REFERENCES

[1] A. A. Dixit and N. V. Dharwadkar, "A Survey on Detection of Reasons Behind Infant Cry Using Speech Processing," in 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, 2018, pp. 190-194, doi:
[2] R. Sahak, W. Mansor, L. Y. Khuan, A. Zabidi, and A. I. M. Yassin, "Detection of asphyxia from infant cry using support vector machine and multilayer perceptron integrated with Orthogonal Least Square," in Proceedings of 2012 IEEE-EMBS 2012, pp. 906-909, doi: 10.1109/BHI.2012.6211734.
[3] G. Jr. Varallyay, Z. Benyo, A. Illenyi, Z. Farkas, and L. Kovacs, "Acoustic analysis of the infant cry: classical and new methods," in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 2004, vol. 3, pp. 313-316, doi: 10.1109/IEMBS.2004.1403155.
[4] S. Sharma and V. K. Mittal, "A qualitative assessment of different sound types of an infant cry," in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, 2017, pp. 532-537, doi: 10.1109/UPCON.2017.8251106.
[5] L. Liu, Y. Li, and K. Kuo, "Infant cry signal detection, pattern extraction and recognition," in 2018 International Conference on Information and Computer Technologies (ICICT), DeKalb, LL, 2018, pp. 159-163, doi: 10.1109/INFOCT.2018.8356861.
[6] M. J. Kim, Younggwan Kim, Seungki Hong, and H. Kim, "ROBUST detection of infant crying in adverse environments using weighted segmental two-dimensional linear frequency cepstral coefficients," in 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 2013, pp. 1-4, doi: 10.1109/ICMEW.2013.6618321.
[7] J. Saraswathy, M. Hariharan, S. Yaacob, and W. Khairunizam, "Automatic classification of infant cry: A review," in 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 2012, pp. 543-548, doi: 10.1109/ICoBE.2012.6179077.
[8] L. Abou-Abbas, L. Montazeri, C. Gargour, and C. Tadj, "On the use of EMD for automatic newborn cry segmentation," in 2015 International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 2015, pp. 262265, doi: 10.1109/ICABME.2015.7323302.
[9] Y. Lavner, R. Cohen, D. Ruinskiy, and H. IJzerman, "Baby Cry Detection in Domestic Environment using Deep Learning," p. 5, 2016.
[10] K. Srijiranon and N. Eiamkanitchat, "Application of neuro-fuzzy approaches to recognition and classification of infant cry," in TENCON 2014-2014 IEEE

Region 10 Conference, Bangkok, Thailand, 2014, pp. 1-6, doi: 10 CON.2014.7022296.
[11] P. R. Myakala, R. Nalumachu, S. Sharma, and V. K. Mittal, "A low cost intelligent smart system for real time infant monitoring and cry detection," in TENCON 2017 - 2017 IEEE Region 10 Conference, Penang, 2017, pp. 2795-2800, doi:
[12] M. P. Joshi and D. C. Mehetre, "IoT Based Smart Cradle System with an Android App for Baby Monitoring," in 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, 2017, pp. 1-4, doi:
10.1109/ICCUBEA.2017.8463676.
[13] I. Galanis, D. Olsen, and I. Anagnostopoulos, "A multi-agent based system for run-time distributed resource management," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050298.
[14] H. M. Kelash, M. Amoon, G. M. Ali, and H. M. Faheem, "A Social Agent Interface for Resource Management in Distributed Systems," in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-LAWTIC'06), Vienna, Austria, 2005, vol. 2, pp. 390-395, doi: 10.1109/CIMCA.2005.1631500.
[15] T. Nagata, Y. Ueda, and M. Utatani, "A multi-agent approach to smart grid energy management," in 2012 10th International Power \& Energy Conference (IPEC), Ho Chi Minh City, 2012, pp. 327-331, doi: 10.1109/ASSCC.2012.6523287.
[16] M. Karani, N. Giri, and S. Bodhe, "Resource Management for Cellular Network Using Socially Intelligent Multi Agent System," in 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, Kochi, Kerala, 2010, pp. 231-233, doi: 10.1109/ITC.2010.73.
[17] I. Burlachenko, "Management of energy efficient distributed computer systems with self-contained remote modules using multi-agent system," in 2015 IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 2015, pp. 512-514, doi: 10.1109/ELNANO.2015.7146940.
[18] A. Al-Abdullah et al., "Artificial Neural Network for Arabic Speech Recognition in Humanoid Robotic Systems," in 2019 3rd International Conference on Bioengineering for Smart Technologies (BioSMART), Paris, France, 2019, pp. 1-4, doi: 10.1109/BIOSMART.2019.8734261.
[19] N. Joshi, A. Kumar, P. Chakraborty, and R. Kala, "Speech controlled robotics using Artificial Neural Network," in 2015 Third International Conference on Image Information Processing (ICIIP), Waknaghat, India, 2015, pp. 526-530, doi:
10.1109/ICIIP.2015.7414829.
[20] M. H. Hammad, A. Mohammed, and M. E. Eldow, "Design an electronic system use the audio fingerprint to access virtual classroom using Artificial Neural Networks," in 2015 International Conference on Computer, Communications, and

Control Technology (I4CT), Kuching, Sarawak, Malaysia, 2015, pp. 192-195, doi: . Ballesteros, and D. Renza, "Speaker verification with [21] A. N. Vasquez, D. M. Ballester, and D. Renza, Speaker verification with
[22] K. Lu and X. Zhang, "Audio-Visual Emotion Recognition Using Neural Networks Learned with Hints," in 2013 Seventh International Conference on Image and Graphics, Qingdao, China, 2013, pp. 515-519, doi: 10.1109/ICIG.2013.109.
[23] A. N. Vasquez, D. M. Ballesteros, and D. Renza, "Speaker verification with fake intonation based on Neural Networks," in 2019 7th International Workshop on Biometrics and Forensics (IWBF), Cancun, Mexico, 2019, pp. 1-5, doi:
10.1109/IWBF.2019.8739173
[24] B. D. Barkana, N. John, and I. Saricicek, "Auditory Suspicious Event Databases: DASE and Bi-DASE" IEEE Access, vol. 6, pp. 33977-33985, 2018, doi:
10.1109/ACCESS.2018.2848269.
[25] S. Jiang, H. Frigui, and A. W. Calhoun, "Speaker Identification in Medical Simulation Data Using Fisher Vector Representation," in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 2015, pp. 197-201, doi: 10.1109/ICMLA.2015.187.
[26] D. Johnson and G. Tzanetakis, "Guitar model recognition from single instrument audio recordings," in 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 2015, pp. 370-375, doi: 10.1109/PACRIM.2015.7334864.
[27] Y. Li and G. Liu, "Sound classification based on spectrogram for surveillance applications," in 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 2016, pp. 293-297, doi: 10.1109/ICNIDC.2016.7974583.
[28] C. Megha and V. K. Reddy, "Robust Classification of Abnormal Audio using Background-Foreground Separation," in 2017 14th IEEE India Council International Conference (INDICON), Roorkee, 2017, pp. 1-6, doi: 10.1109/NNDICON.2017.8487922.
[29] S. Vhaduri, T. V. Kessel, B. Ko, D. Wood, S. Wang, and T. Brunschwiler, "Nocturnal Cough and Snore Detection in Noisy Environments Using Smartphone-Microphones," in 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi'an, China, 2019, pp. 1-7, doi: 10.1109/ICHI.2019.8904563.

