

DETERMINATION OF OPTIMUM NOMINAL AGGREGATE SIZE FOR SINGLE SURFACE DRESSINGS

By Wanigasekara Mudiyanselage Senarath Bandara Wanigasekara Supervised by Dr. M.A.W.Kumara

The Dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Highway & Traffic Engineering.

> Department of Civil Engineering University of Moratuwa

> > 2009

92430

Abstract

Surface dressings are used as a road maintenance activity as well as a surfacing of a newly constructed road. One of the main decisions to be taken in designing a dressing is the selection of appropriate aggregate size. Improper selection of aggregate size could tarnish the performance of a surface dressing. The aim of this study is to find the optimum size of aggregate for a single surface dressing especially in Sri Lankan Macadam roads.

General size of aggregate for a particular surface dressing could be found using commercial traffic volume and surface hardness of the road based on TRRL method. But the aggregate sizes selected in above simple method have shown inconsistent results. Therefore tests should be carried out to find most appropriate size for the surface dressings.

Three sizes of aggregate were selected using above simple check for the tests. Three different surface dressings from different aggregate sizes were done. Binder type kept constant and binder rate changed according to the chip size. The performances of these three surface dressings were evaluated by measuring aggregate removal rate and skid resistance of the seal.

Digital photographs of demarcated locations in surface dressings of different chip sizes were taken at pre determined time intervals. The numbers of aggregate were counted in each photo after certain time interval and using this data, the behavior of each surface dressing over a period of time can be studied. The aggregate size that could keep highest area of aggregate intact in its dressing would be a more durable chip size.

The next aspect of checking performance of the dressing is the skid resistance. The techniques utilized to measure this value are Locked wheel test and Sand patch

method. The main- aim of skid resistance testing was to compare three sizes of aggregate and see how they respond to skidding. -It was found that 9.5mm nominal size performed better in durability aspect and 12.5mm performed better in skid resistance aspect.

Declaration

"I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations"

#emrg

Signature of Candidate

30/01/09

Date

,¥1

To the best of my knowledge, the above particulars are correct

UOM Verified Signature

Supervisor

2.8.1 The friction force	22
2.8.2 Surface texture properties and pavement friction	23
2.8.3 Measuring of skid resistance	24
2.8.3.1 Method 1- Lock wheel testing	24
2.8.3.2 Method 2- Sand patch testing	27
2.9 Traffic	27
2.9.1 Traffic management	27
2.9.2 Methods of traffic control	28
2.9.3 Traffic control and singing	28
2.10 Machines used for chip seals.	29
2.10.1 Spreaders	29
2.10.2 Distributors	31
2.10.2.1 Pressurized tank distributor	31
2.10.2.2 Constant rate of spread distributors	32
2.10.2.3 Bitumen binder spray bars	32
2.10.3 Rollers	34
2.10.4 Sweepers	34
2.11 Health and Safety niversity of Moratuwa, Sri Lanka.	35
2.12 The surface dressing operation Theses & Dissertations	35
2.13 The surface dressing process mit. ac. lk	36
2.14 Job sheet	36
2.15 Quality control	37
2.16 Evaluation of pavement surface properties	37
2.17 Noise and wear	38
2.18 After care	39
Chapter 3.0: Methodology	40
3.1. Introduction	40
3.2. Selection of road	40
3.3. Determination of aggregate size and spread rate	41
3.4 Selection of binder	44
3.5 Determination of CRS2 emulsion spray rate	45
3.6 Comparisons with RDA specifications and TRL rates	46
3.7 Calculation of number of test spots and their locations	47

Acknowledgements

I would like to express my deepest gratitude to the advisor, Dr. M.A.W. Kumara, for all his guidance and patience throughout the course of this research.

I would also like to thank Professor Manjrika Gunarathna for his valuable advice and comments. I also would like to thank the evaluation committee for their suggestions and comments. I further wish to thank the staff members of Transport Engineering Division for their support to prepare this thesis.

I also thank Road Development Authority (RDA) for sponsoring me to follow this course of studies and continuous support to carry our research work using RDA funds and workers.

Finally I would like to thank my family members and staff members of Executive Engineer's office Nalanda for helping to carry out the research in many ways.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table of Contents

	Page
Chapter 1.0: Introduction	1
1.1 Background	1
1.2 Surface dressing applications in Sri Lanka	3
1.3 Problem statement	6
1.4 Objectives	6
1.5 Research scope	6
Chapter 2.0: Literature review	8
2.1. Introduction	8
2.2. Specifications for the design	8
2.3. Design parameters	9
2.4. Establishment of commercial Average Daily Traffic (ADT)	9
2.5. Selection of type of dressing	9
2.5.1 Single surface dressing	10
2.5.2 Double surface dressing	10
2.5.3 Triple surface dressing of Moratuwa, Sri Lanka.	11
2.5.4 Racked-in surface dressing eses & Dissertations	11
2.5.5 Pad coat seals	
2.5.6 Sandwich surface dressings	12
2.6 Selection of a suitable surface dressing	12
2.7. Materials	13
2.7.1 Selection of aggregates	13
2.7.2 Spread rate of aggregates	15
2.7.3 Types of emulsions	16
2.7.4 Rate of spread of binder	17
2.7.5 Spray rate adjustment factors	20
2.7.6 Bitumen emulsion testing	21
2.7.7 Bitumen emulsion storage	21
2.7.8 Adhesion promoters	22
2.7.9 Emulsion transport	22
2.8. Skid resistance	22

2.8.1 The friction force	22
2.8.2 Surface texture properties and pavement friction	23
2.8.3 Measuring of skid resistance	24
2.8.3.1 Method 1- Lock wheel testing	24
2.8.3.2 Method 2- Sand patch testing	27
2.9 Traffic	27
2.9.1 Traffic management	27
2.9.2 Methods of traffic control	28
2.9.3 Traffic control and singing	28
2.10 Machines used for chip seals.	29
2.10.1 Spreaders	29
2.10.2 Distributors	31
2.10.2.1 Pressurized tank distributor	31
2.10.2.2 Constant rate of spread distributors	32
2.10.2.3 Bitumen binder spray bars	32
2.10.3 Rollers	34
2.10.4 Sweepers	34
2.11 Health and Safety University of Moratuwa, Sri Lanka.	35
2.12 The surface dressing operation Theses & Dissertations	35
2.13 The surface dressing process	. 36
2.14 Job sheet	36
2.15 Quality control	37
2.16 Evaluation of pavement surface properties	37
2.17 Noise and wear	38
2.18 After care	39
Chapter 3.0: Methodology	40
3.1. Introduction	40
3.2. Selection of road	40
3.3. Determination of aggregate size and spread rate	41
3.4 Selection of binder	44
3.5 Determination of CRS2 emulsion spray rate	45
3.6 Comparisons with RDA specifications and TRL rates	46
3.7 Calculation of number of test spots and their locations	47

3.8 Carrying out the surface dressing	51
3.9 Chip removal test	52
3.10 Surface dressing done by RDA routine method	54
3.11 Locked wheel test	55
3.12 Sand patch test	56
Chapter 4.0: Data and observation	57
4.1 Traffic counts	57
4.2 aggregate removal rate test	57
4.2.1 Aggregate removal in 6.3mm test spots	58
4.2.2 Aggregate removal in 9.5 mm test spots	59
4.2.3 Aggregate removal in 12.5mm test spots	59
4.2.4 Surface dressing photos-12.5mm	60
4.2.5 Surface dressing photos-9.5mm	61
4.2.6 Surface dressing photos-6.3mm	62
4.2.7 Data obtain from routine surface dressing site done by RDA	63
4.3 Skid resistance test	64
4.3.1 Measurement technique 1 – Locked wheel testing	64
4.3.2 Measurement technique 2 – Sand patch method	64
Chapter 5.0: Analysis and discussion of results	65
5.1 Aggregate removal test for the surface dressing	65
5.1.1 Analysis of aggregate counting data	68
5.1.1.1 Statistical test for surface exposed area	69
5.2 Comparison of data from design test results	
with RDA regular surface dressing test	70
5.2.1 Statistical test for surface dressing methods	71
5.3 Skid Resistance test	72
5.3.1 Locked wheel test	72
5.3.1.1 Statistical test for skid numbers	73
5.3.2 Sand patch test	74
5.3.2.1 Statistical test for sand patch thickness test	75
5.4 Comparison of results	75
5.5 Application of test results to other roads	77

Chapter 6.0 Conclusions and recommendations	79
6.1. Conclusions	79
6.2. Recommendations	80

ئد

1.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 1.1	Road surface type distributions in RDA roads	3
Figure 2.1	Single surface dressing	10
Figure 2.2	Double surfaces dressing	10
Figure 2.3	Triple surface dressing	11
Figure 2.4	Racked in surface dressing	11
Figure 2.5	Pad coat seal	12
Figure 2.6	Sandwich surface dressing	12
Figure 2.7	Micro textures vs. macro texture	24
Figure 2.8	Forces acting on test vehicle	25
Figure 3.1	Locations of test spots along carriageway	48
Figure 3.2	Sample photos of A9-11 and A12-5 test spots after 7 weeks	53
Figure 4.1	Photos of A12 -4 test spot at different ages	60
Figure 4.2	Photos of A9 -3 test spot at different ages	61
Figure 4.3	Photos of A6 -12 test spot at different ages	63
Figure 5.1	Lost average number of aggregates during time periods	65
Figure 5.2	Percent of aggregates lost after each previous count ions	66
Figure 5.3	Cumulative Percent of aggregates lost after initial count	67
Figure 5.4	Percentage aggregate removal of three aggregate sizes after 12 weeks	76
Figure 5.5	Skid number of three aggregate sizes	76
Figure 5.6	Sand patch thickness of three aggregate sizes	77

List of Tables

p	a	g	e
	-	2	~

Table 2.1	Weighting factors for surface dressing design	19
Table 2.2	Typical bitumen spray rate adjustment factors	20
Table 3.1	Average least dimensions (ALD)	42
Table 3.2	Density of aggregate	43
Table 3.3	Approximate spreading rate of aggregate	43
Table 3.4	Spreading rate of aggregates	44
Table 3.5	Binder spray rates	46
Table 3.6	Aggregate counts at sample test spots	49
Table 3.7	Random generated numbers & corresponding test spot numbers	51
Table 3.8	Test spot identification numbers for RDA method	55
Table 4.1	Classified ADT	57
Table 4.2	Number of aggregate in 6.3 mm test spots	58
Table 4.3	Number of aggregate in 9mm test spots	58
Table 4.4	Number of aggregate in 12mm test spots	59
Table 4.5	Aggregate removal in 6.3mm test spots	63
Table 4.6	Aggregate removal in 9.5mm test spots a. Sri Lanka.	63
Table 4.7	Aggregate removal in 12.5mm test spots	64
Table 4.8	Skidding distances by locked wheel method of testing	64
Table 4.9	Sand patch diameters	64
Table 5.1	Lost of aggregates from pavement surface in design method	65
Table 5.2	Percent of aggregates lost after each previous count	66
Table 5.3	Percent of aggregates lost after initial count	67
Table 5.4	Percentage loss of aggregate	69
Table 5.5	Comparison of percentage aggregate removal in designed method	70
Table 5.6	Comparison details	70
Table 5.7	Percentage aggregate removal	71
Table 5.8	Comparison of chip removal rate	72
Table.5.9	Skid numbers (SN) using locked wheel test method	72
Table 5.10.	Skid numbers for test sections	73
Table 5.11	Comparison of skid numbers	73
Table 5.12	Sand patch thickness of each sand patch	74

Table 5.13	Table Sand patch thickness data for comparison	75
	of three aggregate sizes.	
Table 5.14	Comparison of sand patch thickness	75
Table 5.15	Comparison of percent aggregate removal,	76
	skid number and sand patch thickness	

÷

ÿ.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk