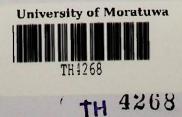



# EXPERIMENTAL STUDY ON BEHAVIOR OF MOV BASED SURGE ARRESTORS UNDER DISTORTED SUPPLY VOLTAGES

I. P. S. Ilangakoon

#### 159307P

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA


Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

## Department of Electrical Engineering

University of Moratuwa Sri Lanka

621.3 2020

March 2020



TH 4268 + CD ROM. is not working

#### DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the Author. I. P. S. Ilangakoon

20/03/2020 Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

i

Signature of the supervisor: Dr. W. D. A. S. Rodrigo Senior Lecturer Grade I, Department of Electrical Engineering University of Moratuwa,

0/03/2020 Date:

#### ABSTRACT

Surges due to lightning and various switching operations are a common phenomenon in electrical power systems. Due to surges, there can be transient overvoltages in the lines as high as many times the normal supply voltage. Equipment connected to the line cannot withstand these high voltages since the internal circuitry has not been designed to withstand surges. Metal oxide Varistor (MOV) is one of the best clamping devices used for electronic equipment from surges. Metal Oxide Surge Arrestor (MOSA) is made by stacking several numbers of MOV blocks to match system voltages for power system applications. Throughout life, MOVs are exposed to system voltage stress endlessly. Thus, the stress these devices experience is comparatively higher especially in the case of MOSAs.

Supply voltage distortion due to harmonics is another common phenomenon found in power systems due to modern non-linear loads connected to power systems. This study is conducted to access the effect of supply voltage harmonics on the life expectancy of MOVs. Electrical and thermal experiments performed to validate relevant models for MOVs. Using simulations, and a life expectancy model, the effect of various cases of voltage distortion studied to find the effect on life expectancy.

Based on the above results, recommendations have been made on how to select maximum continuous voltage of surge arrestors to minimize the effect of supply voltage harmonics on life expectancy.

i

#### **ACKNOWLEDGEMENTS**

First and foremost, I would like to express my sincere gratitude to my supervisor Dr. W. D. A. S. Rodrigo for his continuous guidance, constructive feedback and support extended throughout this research. Despite his busy schedule, he always remained accessible and his guidance and advice, expertise and insights were by all means truly invaluable.

The special attention paid by Dr. J.V.U.P Jayathunga on this research opened my eyes to different approaches to conduct the study. Comments made by her and the advice given made the study more meaningful.

It's with great pleasure that I thank Mrs. Sujani Madurapperuma, Electrical Engineer Meter Testing Laboratory DD2-Ceylon Electricity Board for her kind assistance in the successful completion of laboratory testing.

I. P. S. Ilangakoon March 2020

## TABLE OF CONTENT

| Declaration of t | the candidate & Supervisori          |
|------------------|--------------------------------------|
| Abstract         |                                      |
| Acknowledgme     | entsiii                              |
| Table of conten  | iv                                   |
| List of Figures. | vii                                  |
| List of Tables   | ix                                   |
|                  | ationsxi                             |
| 1. Introductio   | n1                                   |
| 1.1 Introdu      | uction to MOVs                       |
| 1.1.1 Pl         | hysical Characteristics              |
| 1.1.2 TI         | heory of Operation                   |
| 1.1.3 EI         | lectrical Properties                 |
| 1.1.4 D          | efinitions                           |
| 1.2 Resear       | rch Motivation                       |
| 1.3 Object       | tives                                |
| 1.4 Metho        | dology                               |
| 1.5 Outlin       | e of the Thesis                      |
| 2. LITERATU      | URE REVIEW 10                        |
| 2.1 Introdu      | uction 10                            |
| 2.2 Contin       | nues Current Condition through MOV10 |
| 2.3 Conclu       | usions 15                            |
| 3. Experiment    | tal Work 17                          |
| 3.1 Introdu      | uction 17                            |
| 3.2 Selecti      | ion of Equipment 17                  |
| 3.2.1 A          | C Voltage Source 17                  |
| 3.2.2 D          | C Voltage Source                     |

| 3.2    | .3 Measurement Equipment                                           | . 18 |
|--------|--------------------------------------------------------------------|------|
| 3.3    | MOV Samples                                                        | . 20 |
| 3.4    | Leakage Current and Power Dissipation Measurement When Supply Volu | tage |
| is Dis | torted                                                             | . 20 |
| 3.5    | Power Dissipation vs Temperature Rise Measurement                  | . 22 |
| 4. Sin | nulation Studies                                                   | . 24 |
| 4.1    | Introduction                                                       | . 24 |
| 4.2    | MOV Modelling in Electrical Domain                                 | . 24 |
| 4.2    | .1 MOV Model in MATLAB Simulink                                    | . 24 |
| 4.2    | .2 Model Parameters [19]                                           | . 25 |
| 4.2    | 3 Modified MOV Model                                               | . 26 |
| 4.2    | .4 Simulation and Results                                          | . 27 |
| 4.2    | .5 Discussion                                                      | 32   |
| 4.3    | MOV Modelling in Thermal Domain (Steady State)                     | 34   |
| 4.3    | ANSYS Simulation                                                   | 34   |
| 4.3    | 2 Model Validation                                                 | 36   |
| 4.3    | 3 Results and Discussion                                           | 37   |
| 5. Est | imatIOn of effect of supply voltage distortion on lifeTime of MOV  | 39   |
| 5.1    | Introduction                                                       | 39   |
| 5.2    | Lifetime Estimation Model                                          | 39   |
| 5.3    | Results                                                            | 40   |
| 5.4    | Discussion                                                         | 41   |
| 6. Dis | cussion                                                            | 46   |
| 6.1    | Introduction                                                       | 46   |
| 6.2    | Results in Contrast with Literature                                | 46   |
| 6.3    | Limitations and Applicability for Utility-Scale MV Applications    | 47   |



| 7. | Con | clusions and Recommendations                      | 48 |
|----|-----|---------------------------------------------------|----|
| 7  | .1  | Recommendations                                   | 48 |
| 7  | .2  | Study Limitations and Suggestions for Future Work | 50 |
| 8. | Ref | erences                                           | 51 |

| Appendix I: Results of the Electrical Experiments Performed | 53   |
|-------------------------------------------------------------|------|
| Appendix II: Results of the Simulations Performed           | . 54 |
| Appendix III: Measurements of MOV Voltage at 1mA DC Current | .57  |
| Appendix IV: Yokogawa WT310 Measurement Error Analysis      | .58  |

## List of Figures

| Figure 1-1: Schematic representation of the microstructure of a MOV, grains of         |
|----------------------------------------------------------------------------------------|
| conducting ZnO (average-sized) are separated by intergranular boundaries [1] 4         |
| Figure 1-2: Optical photomicrograph of a polished and etched section of a varistor [1] |
|                                                                                        |
| Figure 1-3: MOV V-I Characteristics [1]                                                |
| Figure 2-1: $V - I$ Characteristics of the ZnO block before and after degradation 11   |
| Figure 3-1: Accuracy data. Yokogawa WT310 Power Meter                                  |
| Figure 3-2: Measured Value (mA) vs Error (µA)19                                        |
| Figure 3-3: Circuit Diagram of MOV Testing Experiment                                  |
| Figure 3-4: Experimental Setup                                                         |
| Figure 3-5: Leakage Current Waveform for Distorted Supply Voltage of 230Vrms           |
| (Fundamental + 5 <sup>th</sup> Harmonic 20%)                                           |
| Figure 3-6: Temperature vs Power Dissipation                                           |
| Figure 4-1: MOV Model in MATLAB Simulink                                               |
| Figure 4-2: MOV Equivalent Model                                                       |
| Figure 4-3: MOV Equivalent Circuit at Low Currents                                     |
| Figure 4-4: MATLAB Simulation Model of MOV                                             |
| Figure 4-5: Simulation Block Diagram in MATLAB Simulink                                |
| Figure 4-6: Applied Voltage (Ub), Resistive Current Component through MOV (Ib:         |
| MOV nonlinear Resistance), Capacitive Current Component through MOV (Ib: MOV           |
| Capacitance), and Total Current through MOV (Ib: Series RLC Branch)                    |
| Figure 4-7: Applied Voltage (Ub), Resistive Current Component through MOV (Ib:         |
| MOV nonlinear Resistance), Capacitive Current Component through MOV (Ib: MOV           |
| Capacitance), and Total Current through MOV (Ib: Series RLC Branch)                    |
| Figure 4-8: Leakage currents for different levels of distortion (I: Total leakage, lr: |
| Resistive component and Ic: Capacitive Component)                                      |
| Figure 4-9: Cross Section of the Modelled MOV                                          |
| Figure 4-10: Temperature Distribution of MOV Model in ANSYS                            |
| Figure 4-11: Simulated and Measured Surface Temperatures vs Heat Dissipation per       |
| Unit Volume                                                                            |

| Figure 5-1: Per unit life expectancy with a peak value of Voltage w       | vaveform for   |
|---------------------------------------------------------------------------|----------------|
| different levels of distortion                                            |                |
| Figure 5-2: Behavior of Peak Value of the waveform for different level of | of distortions |
| for the same RMS value                                                    |                |
| Figure 5-3: Results for 8% THD in Voltage                                 |                |

## List of Tables

| Table 1-1: IEEE-519-2014 Voltage Distortion Limits                             | 2         |
|--------------------------------------------------------------------------------|-----------|
| Table 3-1: Ratings of the Selected MOV Samples                                 | 20        |
| Table 3-2: Heat Dissipation and Temperature Rise Measurements of MOV           | Samples   |
|                                                                                |           |
| Table 4-1: MOV Modelling Parameters                                            | 25        |
| Table 4-2: Parameters Used During Simulation                                   |           |
| Table 4-3: Harmonic Percentage Values and Phase Angles                         |           |
| Table 4-4: Simulation Measurements When Pure Sinusoidal Waveform Ap            | oplied to |
| MOV                                                                            |           |
| Table 4-5: Simulation Measurements When 5th Harmonic 20% Distorted W           | 'aveform  |
| Applied to MOV                                                                 |           |
| Table 4-6: Simulated and measured temperature data                             |           |
| Table 5-1: Results of Lifetime Estimation for Different Levels of Distortion . | 40        |
| Table 5-2: IEEE-519-2014 Voltage Distortion Limits                             | 43        |
| Table 5-3: Composition of Harmonics for 8% THD                                 |           |
| Table 7-1: Recommended MCOV Values                                             |           |

## List of Abbreviations

| Abbreviation | Description                                      |
|--------------|--------------------------------------------------|
| CEB          | Ceylon Electricity Board                         |
| MOV          | Metal Oxide Varistor                             |
| IEC          | International Electrotechnical Commission        |
| R&D          | Research and Development                         |
| SPD          | Surge Protection Device                          |
| RMS          | Root Mean Square                                 |
| V            | Voltage                                          |
| Ι            | Current                                          |
| GDT          | Gas Discharge Tubes                              |
| TOV          | Temporary Overvoltage                            |
| TVS          | Transient Voltage Suppression                    |
| PCC          | Point of Common Coupling                         |
| MOSA         | Metal Oxide Surge Arrestor                       |
| LV           | Low Voltage                                      |
| HV           | High Voltage                                     |
| MV           | Medium Voltage                                   |
| MCOV         | Maximum Continuous Operating Voltage             |
| IEEEE        | Institute of Electrical and Electronic Engineers |
| AC           | Alternating Current                              |
| DC           | Direct Current                                   |
| TSC          | Thermally Stimulated Current                     |
| THC          | Third Harmonic Component                         |
| MSCM         | Modified Shifted Current Method                  |
| RMS          | Root Mean Square                                 |
|              |                                                  |