Design of a Vision Enabled Wireless Sensor Node

Wijesinghege Yasitha Mahesh Wijesinghe

(188025T)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science (Major Component of Research)

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

March 2020

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The candidate, whose signature appears above, carried out research for the Msc dissertation under my supervision.

Signature:

Date:

Abstract

This thesis describes a novel system architecture and implementation of a wireless visual sensor node. The proposed design of the node can be used to extract traffic information based on the visual description of road. In this research, the real-time performances and the capability to perform at low power consumption meanwhile obtaining accurate results were considered as the essential factors since a large amount of data need to be processed in an embedded level vision system.

At first, a suitable vision algorithm is proposed to harvest the traffic condition on road. The functionality for each section of the algorithm has been performed by using carefully selected available vision techniques and image processing algorithms. The vehicle extraction from the current frame of view and the tracking process of the vehicle are identified as the most important functions in the algorithm. The vehicle extraction from the current frame is carried out by the ViBe algorithm with some modifications in order to acquire promising real time performances and the tracking process is carried out by a light weight but an accurate enough particle filtering technique.

Moreover, the complete system is implemented in the FPSoC hardware system as a hardware and software co-design by considering advantages that can be obtained from different aspects. The performances of the system have been evaluated from many aspects for different standard data available from other research works. The conclusions and suggestions for further development have been presented at the end of this thesis.

Index terms— FPSoC, HW/SW Co-Design, ITS, ViBe, FPGA, WSN, VSN

Acknowledgements

I extend my gratitude to my supervisors, Dr. Jayathu Samarawickrama and Prof. Dileeka Dias of Department of Electronic and Telecommunication Engineering, University of Moratuwa, for their invaluable guidance and the support throughout my research study. I would also like to thank Dr. Ranga Rodrigo, the chairperson of the review panel who shared his knowledge and expertise in many ways.

I appreciate the continuous encouragement and support provided by my workplace, Dialog Research Laboratory, University of Moratuwa.

I would also like to pay my utmost gratitude towards LK domain for providing with funding to present this research work in the ICIIS conference hosted by University of Peradeniya. I believe that their service to the research community in the country is extremely praiseworthy.

I also would extend my appreciation for all of my colleagues in the Department of Electronic and Telecommunication for all the fruitful discussions and moral support given during this study. Moreover, I would like to thank the academic and non-academic staff of Department of Electronic and Telecommunication Engineering, University of Moratuwa for providing their support in numerous ways.

Finally, I thank my university for the education it has provided me throughout these years which made me even stronger to conquer the goals of my life.

W.Y.M Wijesinghe

Contents

	Dec	elaration	i	
	Abs	stract	ii	
	Ack	knowledgements	iii	
Li	st of	Figures	vi	
Li	st of	Tables	viii	
1	INT	TRODUCTION	1	
	1.1	Background to the Research Topic	1	
	1.2	Aim, Objectives and Scope of the Thesis	6	
	1.3	Structure of the Thesis	7	
2	\mathbf{LIT}	TERATURE REVIEW	9	
	2.1	Summary	22	
3	SYSTEM ARCHITECTURE 2			
	3.1	Selection of Traffic Parameters	23	
	3.2	Proposed Vision Model for Traffic Estimation	26	
	3.3	Vehicle Extraction	28	
	3.4	The ViBe Algorithm	31	
		3.4.1 $$ Description of the Model and Pixel Classification Method .	31	
		3.4.2 Initialization of the ViBe Model	32	
		3.4.3 The Updating Process of the Background Model	33	
		3.4.4 Identified Drawbacks in the ViBe Algorithm and Modifica-		
		tion Proposed to the Original \ldots	34	
	3.5	Vehicle Tracking	39	

4	IMPLEMENTATION 4			49
	4.1	Hardw	vare-Software Partitioning and Optimization of	
		the Al	gorithm	54
5	RE	SULTS	AND DISCUSSION	62
	5.1	Accura	acy of the Vision Algorithm	62
	5.2	Power	Consumption of the Hardware Platform	68
6	CO	NCLU	SION AND FUTURE WORK	70
	6.1	Major	Contributions	70
	6.2	Future	e Works	71
		6.2.1	Increase the Frame Rate of the System	71
		6.2.2	Improve the accuracy of Vehicle Tracking	71
		6.2.3	Improve the Accuracy of Detecting the Stopped Vehicles in	
			the Scene \hdots	72
		6.2.4	Enhance the Capability to Count the Number of Vehicles	
			in the Scene \ldots	72
		6.2.5	Evaluate the Usability of this VSN in the Real world $\ . \ .$.	73
R	efere	nces		74
\mathbf{A}	ppen	dices		81
A	The	e ViBe	Algorithm	82
		A.0.1	The Update and Classification of Modified ViBe	82

List of Figures

1.1	The concept of using WVSN in ITS applications.	2
1.2	The basic hardware architecture of a VSN in ITS application. $\ .$.	5
2.1	The hardware architecture of VSN in $[1]$	11
2.2	Example TSI image in left side and block diagram of the algorithm	
	in right side	13
2.3	Hardware architecture for proposed vision algorithm in $[11]$	14
2.4	The Proposed algorithm to measure traffic condition	15
2.5	The steps of the vehicle classification	16
2.6	Block diagram of the night vision algorithm.	17
2.7	Comparison of performance of the night vision algorithm for dif-	
	ferent SBCs	18
2.8	Implementation of the parallel functions presented in [19]	20
2.9	HW/SW data flow and interrupt route	21
3.1	Flow Diagram of the Vision Algorithm.	27
3.2	Illustration of the foreground extraction process	28
3.3	Gaussian distribution.	30
3.4	Distribution of Mixture of Gaussian.	30
3.5	Representation of the sphere	32
3.6	The neighborhood pixels at location, "x"	33
3.7	The updating location of the model	34
3.8	The cuboid concept.	36
3.9	PCC values for different tolerance values	37
3.10	Resultant frame for each tolerance value	37
3.11	The cuboid in actual model and the update process	38
3.12	Comparison of modified ViBe with MoG and original ViBe	39
3.13	Accuracy of the MoG, Modified ViBe and the original ViBe in term	
	of PCC	39
3.14	Basic steps in a tracking algorithm.	40

3.15	Meanshift vector	40
3.16	Illustration of the displacement	42
3.17	The process of LBP	43
4.1	Overview of a vision system	49
4.2	The architecture of a modern FPSoC	52
4.3	Ultra 96 Development board	54
4.4	Resources of the Ultra 96 board $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	54
4.5	Time consumption profile for the execution of one frame	55
4.6	Types of AXI4 interfaces.	56
4.7	Block diagram of ViBe	57
4.8	Block diagram of the weight calculation using Bhattacharya coef-	
	ficient	57
4.9	Integration custom IP with Zynq	58
4.10	Complete flow chart of the algorithm with balanced processing load	
	between PL and PS side	59
5.1	(a) Early tracking initialization (b) Correct tracking initialization.	63
5.2	Background noise of the patch	63
5.3	Location deviation due to background pixels in the tracking template.	64
5.4	Deviation of the tracking box even though the vehicle is stopped.	65
5.5	Partially occluded situation.	65
5.6	Power consumption of the hardware platform	66
5.7	The effect of merged blobs	67
5.8	Static power consumption	68
5.9	Dynamic power consumption.	69

List of Tables

2.1	Specifications of the SBCs that have been used to compare the	
	performance of the algorithm	18
3.1	PCC and tolerance values	36
4.1	Comparison of hardware platforms	50
4.2	4.2 Specifications of the SBCs that have been used to compare the	
	performance of the algorithm	60
4.3	Performances and resource utilization for different frame sizes	60
4.4	Comparison with other implementation	61
5.1	Accuracy of the average velocity.	63
5.2	The accuracy of the waiting time	64
5.3	Accuracy of the LO	66
5.4	Accuracy of Traffic Density	67

List of Abbreviations

Abbreviation Description

WSN	Wireless Sensor Node
RoI	Region of Interest
WVSN	Wireless Visual Sensor Node
ITS	Intelligent Transportation Systems
VSN	Visual Sensor Node
FPU	Floating Point Unit
SIMD	Single Instructions Multiple Data
FPSoC	Field Programmable System on Chip
FoV	Field of View
FPGA	Field Programmable Gate Array
ASIC	Application Specific Integrated Circuit
SoC	System on Chip
TSI	Time-Spatial Images
VDL	Virtual Detection Line
LBP	Linear Binary Pattern
APSoC	All Programmable System on Chip
PS	Processing System
HW	Hardware
SW	Software
CPU	Central Processing Unit
SBC	Single Board Computer
MoG	Mixture of Gaussian
SRP	Sparse Random Projection
NCC	Normalized Cross Correlation
GIC	Global Interrupt Controller
PL	Programmable Logic
CNN	Convolutional Neural Network

LO	Lane Occupancy
ViBe	Visual Background extractor
FN	False Negative
FP	False Positive
PCC	Percentage of Correct Classifications
TP	True Positive
TN	True Negative
SAD	Sum of the Average Difference
GPU	Graphic Processing Unit
WT	Waiting Time
AV	Average Velocity
CLB	Combinational Logic Block