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ABSTRACT

The need for frequent transportation planning has become a key factor since people

started becoming more mobile making urban traffic patterns more complex. The pri-

mary source for analysing such travel behavior is through manual surveys. These surveys

are expensive, time consuming and often are outdated by the time the survey is com-

pleted for analysis. To overcome these issues, Mobile Network Big Data (MNBD) which

concerns large data sets can be used over such traditional data collection processes. Call

Detail Records (CDR) which is a subset of MNBD is readily available as most of the

telecommunication service providers maintain CDR. Thus, analyzing CDR leads to an

efficient identification of human behavior and location.

However, many researches on CDRs have been done focusing to identify travel pat-

terns in order to understand human mobility behavior. Relatively high percentage of

sparse data and other scenarios like the Load Sharing Effect (LSE) causes difficulties in

identifying precise location of the user when using CDR data. Existing approaches for

identifying precise user location patterns have certain constraints. Past researches uti-

lizing CDRs have used primary approaches in recognizing load sharing effects and have

given minimum consideration to the transmission power of the respective cell towers

when localizing the users. Furthermore, these studies have neglected the differences in

mobility behavior of different segment of users and taken the entire community of users

as a single cluster.

In this research, a novel methodology to overcome these limitations is introduced

for locating users from CDRs by dividing the users into distinct clusters for identifying

the model parameters and through enhanced identification of load sharing effects by

taking the transmission power into consideration. Further, this study contributes to the

transport sector by identifying secondary activities from CDR data, without limiting to

the primary activity recognition. This research uses approximately 4 billion CDR data

points, voluntarily collected mobile data and manually collected travel survey data to

find techniques to overcome the existing limitations and validate the results.

Proposed dynamic filtering algorithm for load shared records identification showed

a significant improvement on accuracy over previous predefined speed based filtering

methods. Further, we found that, IO-HMM outperforms standard HMM results on

activity recognition.

Keywords: Travel Demand Modeling with Mobile Network Big Data, User Localization

Based on CDRs, Activities identification from CDRs.
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