AN INTELLIGENT HARDWARE SYSTEM FOR REAL-TIME INFANT CRY DETECTION AND CLASSIFICATION

U.P. Pradeep Dushyantha Pathirana

13 |DON/ 62 /2020

DCM 04/57

Dissertation submitted in partial fulfillment of the requirement of the

degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

January 2020

- TH 4242

519.6 2020

TH 4242 + CD - RONI is not working

Declaration

I declare that this dissertation does not incorporate, without any acknowledgment, any material previously submitted for a degree or a diploma in any university and to the best of my knowledge and belief, it does not contain any material previously published or written by any other person or myself except where due reference is made in the text. I also hereby give consent for my dissertation if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be available to outside organizations.

Name of Student

Signature of Student

podeof.

U.P. Pradeep Dushyantha Pathirana

The above candidate has carried out research for the Master's dissertation under my supervision.

Supervisor

Dr. Sagara Sumathipala

Signature of Supervisor

Acknowledgment

I would like to extend my heartfelt gratitude to my project supervisor Dr. Sagara Sumathipala for guiding me through the research. He extended his fullest corporation whenever I sought for advice and guidance to make this project a success. On the same note, I would also like to thank him for his guidance and support as the course coordinator during the entire course period. Similarly, I would like to extend my sincere gratitude to the entire academic staff of the Department of Computational Mathematics for their guidance throughout the course period. Further, I must thank the non-academic staff for their continuous support during the entire course in providing the learning environment to the best of their ability.

I would like to thank the entire management and research team of Synergen Technology Labs (Pvt) Ltd, for their permission to extend this project as my research project and providing me the required resources for its successful completion.

Abstract

Cry, the universal communication language of the infants encodes vital information about the physiological and psychological health of the infant. Experienced caregivers can understand the cause of cry based on the pitch, tone, intensity, and duration. Similarly, pediatricians can diagnose hearing impairments, brain damages, and asphyxia by analyzing the cry signals, providing a non-invasive mechanism for early diagnosis in the first few months. Hence, automated cry classification has gained great importance in the fields of medicine and baby-care. With the emergence of the concept of the Internet of Things coupled with Artificial Intelligence, baby monitors have recently gained huge popularity due to features like sleep analysis, cry detection, and motion analysis through multiple sensors. Since cry classification involves audio processing in real-time, most of the solutions have either complex and costly designs or distributed computing, which leads to privacy concerns of the users. This research presents a low-cost intelligent hardware system for real-time infant cry detection and classification. The proposed solution presents the selection of the hardware to suit the requirements of audio processing while adhering to financial constraints and the firmware design, which includes voice activity detection, cry detection, and classification. This proposes the use of the multi-agent system as a resource management concept while proving that AI concepts can also be extended to resource-limited hardware platforms as the novelty. Firmware and algorithm are designed to maintain the accuracy figures above 90% while processing the audio signal at a higher rate than its production to maintain stability. A voice activity detector was designed to filter human voice through temporal features while cry detection and classification were respectively based on Artificial Neural Network and K-Nearest Neighbor algorithm trained with a spectral-domain feature vector called Mel Frequency Cepstral Coefficients (MFCC). Evaluations under diverse conditions showed accuracy figures of 96.76% and 77.45% in cry detection and classification, respectively.

Keywords: Cry Detection, Cry Classification, Voice Activity Detection

1	INT	TRODUCTION	1
	1.1	Prolegomena	. 1
	1.2	Research Problem	2
	1.3	Aims and Objectives	.2
	1.4	Background and Motivation	. 3
	1.5	Problem in Brief	. 4
	1.6	The Novelty in The Proposed Solution	6
	1.7	Structure of the Thesis	. 6
	1.8	Summary	. 7
2	CU	RRENT TRENDS AND ISSUES IN INFANT CRY DETECTION	8
	2.1	Introduction	. 8
	2.2	Baby Monitors	8
	2.3	Cry Detection and Classification in Baby Monitors	9
	2.4	Recent Works in Cry Detection and Classification	. 9
	2.5	Baby Monitors with Cry Detection	14
	2.6	Summary	15
3	INC	CORPORATED TECHNOLOGIES	16
	3.1	Introduction	16
	3.2	Multi-Agent Technology	16
	3.3	Artificial Neural Network	19
	3.4	K-Nearest Neighbour	21
	3.5	Summary	22
4	HY	POTHESIS	23
	4.1	Introduction	23
	4.2	Hypothesis	23
	4.3	Input	23
	4.4	Output	24

Contents

	4.5	Process	24
	4.6	Users	24
	4.7	Summary	25
5	HA	RDWARE AND FIRMWARE DESIGN2	:6
	5.1	Introduction	26
	5.2	Hardware Design	26
	5.3	Firmware Design	28
	5.4	Audio capturing and Noise filtering	30
	5.5	Temporal Feature Extraction and Voice Activity Detection	31
	5.6	Spectral Feature Extraction and Cry detection	31
	5.7	Cry Classifier	32
	5.8	Summary	32
6	IM	PLEMENTATION OF CRY CLASSIFIER	34
	6.1	Introduction	34
	6.2	Hardware Selection	34
	6.3	Firmware Design	36
	6.4	Summary	53
7	EV.	ALUATION OF THE SYSTEM6	55
	7.1	Introduction	55
	7.2	Test Scenarios	55
	7.3	Test Setup	55
	7.4	Definitions of the Evaluation Parameters	56
	7.5	Performance of the Cry Detector	58
	7.6	Performance of the Cry Classifier	59
	7.7	Summary	73
8	CO	NCLUSION AND FUTURE WORK	74
	8.1	Introduction	74
	8.2	Conclusion	74
	8.3	Limitation and Related Future Works	74

REFERENCES	
APPENDIX A: Source Codes	
The Preprocessor Agent	
Selection of The Best KNN Classifier for Cry Detection	
Selection of The Best ANN Classifier for Cry Detection	
Cry Classifier	83

List of Figures

Figure 4.1 Flow diagram of the process	24
Figure 5.1 Hardware architecture	27
Figure 5.2 Firmware design	30
Figure 6.1 OSD3358 microprocessor	35
Figure 6.2 Hardware prototype	35
Figure 6.3 Pulse density modulated sinusoid	38
Figure 6.4 Frequency response of the compensation filter	40
Figure 6.5 Raw cry signal vs. filtered cry signal	40
Figure 6.6 Song filtered by compensation filter	41
Figure 6.7 Comparison of Raw signal vs. Down-sampled signal	42
Figure 6.8 Bandwidth of raw signal	42
Figure 6.9 Bandwidth of the down-sampled signal	43
Figure 6.10 Short Time Energy of cry signal	45
Figure 6.11 Short-Time Zero-Crossings of a cry signal	46
Figure 6.12 Short-Time Zero-Crossing of a noise signal	47
Figure 6.13 Block diagram of the Voice Activity detector	48
Figure 6.14 Input and output of the Voice Activity Detector	49
Figure 6.15 MFCC vector of the cry signal	49
Figure 6.16 MFCC vector of the noise signal	50

List of Tables

Table 6.1 Accuracy of KNN cry detector with uniform weights	53
Table 6.2 Accuracy of KNN cry detector weighted with distance	53
Table 6.3 Accuracy of ANN cry detector with sigmoid and Tanh functions	55
Table 6.4 Accuracy of ANN cry detector with ReLU and Identity functions	55
Table 6.5 Accuracy of KNN cry classifier with uniform weights	58
Table 6.6 Accuracy of KNN cry classifier weighted by distance	59
Table 6.7 Accuracy of ANN cry classifier with sigmoid and Tanh functions	60
Table 6.8 Accuracy of ANN cry classifier with ReLu and Identity functions	60
Table 7.1 Output of the cry detector under various test scenarios	68
Table 7.2 Accuracy of the cry detector under various test scenarios	68
Table 7.3 Confusion matrix for cry frame classification	70
Table 7.4 Performance evaluation of cry frame classification	70
Table 7.5 Confusion matrix for cry-event classification	71
Table 7.6 Performance evaluation of cry-event classification	71

List of Abbreviations

ANFIS	Adaptive Neuro-Fuzzy Inference System
AI	Artificial Intelligence
ANN	Artificial Neural Network
BFCC	Bark Frequency Cepstral Coefficients
CIC	Cascaded Integrator Comb
CNN	Convolution Neural Network
CDHMM	Continuous Density Hidden Markov Mode
FFT	Fast Fourier Transform
FN	False Negative
FP	False Positive
HMM	Hidden Markov Model
IoT	Internet of Things
MLP	Multi-Layer Perceptron
KNN	K-Nearest Neighbor
LPC	Linear Predictive Coding
LPCC	Linear Predictive Cepstral Coefficients
MFCC	Mel Frequency Cepstral Coefficients
PDM	Pulse Density Modulation
PHMM	Probabilistic Hidden Markov Model
PNN	Probabilistic Neural Network
PPG	Photoplethysmogram
PRU	Programmable Realtime Unit
RBNN	Radial Basis Neural Network
RDS	Respiratory Distress Syndrome
RNN	Recurrent Neural Network
SCP	Secure Copy Protocol
SIDS	Sudden Infant Death Syndrome
SoC	System on Chip
SSH	Secure Shell
STFT	Short-Time Fourier Transform
SVM	Support Vector Machine

TDNN	Time Delay Neural Network
TN	True Negative
TP	True Positive
WT	Wavelet Transform