SECTOR WISE COMPARATIVE STUDY ON STOCK PRICE INDICES USING TIME SERIES ANALYSIS: CASE STUDY OF COLOMBO STOCK EXCHANGE

Jayasinghe Arachchilage Gayani Prasangika Jayasinghe

(168855T)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Financial Mathematics

Department of Mathematics

Faculty of Engineering

University of Moratuwa Sri Lanka

July 2020

Declaration, copyright statement and the statement of the supervisor

The following declaration should be made by the candidate following the signature and the date. A candidate, after a discussion with the supervisor can request an embargo for a particular thesis for a given work for a given time or indefinitely. Such an embargo may override the statement made in the thesis itself.'

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The supervisor should certify the thesis with the following declaration.

The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor:

Date:

ACKNOWLEDGEMENT

It is a pleasure to offer my deep sense of gratitude to those who made this Thesis successful.

It is my duty to place on record my earnest gratitude to my supervisor, Mr. T.M.J.A. Cooray, Former Course Coordinator, Master of Science in Financial Mathematics / Retired Senior Lecturer, Department of Mathematics, Faculty of Engineering, University of Moratuwa, whose compassionate guidance, kind support and valuable encouragement immensely directed me in this endeavor. Without his continuous supervision and perseverance assistance, this Thesis would have remained a dream.

I owe my sincere gratefulness to Mr. A.R. Dissanayake, Course coordinator, Master of Science in Financial Mathematics/Senior Lecturer, Department of Mathematics, Faculty of Engineering, University of Moratuwa who provide me the tremendous theoretical and practical knowledge specially in Financial Mathematics, during the degree programme and encourage me during the entire MSc programme.

I am indebted to the panel of lecturers in MSc programme, University of Moratuwa, who provide me with enormous theoretical and practical knowledge during the entire degree programme. Furthermore, I extend my sincere gratitude to Head Department of Mathematics, Faculty of Engineering, University of Moratuwa and Dean, Faculty of Engineering, University of Moratuwa.

I express my thankfulness to Dr. D.A.M. Perera, Head / Senior Lecturer, Department of Accountancy, Faculty of Business Studies and Finance, Wayamba University of Sri Lanka for his valuable guidance during this effort.

I further extend my thankfulness to panel of lecturers, Department of Accountancy Faculty of Business Studies & Finance, Wayamba University of Sri Lanka, who encourage me to accelerate my research studies. Finally, I would like to thank all, who support me in any single word for my successful.

Abstract

The stock markets of the country play a vital role in its economy. Stock market indices are vital fragments of information for investors. It is very important to develop models that reflect the pattern of the stock price movements for different sectors since it becomes very significant to investors and policy makers. Therefore, the aim of this research study was to develop models to forecast different sector indices in Colombo Stock Exchange and to compare sector wise models. The investigation was performed using secondary data for sample of ten listed sectors in Colombo Stock Exchange (CSE) for the thirty-four years' time period from 2nd January 1985 to 31st December 2018. Data were collected by using data library maintain by Colombo Stock Exchange. In analyzing secondary data financial time series data analysis techniques were used. ARCH family models were applied including Autoregressive conditional heteroscedasticity model, Generalized Autoregressive conditional heteroscedasticity model, Threshold Autoregressive conditional heteroscedasticity model, Exponential generalized autoregressive conditional heteroscedastic model, Integrated Generalized Autoregressive conditional heteroscedasticity model and Power Autoregressive conditional heteroscedasticity model in this research study since the sector indices are financial time series. Findings revealed that appropriate model to forecast the sector indices of Oil Palms sector, Services sector and Stores & Supplies sector as PARCH (2.1) model, Beverage, Food & Tobacco sector as PARCH (1.1) model, Chemicals & Pharmaceuticals sector as PARCH (2,2) model, Banking Finance & Insurance sector and Investment Trusts sector as IGARCH (2.2) model, Footwear & Textiles sector as EGARCH (1,1) model, Manufacturing sector as EGARCH (1,3) model and Hotels & Travels sector as TARCH (1,1) model. The findings of this research study are useful to the policy makers and the investors for their decision making.

Keywords: Stock price indices, time series analysis, Colombo stock exchange

TABLE OF CONTENTS

eclaration of the candidate & Supervisor i		
Acknowledgements	ii	
Abstract	iii	
Table of content	iv-viii	
List of Figures	ix-xi	
List of Tables	xii-xviii	
List of abbreviations x		
1. Introduction	1-6	
1.1. Introduction to the Chapter	1	
1.2. Background to the Study	1-3	
1.2.1. All Share Price Index (ASPI)	2	
1.2.2. Index formula	2	
1.2.3. Index maintenance	3	
1.2.4. Sector wise indices	3	
1.2.5. Forecasting	3	
1.3. Problem Statement	4	
1.4. Research Objectives	4	
1.5. Research Questions	4	
1.6. Research Significance	5	
1.7. Research Scope and Coverage	6	
1.8. Content of Thesis	6	
2. Literature Review	7-11	
2.1. Introduction to the Chapter	7	
2.2. Empirical Findings	7-11	
2.3. Chapter Summary	11	
3. Research Methodology	12-17	
3.1. Introduction to the Chapter	12	
3.2. Population & Sample	12	
3.3. Data Collection	12	
3.4. Data Analysis	12	

	3.5.	Unit R	oot Test	13
	3.6.	Autoco	orrelation	13-14
	3.7.	ARCH	Model and GARCH Model	14-15
		3.7.1.	ARCH model	14
		3.7.2.	GARCH model	15
		3.7.3.	ARCH effect	
	3.8.	Extens	ion of GARCH Models	15-17
		3.8.1.	EGARCH model	15
		3.8.2.	TARCH / GJR GARCH model	16
		3.8.3.	IGARCH model	16
		3.8.4.	PARCH model	17
	3.9.	Model	Selection	17
	3.10	Residu	al Analysis	17
	3.11	. Chapte	er Summary	17
4.	Data	Present	tation and Analysis	18-118
	4.1.	Introdu	action to the Chapter	18
	4.2.	Bankin	g Finance & Insurance Sector	18-27
		4.2.1.	Preliminary analysis	18
		4.2.2.	Unit root test: Augmented dickey-fuller (ADF) test	18-20
		4.2.3.	Model identification and coefficient estimation	20-24
		4.2.4.	Model comparison by Akaike information criterion	24
			(AIC) Schwarz criterion (SC) values	
		4.2.5.	Residual analysis	25-26
		4.2.6.	Forecasting	27
	4.3.	Bevera	ge, Food & Tobacco sector	28-37
		4.3.1.	Preliminary Analysis	28
		4.3.2.	Unit root test: Augmented dickey-fuller (ADF) test	28-30
		4.3.3.	Model identification and coefficient estimation	30-34
		4.3.4.	Model comparison by Akaike information criterion	34
			(AIC) Schwarz criterion (SC) values	
		4.3.5.	Residual analysis	35-36

	4.3.6.	Forecasting	37
4.4.	Chemic	als & Pharmaceuticals sector	38-47
	4.4.1.	Preliminary Analysis	38
	4.4.2.	Unit root test: Augmented dickey-fuller (ADF) test	38-40
	4.4.3.	Model identification and coefficient estimation	40-44
	4.4.4.	Model comparison by Akaike information criterion	44
		(AIC) Schwarz criterion (SC) values	
	4.4.5.	Residual analysis	45-46
	4.4.6.	Forecasting	47
4.5.	Footwea	ar & Textile sector	48-57
	4.5.1.	Preliminary Analysis	48
	4.5.2.	Unit root test: Augmented dickey-fuller (ADF) test	48-50
	4.5.3.	Model identification and coefficient estimation	50-54
	4.5.4.	Model comparison by Akaike information criterion	54
	(AIC)	Schwarz criterion (SC) values	
	4.5.5.	Residual analysis	55-56
	4.5.6.Fo	precasting	57
4.6.	Hotels &	& Travel sector	58-67
	4.6.1.	Preliminary Analysis	58
	4.6.2.	Unit root test: Augmented dickey-fuller (ADF) test	58-60
	4.6.3.	Model identification and coefficient estimation	60-64
	4.6.4.	Model comparison by Akaike information criterion	64
		(AIC) Schwarz criterion (SC) values	
	4.6.5.	Residual analysis	65-66
	4.6.6.	Forecasting	67
4.7.	Investm	ent Trusts sector	68-77
	4.7.1.	Preliminary Analysis	68
	4.7.2.	Unit root test: Augmented dickey-fuller (ADF) test	68-70
	4.7.3.	Model identification and coefficient estimation	70-74
	4.7.4.	Model comparison by Akaike information criterion	74
		(AIC) Schwarz criterion (SC) values	

	4.7.5.	Residual analysis	75-76
	4.7.6.Fo	precasting	77
4.8.	Manufa	cturing sector	78-87
	4.8.1.	Preliminary Analysis	78
	4.8.2.	Unit root test: Augmented dickey-fuller (ADF) test	78-80
	4.8.3.	Model identification and coefficient estimation	80-84
	4.8.4.	Model comparison by Akaike information criterion	84
		(AIC) Schwarz criterion (SC) values	
	4.8.5.	Residual analysis	85-86
	4.8.6.Fo	precasting	87
4.9.	Oil Paln	ns sector	88-97
	4.9.1.	Preliminary Analysis	88
	4.9.2.	Unit root test: Augmented dickey-fuller (ADF) test	88-90
	4.9.3.	Model identification and coefficient estimation	90-94
	4.9.4.	Model comparison by Akaike information criterion	94
		(AIC) Schwarz criterion (SC) values	
	4.9.5.	Residual analysis	95-96
	4.9.6.	Forecasting	97
4.10	.Service	sector	98-107
	4.10.1.	Preliminary Analysis	98
	4.10.2.	Unit root test: Augmented dickey-fuller (ADF) test	98-100
	4.10.3.	Model identification and coefficient estimation	100-104
	4.10.4.	Model comparison by Akaike information criterion	104
		(AIC) Schwarz criterion (SC) values	
	4.10.5.	Residual analysis	105-106
	4.10.6.	Forecasting	107
4.11	.Stores &	z Supplies sector.	108-117
	4.11.1.	Preliminary Analysis	108
	4.11.2.	Unit root test: Augmented dickey-fuller (ADF) test	108-110
	4.11.3.	Model identification and coefficient estimation	110-114

4.11.4. Model comparison by Akaike information criterion	114
(AIC) Schwarz criterion (SC) values	
4.11.5. Residual analysis	115-116
4.11.6. Forecasting	117
4.12. Sector Wise Comparison	118
4.13. Chapter Summary	118
5. Conclusion and Recommendations	119-124
5.1. Introduction to the Chapter	119
5.2. Conclusion	119-123
5.3. Recommendations and Limitations	124
References	125-126

LIST OF FIGURES

Figure 4.1	Time series plot for daily index in Banking Finance &	18
	Insurance Sector from 02 nd Jan. 1985 to 29 th Mar. 2019.	
	The X axis denotes the year and Y axis denotes the Index.	
Figure 4.2	The Correlogram of first difference series of Log index of	20
	Banking Finance & Insurance Sector	
Figure 4.3	The Correlogram of IGARCH (2,2) model of Banking	25
	Finance & Insurance Sector	
Figure 4.4	Output of forecasting the Banking, Finance and Insurance	27
	sector index for ninety days in 2019	
Figure 4.5	Time series plot for daily index in Beverage, Food &	28
	Tobacco Sector from 02 nd Jan. 1985 to 29 th Mar. 2019. The	
	X axis denotes the year and Y axis denotes the Index.	
Figure 4.6	The Correlogram of first difference series of Log index of	30
	Beverage, Food & Tobacco Sector	
Figure 4.7	The Correlogram of PARCH (1,1) model of Beverage, Food	35
	& Tobacco Sector	
Figure 4.8	Output of forecasting the Beverage, Food & Tobacco sector	37
	index for ninety days in 2019	
Figure 4.9:	Time series plot for daily index in Chemicals &	38
	Pharmaceuticals Sector from 02 nd Jan. 1985 to 29 th Mar.	
	2019. The X axis denotes the year and Y axis denotes the	
	Index.	
Figure 4.10	The Correlogram of first difference series of Log index of	40
	Chemicals & Pharmaceuticals Sector	
Figure 4.11	The Correlogram of PARCH (2,2) model of Chemicals &	45
	Pharmaceuticals Sector	
Figure 4.12	Output of forecasting the Chemicals & Pharmaceuticals	47
	sector index for ninety days in 2019	
Figure 4.13	Time series plot for daily index in Footwear & Textile	48

sector from 02nd Jan. 1985 to 29th Mar. 2019. The X axis denotes the year and Y axis denotes the Index.

- Figure 4.14 The Correlogram of first difference series of Log index of 50 Footwear & Textile sector
- Figure 4.15 The Correlogram of EGARCH (1,1) model of Footwear & 55 Textile sector
- Figure 4.16 Output of forecasting the Footwear & Textile sector index 57 for ninety days in 2019
- Figure 4.17 Time series plot for daily index in Hotels & Travel Sector 58 from 02nd Jan. 1985 to 29th Mar. 2019. The X axis denotes the year and Y axis denotes the Index.
- Figure 4.18 The Correlogram of first difference series of Log index of 60 Hotels & Travel Sector
- Figure 4.19 The Correlogram of TARCH (1,1) model of Hotels & Travel 65 Sector
- Figure 4.20 Output of forecasting the Hotels & Travel sector index for 67 ninety days in 2019
- Figure 4.21 Time series plot for daily index in Investment Trusts Sector 68 from 02nd Jan. 1985 to 29th Mar. 2019. The X axis denotes the year and Y axis denotes the Index.
- Figure 4.22 The Correlogram of first difference series of Log index of 70 Investment Trusts Sector
- Figure 4.23 The Correlogram of IGARCH (2,2) model of Investment 75 Trusts Sector
- Figure 4.24 Output of forecasting the Investment Trusts sector index for 77 ninety days in 2019
- Figure 4.25 Time series plot for daily index in Manufacturing Sector 78 from 02nd Jan. 1985 to 29th Mar. 2019. The X axis denotes the year and Y axis denotes the Index.
- Figure 4.26 The Correlogram of first difference series of Log index of 80 Manufacturing Sector

Figure 4.27	The Correlogram of EGARCH (1,3) model of	85
	Manufacturing Sector	
Figure 4.28	Output of forecasting the Manufacturing sector index for	87
	ninety days in 2019	
Figure 4.29	Time series plot for daily index in Oil Palms sector from	88
	02 nd Jan. 1985 to 29 th Mar. 2019. The X axis denotes the	
	year and Y axis denotes the Index.	
Figure 4.30	The Correlogram of first difference series of Log index of	90
	Oil Palms sector	
Figure 4.31	The Correlogram of PARCH (2,1) model of Oil Palms	95
	sector	
Figure 4.32	Output of forecasting the Oil Palms sector index for ninety	97
	days in 2019	
Figure 4.33	Time series plot for daily index in Service sector from 02 nd	98
	Jan. 1985 to 29th Mar. 2019. The X axis denotes the year	
	and Y axis denotes the Index.	
Figure 4.34	The Correlogram of first difference series of Log index of	100
	Service sector	
Figure 4.35	The Correlogram of PARCH (2,1) model of Service sector	105
Figure 4.36	Output of forecasting the Service sector index for ninety	107
	days in 2019	
Figure 4.37	Time series plot for daily index in Stores & Supplies Sector	108
	from 02 nd Jan. 1985 to 29 th Mar. 2019. The X axis denotes	
	the year and Y axis denotes the Index.	
Figure 4.38	The Correlogram of first difference series of Log index of	110
	Stores & Supplies Sector	
Figure 4.39	The Correlogram of PARCH (2,1) model of Stores &	115
	Supplies Sector	
Figure 4.40	Output of forecasting the Stores & Supplies sector index for	117
	ninety days in 2019	

LIST OF TABLES

		Page
Table 4.1	ADF test for raw data series of Banking Finance &	19
	Insurance Sector	
Table 4.2	ADF test values for the first difference of log data series	19
	of Banking Finance & Insurance Sector	
Table 4.3	ARCH-LM test results of Banking Finance & Insurance	21
	Sector	
Table 4.4	Output of ARCH model of Banking Finance & Insurance	21
	Sector	
Table 4.5	Output of GARCH model of Banking Finance &	22
	Insurance Sector	
Table 4.6	Output of TARCH model of Banking Finance & Insurance	22
	Sector	
Table 4.7	Output of EGARCH model of Banking Finance &	23
	Insurance Sector	
Table 4.8	Output of IGARCH model of Banking Finance &	23
	Insurance Sector	
Table 4.9	Output of PARCH model of Banking Finance & Insurance	24
	Sector	
Table 4.10	AIC and SC values of ARCH models of Banking Finance	24
	& Insurance Sector	
Table 4.11a	Output of ARCH-LM test of IGARCH (2,2) model of	26
	Banking Finance & Insurance Sector	
Table 4.11b	Output of Breusch - Pagan - Godfrey test of IGARCH	26
	(2,2) model of Banking Finance & Insurance Sector	
	Indices	
	ADF test for raw data series of Beverage, Food & Tobacco	28
Table 4.12	Sector	
	ADF test values for the first difference of log data series	29
Table 4.13	of Beverage, Food & Tobacco Sector	

Table 4.14	ARCH-LM test results of Beverage, Food & Tobacco Sector	31
Table 4.15	Output of ARCH model of Beverage, Food & Tobacco Sector	31
Table 4.16	Output of GARCH model of Beverage, Food & Tobacco Sector	32
Table 4.17	Output of TARCH model of Beverage, Food & Tobacco Sector	32
Table 4.18	Output of EGARCH model of Beverage, Food & Tobacco Sector	33
Table 4.19	Output of IGARCH model of Beverage, Food & Tobacco Sector	33
Table 4.20	Output of PARCH model of Beverage, Food & Tobacco Sector	34
Table 4.21	AIC and SC values of ARCH models of Beverage, Food & Tobacco Sector	34
Table 4.22a	Output of ARCH-LM test of PARCH (1,1) model of Beverage, Food & Tobacco Sector Indices	36
Table 4.22b	Output of Breusch – Pagan - Godfrey test of PARCH (1,1) model of Beverage, Food & Tobacco Sector Indices	36
Table 4.23	ADF test for raw data series of Chemicals & Pharmaceuticals Sector	38
Table 4.24	ADF test values for the first difference of log data series of Chemicals & Pharmaceuticals Sector	39
Table 4.25	ARCH-LM test results of Chemicals & Pharmaceuticals Sector	41
Table 4.26	Output of ARCH model of Chemicals & Pharmaceuticals Sector	41
Table 4.27	Output of GARCH model of Chemicals & Pharmaceuticals Sector	41
Table 4.28	Output of TARCH model of Chemicals &	42

	Pharmaceuticals Sector	
	Output of EGARCH model of Chemicals &	42
Table 4.29	Pharmaceuticals Sector	
	Output of IGARCH model of Chemicals &	43
Table 4.30	Pharmaceuticals Sector	
	Output of PARCH model of Chemicals &	43
Table 4.31	Pharmaceuticals Sector	
	AIC and SC values of ARCH models of Chemicals &	44
Table 4.32	Pharmaceuticals Sector	
	Output of ARCH-LM test of PARCH (2,2) model of	46
Table 4.33a	Chemicals & Pharmaceuticals Sector Indices	
	Output of Breusch – Pagan - Godfrey test of PARCH (2,2)	46
Table 4.33b	model of Chemicals & Pharmaceuticals Sector Indices	
Table 4.34	ADF test for raw data series of Footwear & Textile sector	48
	ADF test values for the first difference of log data series	49
Table 4.35	of Footwear & Textile sector	
Table 4.36	ARCH-LM test results of Footwear & Textile sector	51
Table 4.37	Output of ARCH model of Footwear & Textile sector	51
Table 4.38	Output of GARCH model of Footwear & Textile sector	52
Table 4.39	Output of TARCH model of Footwear & Textile sector	52
Table 4.40	Output of EGARCH model of Footwear & Textile sector	53
Table 4.41	Output of IGARCH model of Footwear & Textile sector	53
Table 4.42	Output of PARCH model of Footwear & Textile sector	54
T 11 4 40	AIC and SC values of ARCH models of Footwear &	54
Table 4.43	Textile sector	
	Output of ARCH-LM test of EGARCH (1,1) model of	56
Table 4.44a	Footwear & Textile sector Indices	
	Output of Breusch - Pagan - Godfrey test of EGARCH	56
Table 4.44b	(1,1) model of Footwear & Textile sector Indices	
Table 4.45	ADF test for raw data series of Hotels & Travel Sector	58
Table 4.46	ADF test values for the first difference of log data series	59

of Hotels & Travel Sector

Table 4.47	ARCH-LM test results of Hotels & Travel Sector	61
Table 4.48	Output of ARCH model of Hotels & Travel Sector	61
Table 4.49	Output of GARCH model of Hotels & Travel Sector	61
Table 4.50	Output of TARCH model of Hotels & Travel Sector	62
Table 4.51	Output of EGARCH model of Hotels & Travel Sector	62
Table 4.52	Output of IGARCH model of Hotels & Travel Sector	63
Table 4.53	Output of PARCH model of Hotels & Travel Sector	63
Table 4.54	AIC and SC values of ARCH models of Hotels & Travel Sector	64
	Output of ARCH-LM test of TARCH (1,1) model of	66
Table 4.55a	Hotels & Travel Sector Indices	
	Output of Breusch – Pagan - Godfrey test of TARCH (1,1)	66
Table 4.55b	model of Hotels & Travel Sector Indices	
Table 4.56	ADF test for raw data series of Investment Trusts Sector	68
	ADF test values for the first difference of log data series	69
Table 4.57	of Investment Trusts Sector	
Table 4.58	ARCH-LM test results of Investment Trusts Sector	71
Table 4.59	Output of ARCH model of Investment Trusts Sector	71
Table 4.60	Output of GARCH model of Investment Trusts Sector	71
Table 4.61	Output of TARCH model of Investment Trusts Sector	72
Table 4.62	Output of EGARCH model of Investment Trusts Sector	72
Table 4.63	Output of IGARCH model of Investment Trusts Sector	73
Table 4.64	Output of PARCH model of Investment Trusts Sector	73
Table 4.65	AIC and SC values of ARCH models of Investment Trusts Sector	74
Table 4 66a	Output of ARCH-LM test of IGARCH (2,2) model of	76
1.000	Investment Trusts Sector	
Table 4 66b	Output of Breusch – Pagan - Godfrey test of IGARCH	76
1000 7.000	(2,2) model of Investment Trusts Sector	
Table 4.67	ADF test for raw data series of Manufacturing Sector	78

	ADF test values for the first difference of log data series	79
Table 4.68	of Manufacturing Sector	
Table 4.69	ARCH-LM test results of Manufacturing Sector	81
Table 4.70	Output of ARCH model of Manufacturing Sector	81
Table 4.71	Output of GARCH model of Manufacturing Sector	81
Table 4.72	Output of TARCH model of Manufacturing Sector	82
Table 4.73	Output of EGARCH model of Manufacturing Sector	82
Table 4.74	Output of IGARCH model of Manufacturing Sector	83
Table 4.75	Output of PARCH model of Manufacturing Sector	83
Table 4.76	AIC and SC values of ARCH models of Manufacturing Sector	84
	Output of ARCH-LM test of EGARCH (1,3) model of	86
Table 4.77a	Manufacturing Sector Indices	
	Output of Breusch - Pagan - Godfrey test of EGARCH	86
Table 4.77b	(1,3) model of Manufacturing Sector Indices	
Table 4.78	ADF test for raw data series of Oil Palms sector	88
	ADF test values for the first difference of log data series	89
Table 4.79	Oil Palms sector	
Table 4.80	ARCH-LM test results Oil Palms sector	91
Table 4.81	Output of ARCH model Oil Palms sector	91
Table 4.82	Output of GARCH model Oil Palms sector	91
Table 4.83	Output of TARCH model Oil Palms sector	92
Table 4.84	Output of EGARCH model Oil Palms sector	92
Table 4.85	Output of IGARCH model Oil Palms sector	93
Table 4.86	Output of PARCH model Oil Palms sector	93
Table 4.87	AIC and SC values of ARCH models Oil Palms sector	94
	Output of ARCH-LM test of PARCH (2,1) model of Oil	96
Table 4.88a	Palms Sector Indices	
m 11 / 665	Output of Breusch – Pagan - Godfrey test of PARCH (2,1)	96
Table 4.88b	model of Oil Palms Sector Indices	
Table 4.89	ADF test for raw data series of Service sector	98

	ADF test values for the first difference of log data series	99
Table 4.90	Service sector	
Table 4.91	ARCH-LM test results Service sector	101
Table 4.92	Output of ARCH model Service sector	101
Table 4.93	Output of GARCH model Service sector	101
Table 4.94	Output of TARCH model Service sector	102
Table 4.95	Output of EGARCH model Service sector	102
Table 4.96	Output of IGARCH model Service sector	103
Table 4.97	Output of PARCH model Service sector	103
Table 4.98	AIC and SC values of ARCH models Service sector	104
Table 4.99a	Output of ARCH-LM test of PARCH (2,1) model of	106
	Service Sector Indices	
Table 4.99b	Output of Breusch – Pagan - Godfrey test of PARCH (2,1)	106
	model of Service Sector Indices	
Table 4.100	ADF test for raw data series of Stores & Supplies Sector	108
Table 4.101	ADF test values for the first difference of log data series	109
	of Stores & Supplies Sector	
Table 4.102	ARCH-LM test results of Stores & Supplies Sector	111
Table 4.103	Output of ARCH model of Stores & Supplies Sector	111
Table 4.104	Output of GARCH model of Stores & Supplies Sector	111
Table 4.105	Output of TARCH model of Stores & Supplies Sector	112
Table 4.106	Output of EGARCH model of Stores & Supplies Sector	112
Table 4.107	Output of IGARCH model of Stores & Supplies Sector	113
Table 4.108	Output of PARCH model of Stores & Supplies Sector	113
Table 4.109	AIC and SC values of ARCH models of Stores & Supplies	114
	Sector	
Table 4.110a	Output of ARCH-LM test of PARCH (2,1) model of	116
	Stores & Supplies Sector	
Table 4.110b	Output of Breusch – Pagan - Godfrey test of PARCH (2,1)	116
	model of Stores & Supplies Sector	
Table 4.111	Sector wise appropriate forecasting models	118

LIST OF ABBREVIATIONS

Abbreviation	Description
ASPI	All Share Price Index
CSE	Colombo Stock Exchange
ADF	Augmented Dickey Fuller test
ACF	Auto correlation function
PACF	Partial autocorrelation function
ARCH	Autoregressive conditional heteroscedasticity
GARCH	Generalized Autoregressive conditional heteroscedasticity
TARCH	Threshold Autoregressive conditional heteroscedasticity
EGARCH	Exponential generalized autoregressive conditional
	heteroscedastic
IGARCH	Integrated Generalized Autoregressive conditional
	heteroscedasticity
PARCH	Power Autoregressive conditional heteroscedasticity
AIC	Akaike information criterion
SC	Schwarz criterion