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Abstract

The use of thin membranes is widespread in a variety of applications in a range

of industries owing to the lightweight nature and small packaged volume

attainable by them. When facilitating the storage of large areas of membranes

by folding−specifically in aerospace applications, the resulting creases alter the

physical state and material properties of the overall membrane structure. Even

though numerical modelling is preferred as a viable tool in replicating space

environments on earth in the form of reduced gravity and air drag, the

idealisations utilised in these analyses require validation via small-scale

experiments. The significance of this process is highlighted due to past

endeavours which failed to idealise the crease mechanics accurately, leading to

inaccurate predictions and eventual failure in complete missions. Moreover, the

use of virtual testing in this regard is limited by the unavailability of accurate

experimental data.

In this research, an attempt has been made to characterise the crease

mechanics of multiple creased thin Kapton 100 HN poyimide membranes using

an experimental study. A combination of specimens consisting of two and three

creases have been analysed in this regard, and moment−angle responses were

plotted using results of physical experiments. The results indicated different

crease stiffnesses for each crease in a parallel-creased specimen, with the highest

stiffness observed for a crease nearest to the pinned support. However, all the

stiffness values obtained herein were observed to be of a lower order than the

simulation and physical experimental results obtained by previous researchers

for membranes with a single crease, which could be attributed to the precise

measurements taken during the experimental study and the incorporation of the

effect of self-weight of the membrane into its moment−rotation response, which

was neglected in earlier studies. The time dependence of the opening behaviour
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was also studied, and it was identified that the membrane achieves a constant

opening angle in a shorter time duration on being loaded.

An improved experimental setup was designed and developed, on identifying

the limitations and inaccuracies observed in the experimental setup devised by

previous researchers. This ensured controlled displacement being offered to the

membrane for capturing its deployment behaviour over a wider regime of

loading, along with precise force measurement. The setup included additional

measures to facilitate its usage for specimens of a wider range of dimensions,

and to ensure proper alignment of the membrane, thereby enhancing the

accuracy of the results obtained via the physical experiments which would then

be utilised for idealisation schemes of deployment simulations in virtual

environment.

Crease stiffness determined for single-creased membranes utilising the

improved setup was implemented in Abaqus/Explicit finite element package for

the purpose of predicting the deployment behaviour of membrane structures

with multiple creases accordingly. The crease-line was represented with

connector elements specifying the rotational elasticity, and was observed to have

negligible effect on the deployment which contradicts the experimental

observations. Hence, further investigations are required for assessing the

accuracy of this claim.

A quasi-static simulation was carried out for a simple creased unit based on

traditional “Waterbomb” base for predicting the deployment behaviour

consisting of intersecting creases. The simulation developed in Abaqus/Explicit

environment was able to capture the deployment response observed in the

physical experiments, in terms of maximum deployment ratio and shape on

incorporating the effect of gravity to the simulation.

Keywords : ultra-thin membranes, crease mechanics, rotational stiffness,

multiple parallel creases, finite element simulations
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