locations
Acknowledgements

I would like to express my deepest gratitude to the advisor, Dr. M.A.W. Kumara, for all his guidance and patience throughout the course of this research. I would also like to thank Professor Manjrika Gunaratna for his valuable advice and comments. I also would like to thank the evaluation committee for their suggestions and comments. I further wish to thank the staff members of Transport Engineering Division for their support to prepare this thesis. I also thank Road Development Authority (RDA) for sponsoring me to follow this course of studies and continuous support to carry out our research work using RDA funds and workers. Finally I would like to thank my family members and staff members of Executive Engineer’s office Nalanda for helping to carry out the research in many ways.
Table of Contents

Chapter 1.0: Introduction

1.1 Background .. 1
1.2 Surface dressing applications in Sri Lanka 3
1.3 Problem statement 6
1.4 Objectives .. 6
1.5 Research scope 6

Chapter 2.0: Literature review

2.1. Introduction ... 8
2.2. Specifications for the design 8
2.3. Design parameters 9
2.4. Establishment of commercial Average Daily Traffic (ADT) 9
2.5. Selection of type of dressing 9
 2.5.1 Single surface dressing 10
 2.5.2 Double surface dressing 10
 2.5.3 Triple surface dressing 11
 2.5.4 Racked-in surface dressing 11
 2.5.5 Pad coat seals 12
 2.5.6 Sandwich surface dressings 12
2.6 Selection of a suitable surface dressing 12
2.7. Materials ... 13
 2.7.1 Selection of aggregates 13
 2.7.2 Spread rate of aggregates 15
 2.7.3 Types of emulsions ... 16
 2.7.4 Rate of spread of binder 17
 2.7.5 Spray rate adjustment factors 20
 2.7.6 Bitumen emulsion testing 21
 2.7.7 Bitumen emulsion storage 21
 2.7.8 Adhesion promoters ... 22
 2.7.9 Emulsion transport ... 22
2.8. Skid resistance 22
2.8.1 The friction force
2.8.2 Surface texture properties and pavement friction
2.8.3 Measuring of skid resistance
 2.8.3.1 Method 1- Lock wheel testing
 2.8.3.2 Method 2- Sand patch testing
2.9 Traffic
 2.9.1 Traffic management
 2.9.2 Methods of traffic control
 2.9.3 Traffic control and singing
2.10 Machines used for chip seals
 2.10.1 Spreaders
 2.10.2 Distributors
 2.10.2.1 Pressurized tank distributor
 2.10.2.2 Constant rate of spread distributors
 2.10.2.3 Bitumen binder spray bars
 2.10.3 Rollers
 2.10.4 Sweepers
2.11 Health and Safety
2.12 The surface dressing operation
2.13 The surface dressing process
2.14 Job sheet
2.15 Quality control
2.16 Evaluation of pavement surface properties
2.17 Noise and wear
2.18 After care

Chapter 3.0: Methodology

3.1. Introduction
3.2. Selection of road
3.3. Determination of aggregate size and spread rate
3.4 Selection of binder
3.5 Determination of CRS2 emulsion spray rate
3.6 Comparisons with RDA specifications and TRL rates
3.7 Calculation of number of test spots and their locations
3.8 Carrying out the surface dressing 51
3.9 Chip removal test 52
3.10 Surface dressing done by RDA routine method 54
3.11 Locked wheel test 55
3.12 Sand patch test 56

Chapter 4.0: Data and observation 57
4.1 Traffic counts 57
4.2 Aggregate removal rate test 58
 4.2.1 Aggregate removal in 6.3mm test spots 59
 4.2.2 Aggregate removal in 9.5mm test spots 59
 4.2.3 Aggregate removal in 12.5mm test spots 59
 4.2.4 Surface dressing photos-12.5mm 60
 4.2.5 Surface dressing photos-9.5mm 61
 4.2.6 Surface dressing photos-6.3mm 62
 4.2.7 Data obtain from routine surface dressing site done by RDA 63
4.3 Skid resistance test 64
 4.3.1 Measurement technique 1 - Locked wheel testing 64
 4.3.2 Measurement technique 2 - Sand patch method 64

Chapter 5.0: Analysis and discussion of results 65
5.1 Aggregate removal test for the surface dressing 65
 5.1.1 Analysis of aggregate counting data 68
 5.1.1.1 Statistical test for surface exposed area 69
5.2 Comparison of data from design test results 70
 with RDA regular surface dressing test 70
 5.2.1 Statistical test for surface dressing methods 71
5.3 Skid resistance test 72
 5.3.1 Locked wheel test 72
 5.3.1.1 Statistical test for skid numbers 73
 5.3.2 Sand patch test 74
 5.3.2.1 Statistical test for sand patch thickness test 75
5.4 Comparison of results 75
5.5 Application of test results to other roads 77
Chapter 6.0 Conclusions and recommendations

6.1. Conclusions

6.2. Recommendations
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Road surface type distributions in RDA roads</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Single surface dressing</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Double surfaces dressing</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Triple surface dressing</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Racked in surface dressing</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Pad coat seal</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Sandwich surface dressing</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Micro textures vs. macro texture</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Forces acting on test vehicle</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Locations of test spots along carriageway</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Sample photos of A9-11 and A12-5 test spots after 7 weeks</td>
<td>53</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Photos of A12 -4 test spot at different ages</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Photos of A9 -3 test spot at different ages</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Photos of A6 -12 test spot at different ages</td>
<td>63</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Lost average number of aggregates during time periods</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Percent of aggregates lost after each previous count</td>
<td>66</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Cumulative Percent of aggregates lost after initial count</td>
<td>67</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Percentage aggregate removal of three aggregate sizes after 12 weeks</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Skid number of three aggregate sizes</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Sand patch thickness of three aggregate sizes</td>
<td>77</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Weighting factors for surface dressing design</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Typical bitumen spray rate adjustment factors</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Average least dimensions (ALD)</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Density of aggregate</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Approximate spreading rate of aggregate</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Spreading rate of aggregates</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Binder spray rates</td>
<td>46</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Aggregate counts at sample test spots</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Random generated numbers & corresponding test spot numbers</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Test spot identification numbers for RDA method</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Classified ADT</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Number of aggregate in 6.3 mm test spots</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Number of aggregate in 9mm test spots</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Number of aggregate in 12mm test spots</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Aggregate removal in 6.3mm test spots</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Aggregate removal in 9.5mm test spots</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Aggregate removal in 12.5mm test spots</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Skidding distances by locked wheel method of testing</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Sand patch diameters</td>
<td>64</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Lost of aggregates from pavement surface in design method</td>
<td>65</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Percent of aggregates lost after each previous count</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Percent of aggregates lost after initial count</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Percentage loss of aggregate</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Comparison of percentage aggregate removal in designed method</td>
<td>70</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Comparison details</td>
<td>70</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Percentage aggregate removal</td>
<td>71</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Comparison of chip removal rate</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Skid numbers (SN) using locked wheel test method</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Skid numbers for test sections</td>
<td>73</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Comparison of skid numbers</td>
<td>73</td>
</tr>
<tr>
<td>Table 5.12</td>
<td>Sand patch thickness of each sand patch</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 5.13 Table Sand patch thickness data for comparison of three aggregate sizes.

Table 5.14 Comparison of sand patch thickness

Table 5.15 Comparison of percent aggregate removal, skid number and sand patch thickness