
/ 5 3 / o S

UNIVERSAL DYNAMIC SIMULATOR FOR ROBOTIC
MANIPULATORS: KINEMATIC MODELING

A disser tat ion submit ted to the

Depa r tmen t of Electr ical Engineer ing , Univers i ty of M o r a t u w a

in partial fu l f i l lment of the r equ i remen t s fo r the

degree of Mas te r of Sc ience

by

LASANTHA KURUKULARACHCHI
LIBRARY

UNIVERSITY OF MORATUWA, SFJ LANKA
MORATUWA 3 v s c * 3

t!

Supervised by: Dr . R o h a n M u n a s i n g h e

Department of Electrical Engineering
University of Moratuwa, Sri Lanka

January 2008

University of Moratuwa

9 \ Z O 8

9120?

L

9 1 2 0 8

DECLARATION

The work submitted in this dissertation is the result of m y own investigation,

except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently

submitted for any other degree.

Date- 19/2/2008

1 endorse the declaration by the candidate.

II

Table of Contents

Title

Declaration

Tables of Contents

Abstract

Acknowledgement

List of Figures

List of Tables

List of Principal Symbols

List of Acronyms

l.Chapter - Introduction of the Simulator Design

1.1 Background of the requirement

1.2 Problem Statement

1.3 Available Simulators

1.4 Aims & Objectives

1.5 Literature survey

1.5.1 Kinematics Modeling for Universal Manipulator

1.5.2 Jacobian Base Numerical Inverse Kinematic Solution

1.5.3 Alternative Methods for Inverse kinematics Approaches

2.Chapter -Design Methodology

2.1 Manipulator Modeling Fundamentals for Universal Manipulator

2.2 Designing Approach

2.2.1. Forward Kinematic Approach

2.2.2. Inverse Kinematic Approach

III

3. Chapter - Forward Kinematics Modeling Theories

3.1 Mechanical Structure and Notation of the Manipulator

3.2 Denavit and Hartenberg Notation for Manipulator Configuration

3.3 Algorithm for Link Frame Assignment

3.4 Manipulator Jacobian which Relate to Build the Inverse Kinematic

Algorithm

3.5 Jacobian Singularities

4.Chapter-Inverse Kinematic Approach on Dynamic Simulator

4.1 Used Method for Inverse Kinematic Solving Techniques

4.2 Inverse Kinematic Algorithm

4.4.1 Computed Inverse Kinematic Model by Using Newton - I

Techniques

4.4.2 Computed Inverse Kinematic Model by Using Taylor Ser

Expansion

4.3 Calculation the Singularities and Testing the Convergence

5.Chapter-Design the Software Tool 39

5.1 Object Oriented Programming 40

5.2 Supporting C++ Libraries 40

5.2.1 NEWMAT 11 Mathematic Library 41

5.2.2 NT Graph3D Graph Library 42

5.3Software architecture 42

5.3.1 CManipulator Class 43

5.3.2 Serialization Tool 43

5.3.3 Calculation Tool Box 43

5.3.4 Matrix Output Viewer 44

5.3.5 Link Tool 44

5.3.6 3D Graph Viewer 44

5.3.7 2D Graphic Output Viewer 44

IV

rtaphson

:ies

18

. 18

19

22

27

31

32

32

34

34

35

36

5.3.8 Manipulator Database Access Object 44

5.4.Functional Relationship between the Classes for Simulator Designing 44

5.4.1 Functional Relationship for the Forward Kinematic 45

5.4.2 Matrix Viewer 46

5.4.3 Functional Relationship for the Inverse Kinematic 48

48

6.Chapter -Implementation of Programming Interface 51

6.1 Programming Interface 52

6.2 New link Interring Dialog 53

6.3 Link Properties Dialog 55

6.4 Trajectory Planning and Inverse Kinematic Calculation 57

7. Chapter - Implementation & Results 58

7.1 Testing the Developed Simulator on Actual Manipulator 58

7.2 Testing Process 59

7.3 Further Improvement 62

Conclusions 63

References

Appendix A -Function of Forward Kinematics A1-A6

Appendix B -Function of Jacobian Matrix B1

Appendix C -Function of Inverse Kinematics C1-C5

V

Abstract

This project highly focuses on a total simulating solution to the robotic manipulator users. The

existing simulators are narrow with limited applications. Therefore the simulator users do not

have an adequate solution for the universal manipulators. The simulating solution developed

through this project is the combination of kinematic, dynamic, trajectory planning and frictional

model on a one interface. This project has been divided into four different research components

because of the vast extent of the research areas.

This thesis is based on the kinematic behavior of this robotic simulator. Under the kinematic

behavior, the forward kinematic and the reverse kinematic have been focus on. In the forward

kinematic bases, the systematic analytic approaches are used to develop the algorithm. This

algorithm describes the spatial relationship between links & link parameters of the manipulator

and it supports to find the end-effector position and orientation with respect to the joint space

parameters in a graphical way. On the other hand the forward kinematic supports to visualize the
manipulator in the 3D environment.

The reverse kinematic is required to find a set of joint variables that would bring the end-effector

in the specified position and orientation. In general this solution is non-unique for the universal

model, but solving the inverse kinematic is most important to design the practical manipulators.

Therefore the inverse kinematic algorithm is the combination of Jacobian transformation and the

Taylor series expansion. This combination is ideal to solve the inverse kinematic in this
simulator.

The software tool is the final output of this project. The kinematics module supports to find the

manipulator geometry and the joint angles. But the software tool is the combination of

kinematics, dynamics and the trajectory planning.

The object-oriented program is well adapted to this application since OOP can describe each part

of the robot as one object with its own properties and behavior. Even if C++ is not a perfect 0 0

language, a lot of very useful libraries are available, and maintains very good efficiency for

VI

intensive computations. The robotic applications will be highly popular in the future. Therefore

this software tool may be most important to develop the manipulator application because it

provides a total solution for designing the application. Still nobody has developed this type of an

application tool to manipulator designers. This software application operates with out any

hindrance and the major advantage is that this simulator can be used for universal serial link

manipulator for N-degree of freedom.

VII

Acknowledgements

I would like to thank my supervisor, Dr Rohan Munasighe for his guidance though out my

project to achieve its goals and his valuable suggestions to direct this project in the correct

direction.

My sincere thanks are extended to Mr. Hiran Perera Automation Engineer in ANSELL LANKA

(PVT) LTD for his support to test this simulator in the practical environment and also I thank

my colleagues Rajeeve, Bannayake and Mahinda for giving full support to develop a dynamic

simulator tool.

I am grateful to my family for their never ending love and support. I would also like to thank my

friends both in the university and factory for their friendship. Finally I thank all the members of

the staff in the Electrical Department of University of Moratuwa.

VIII

List of Figures

F i § u r e Page
1. Figure 2.1-The Direct and Inverse Kinematics 13

2. Figure 2.2- Model Structure Design for the Propose Simulator 15

3. Figure 3.1-Denavit-Hartenberg Parameters 2 1

4. Figure 3.2-End-Effector Location in Different Home Position 25

5. Figure 3.3-Flow Chart of Forward Kinematic 26

6. Figure 4.1- Manipulator Motions in Cartesian Space 37

7. Figure 4.2-The Flow Chart of Inverse Kinematic Calculation 38

8. Figure 5.1-Proposed Interface 42

9. Figure 5.2- The Software Architecture 45

10. Figure 5.4-Functional Relationship between the Basic Classes 47

11. Figure 5.5- Functional Sequence of C Class for Forward Kinematic 49

12. Figure 5.6-Funtional Sequence of C Classes in Inverse Kinematics 51

13. Figure 5.1 -User Graphical Interface (UGI) 52

14. Figure 6.2-Interface Properties 54

15. Figure 6.3-New Link Dialog 55

16. Figure 6.4-Link Properties Dialog ' 56

17. Figure 6.5-Trajectory Planning Definition Dialog 57

18. Figure 6.6-Algorithm Convergence Massage Box 57

19. Figure 7.1 - ABB IRB6000 Manipulator 60

IX

List of Tables

Table P a g e

1. Table 1.1 - The Comparison Between the Developed Simulator and the Existing 6

Simulator

2. Table 7.1 -ABB IRB 6000 Manipulator Configuration 5 8

3. Table 7.2-Forward Kinematic Results Comparison 59

4. Table 7.3-Forward Kinematic Results Comparison

5. Table 7.4- End Effector Transformation Matrix for the four different Cartesian

Points for Inverse kinematic Results Comparison g j

X

List of Principal Symbols

qs Joint Variable

e Joint Angle

a; Link Length

a, Link Twist

di Link Offset

"A, Homogeneous Transformation Matrix.

Ri Rotation Matrix

Pi Translation Vector

T Forward Kinematics Equation

J Jacobian Matrix

X 6x1 Cartesian Velocity Vector

q nxl Vector of n Joint Velocity

CO; Angular Velocity of ith Link

Sq Small Displacement of Joint Variable

Sx Small Displacement of Cartesian Variable

I Identity Matrix

List of Acronyms

IK Inverse kinematic

RP Revolute & prismatic

DOF Degree of freedom

OOP Object oriented programming

D-H Denavit-Hartenberg parameters

TP Trajectory planning

TPA Trajectory planning algorithm

XI

CHAPTER 1

Introduction of the Simulator Design

The simulation is a powerful visualizing, planning, and strategic tool in different areas of

research and development. And it plays a very important role in robotic manipulator

designing. The simulator facilitates the study of the structure, characteristics, motion and

the behavior of robot manipulators at different levels of details each posing requirement

for different simulation tools. As the complexity of the motional behavior increases, the

role of simulation becomes more and more important. The robotic kinematic algorithms

and their numerical solutions are quite complex to understand the characteristic and

behavior of the robotic manipulators in the actual environment. The easiest way to

understand the motional behavior is to visualize the exact model of robotic manipulator

and its characteristics. Hence, the simulation tools can certainly enhance the design,

development, and even the operation of robotic manipulators.

Augmenting the simulation with visualization tools and interfaces, one can simulate the

operation of the robotic systems in a very realistic way. Depending on the type of

application different structural attributes and functional parameters have to be modeled.

Therefore, a variety of simulation tools have been developed for the robotic manipulators

that are used in mechanical design.

A robotic manipulator is designed to perform a task in the 3D space. The tool or end-

effector is required to follow a planned trajectory to manipulate an object or carry out the

task in the working space. This requires control of position of each link and joint of the

manipulator to and orientation of the tool. To program the tool motion and joint -link

motions, a mathematical model of the manipulator is required to refer to all its

geometrical and time based properties in the motion.

1

Kinematics is the study of motion without regard to the force which causes it; within the

kinematics one studies the position, velocity and acceleration and all higher order

derivatives of the position and variables. The kinematics of manipulator involves the

study of the geometrical and time based properties of the motion and in particular how

various links move with respect to one another.

1.1 Background of the requirement

In order to perform tasks on different manipulator platforms, a kinematics model has to

be developed for each one of them. Because the equations can become too cumbersome

to deal with manually when the robots have more than just several joints, a method is

needed to automate the formation of the kinematics model. Industrial robots are usually

developed for specified pre-determined tasks. Therefore the requirement of arms

combination and configuration are different. The manipulator arm configurations, along

with equations needed for the manipulator arm motion, are determined and solved during

robot development stage. This limits the robot to the prescribed tasks and to no other.

However, for robots that must adapt to their environment or perform a wide range of

tasks, a method is manipulator arm to adapt to changes in joint space & Cartesian space

Changes to the equations (Jacobian and kinematics expressions). They are required when

something changes the geometry of the manipulator arm such as when a tool is added to

the end-effector. In order to accommodate to different manipulator platforms and to

provide for tool acquisition, a method is needed to automate the formation of the

kinematic model that eliminates manual calculation processes.

1.2 Problem statement

Robots are an integral part of today's industrial scenario. As a result, simulation has

evolved as a major tool in the programming and the designing of robots. Simulation in

this sense includes actually having a computer draw conclusions about the workings of a

system. These conclusions are derived from the knowledge already available about the

system in question. It is, in effect, a knowledge based process that utilizes the information

2

stored about a particular system in the database to predict its response to various

situations. Robot simulator is the collection of computer programs and related

information that is developed, marketed, manufactured and sustained for industrial robots.

Consequently, the software for industrial robots is best seen from three points of view:

operation; application; and manufacturing.

The existing simulators are developed with certain limitations and no simulator designer

has given a total solution (i.e. robotic motion, dynamic characteristic changes , trajectory

planning and controlling) for the different manipulator designing platforms. And also

lots of accurate simulators are already developed with the pre-defined commercial

manipulators. (E.g. Robware for the ABB manipulators) They are very expensive and

they can not simulate with the other manipulators. For example if any user who wants to

add an extra link or change the link parameters (i.e. Joint type, Joint variables or

maximum limits) they do not have facilities to change it on this simulator.

The other simulators are study versions (e.g. Robotica) and they can not be used for

industrial application. Major weaknesses of these simulators are, they disregard the

dynamic constraints and the manipulator controlling. Then the simulators can not be used

for the actual manipulator platform. The table 1.1 is explains some of the simulators and

their features.

Almost all simulators are developed for the rion- redundant manipulators. The reason for

this is most of the practical manipulators are developed with the non-redundant base.

Therefore the simulator designers are interested in doing their products on the non-

redundant base. But now a days lots of researchers are interested to do a research on the

redundant base manipulators. Therefore today the requirements of the simulator are

strongly feel for the universal manipulator.

The MATLAB robotic tool box [6] by Peter I. Corke has given some kind of solution on

this matter. But it is not a simulator. He has given a tool that can support to develop

robotic manipulator in the Cartesian space and the joint space both. If any one wants to

3

develop the robotic manipulator on this platform he should study all the tool and

functions that have been provided in this tool box. In the MATLAB robotic tool box,

there are fifty seven tools and hundreds of functions available.[7] Then the manipulator

designers should study all these tools and functions on his manipulator. And the other

problem is, there is no logical way to array these tools. Therefore lots of bugs and

deficiencies come in the programming process. As a result of this the manipulator

designer has to waste a lot of time to meet with these challenges.

1.3 Available simulators

The most famous robot simulators and their features are as follows. This resource has

been provided by the university of Essex U.K.[11]. The aim of this documentation

attached to this thesis is to understand the available simulators and their features. These

features are most important to develop the simulator for the universal manipulator.

1. EASY-ROB by Stefan Anton is a commercial Robot Simulation Tool with 3D graphic

and animation [11]. The user can design a robot kinematic, move the robot in joint and

Cartesian space, write a motion program, grab and release some thing, etc. A simple 3D-

CAD System allows creation of basic elements such as block, cylinder, pyramid, cone

and sphere in order to model a robot, tool and bodies. The user can rotate and translate

the world view, zoom in and out and do a lot more. No additional graphic power is

required. But this simulator is based on kinematic. Dynamic behavior of the robotic

manipulator is not taken into account.

2. Encarnaco Robot Simulator by Luiz Felipe Rudge Encarnacao is a robot simulation

that provides a full 3-Dimensional environment (wire frame graphics) with one fully

moveable robot (5 axis)[l 1]. Control can be exercised via high level control mechanisms

(i.e. grab, move and placing objects) or manually directed from the keyboard. There are

several possible views (2 display areas and 15 possible virtual cameras). A camera can be

placed in one "aeroplane" (i.e. allowing the user to "fly it" and use the resulting

4

perspective as their view). With a mouse you point & click on an object and to make the

robot grab it. Another click on some possible local will cause the robot to place the robot

there. With keyboard you can control all parts of the robot and fly the "aeroplane". It runs

on MS Windows 3 or above.

3. MATLAB Robotic Toolbox by Peter I. Corke [6]. The Toolbox is based on a very

general method of representing the kinematics and dynamics of serial-link manipulators.

But there is no direct simulating facility. There is tools to develop the robotic

manipulator. These parameters are encapsulated in MATLAB objects and it provides

many functions that are useful in robotics including such things as kinematics, dynamics,

and trajectory generation. The Toolbox is useful for simulation as well as analyzing

results from experiments with real robots. But the reverse kinematic can not solve all type

of non-redundant manipulators. The tool box designer (Peter I. Corke) has provided the

close from reverse kinematic solution for standard manipulators like PUMA 560 ,

Stanford arm.

4. Melbourne-Robots is a robot simulator written by undergraduates Andrew Conway and

Craig Dillon on a Silicon Graphics workstation for their electrical engineering project at

the University of Melbourne [11]. There is a latest user manual (inc. the mathematics) but

not much in the way of installation instructions (ftp address no longer valid).

5. Robotica is a collection of robotics problem solving functions for the Mathematica

package [12]. This is the study pack for robotic student. It has the capability of reading

external simulation (e.g., SIMNON) output files and displaying the motion of the robot

when subjected to the sequence of joint variables. It requires Mathematica and X-

windows.

5

T
able. 1.1 T

he com
parison betw

een the developed sim
ulator and the existing sim

ulators

6. Simderella is a popular simulator that was released to the world in 1993 by Patrick van

der Smagt of the University of Amsterdam [11]. It came out of his research into neural

networks and robot control. But this is developed for 6 axis manipulator. The original

software consisted of three programs, connel: the controller, simmel: the simulator,

bemmel: the X-windows oriented graphics back-end. Simmel is the part which actually

simulates the robot. It performed matrix multiplications, based on the Denavit Hartenberg

method & calculated velocities with the Newton-Euler scheme. But this simulator is

designed for the non-redundant manipulator. These theories are not valid for the universal

manipulators.

To compare the above simulating tool, no one has given a unique solution to the

manipulator designers. Among these software tools, MATLAB tool box is one of the

most used platforms for the modeling and simulation of various systems. But it is not a

direct simulator. There are tools and functions to develop the manipulator simulation. It is

a time wasting method and lots of bugs and deficiencies should be solved during the

programming process. And also it is unable to give a total solution for the reverse

kinematic and also the controlling of the system has been disregarded.

1.5. Aims and objectives

The Overall aim of the project is to give a complete solution to simulator users for

rectifying the above weaknesses of the existing manipulators. In this scenario the

developed simulator is the total solution for the universal serial manipulators. The final

solution is combination of forward & reverse kinematic, dynamic solution, trajectory

planning and manipulator controlling. But in this thesis only the kinematic behavior of

this simulator is discussed. The 3D graphical interface is ideal to avoid the difficulties of

programming and overcoming the bug fixing while in the programming. The graphical

way is the easiest method to visualize the manipulator geometric in the Cartesian space

and the joint space and behavior of the manipulator in the actual environment. To

improve the functionality of the program and correct sequence is important to reduce the

7

processing time. Designing the correct sequence to process the program is one of the

objectives in this project.

Major objective of this project is designing the correct simulating tool for universal serial

link manipulator. The new concept of this is to design any degree of freedom for serial

link manipulator with any link combination and features. And the other aim of this thesis

is to find a correct kinematic module supportive to the simulating requirement for the

universal simulator. In these phenomena, the kinematic modeling of the project supports

the study of the geometric and time based properties of the motion, and in particular how

the various links move with respect to one another. Under this aspect, solving the forward

and the inverse kinematic is essential to develop the kinematic algorithm to software

coding.

1.6 Literature survey

Valuable support was provided by the Literature survey to direct this project in the

correct direction. There are so many techniques used to solve the robotic manipulator

kinematic and depending on the applicability, their capabilities are different form the

different platform. Therefore the literature survey played a vital role to find the adaptive

method for the required simulator application with great efficiency. Hence the literature

survey is done to find the algorithms for the forward kinematics and the reverse

kinematics. They are as follow,

1.6.1 Forward kinematics modeling for the universal manipulator

The forward kinematic directly supports to find the position and orientation of the link of

the design manipulator. The Potential difference in the simultaneous links positions are

used to draw the link in the 3D interface. There are several methods available for forward

kinematic modeling to understand the motion without respect to force. They are as

follows,

8

1. Artificial intelligent application

2. Matrix method of the systematically assigning the co-ordinate systems.(D-H

Parameter)

The Artificial intelligent application like Genetic algorithm & Artificial Neural network

[17] is ideal and accurate for the fixed manipulator. When it is used for the universal

model different RP combination are provided. Then modeling is very difficult and

mathematically complex. Then it is more time consuming while in the simulating

operations. Therefore it is not suitable for the on-line application.

Solvability matrix method of systematically assigning the co-ordinate system is the

mathematically elegant and also it is the fastest. Therefore this method is used to solve

the forward kinematics.

For forward kinematic modeling, frames are assigned to each link of the manipulator

starting from the base to the end-effector. The homogeneous transformation matrices

relating the frame attached to successive links describe the spatial relationship between

adjacent links[4]. The composition of these individual transform matrices determines the

overall transform matrix, describing tool frame with respect to base frame.

The task to be performed by a manipulator is stated in terms of the end-effector location

in space. The values of joint variables required to accomplish the task are computed using

the inverse kinematic model. To find the location in space, at any time, the joint variable

values are substituted in the forward kinematic model. This chapter 4 describes the

problem of formulation of forward kinematic model. The inverse kinematic model

formulation will be discussed in the chapter 5.

1.6.2 Alternative Methods of Inverse kinematic solutions

There are several possibilities to approach the inverse kinematic problem IK. Most of

these approaches are based on some sort of search technique [9].

9

Algebraic approach: this approach is necessary, if one wants to calculate all possible

solutions of the IK problem [5]. Given a specified linkage, one solves the forward

kinematics problem explicitly. This in general leads to a set of nonlinear algebraic

expressions in the state variables of the linkage. Given an end-effector position, the

problem now is to algebraically solve this system of equations for the unknown state

variables. Although it is theoretically possible to solve these using symbolic computation

techniques, it is generally beyond today's computing power. Nevertheless, there exist

some successful algebraic approaches for a few types of linkages.

Neural networks: recently, [10] an increasing number of neural network approaches have

been suggested in the area of robotics. Since this requires teaching the linkage and thus

highly depends on its actual geometry, these approaches are not very useful for

simulation purposes.

Genetic programming and genetic algorithms:[10] due to steadily increasing computing

power these techniques get more and more interesting in the area of Computer Animation

especially when it comes to highly complex virtual environments. Genetic algorithms are

directed search algorithms which try to find the solutions by mimizing the natural process

of evolution. Currently, however, this approach is useless in VRML since today's

browsers are not capable of providing the computing power necessary to achieve

anything near real-time.

Graphical analyzing method: In the closed form solution, [9] joint displacement are

determined as explicit functions of the position and orientation of the end-effectors and

also the solution method based on the analytical algebraic or kinematics approaches,

giving expressions for solving unknown joint displacements. In this project, the

requirement of inverse kinematics solving is to find joint variable by using the user

defined trajectory Cartesian space. The inverse kinematics approach of this project is to

find the joint variable for the universal manipulator model. In the universal manipulator

model inverse kinematic techniques should be defined for any kind of degree of freedom

(DOF) with any joint combinations (revolute, prismatic joint combination).

10

Jacobian based approach: [30] one idea which proves to have the highest efficiency for

most industrial applications is based on the so-called manipulator Jacobian. Roughly

speaking the manipulator Jacobian is a matrix which describes the relationship between

joint and end-effector velocities. Given the velocity of the end-effector, the Jacobian

allows to recalculate the corresponding joint velocities simply by solving a system of

linear equations. This can be used to deduce a gradient-based iterative technique for

solving IK.

The fist four solutions may not be possible to solve all type of manipulators for the online

simulation bases. A sufficient condition for non-redundant manipulator to possess close

form solution is that both its three consecutive joint axes interest and its three consecutive

joint axes are parallel and also the solving method & techniques are different from

manipulator to manipulator. Therefore the first four methods of solution techniques are

very difficult to model for these types of application.

The Jacobian based approach is the interesting and efficient method and it can easily

model by using the computer application. But generally, there are four methods to solve

the inverse kinematics. Then the next challenge is to find the most suitable method to

solve the inverse kinematic of this project. Each and every method of Jacobian base

solutions has different kinds of advantages and disadvantages. They are as follows.

1.6.3 Jacobian based numerical solution

The interactive algorithms are used to reverse kinematic in the Jacobian based solutions.

Various types of Jacobian methods can be used to solve the inverse kinematics in

different manipulators with different limitations [11]. And also there is no limitation for

non redundant and it can be used for redundant and non-redundant both. The Jacobian

base solutions are not actuated compared to the close form solutions but they can solve

for the universal type by using various techniques and it is very efficient. The most

common methods are,

11

1- Jacobian Transpose

2- Jacobian Pseudo inverse

3- Damped Least Squares methods

Jacobian transpose is the fastest method and it can be applied for any kind of degree of

freedom but the results suffer in the singularity area and the degenerate case. The

Jacobian transposes method and the optimization-based Newton- Raphson technique can

stop in local minima. Therefore the interactive solution may not converge in those areas.

But the Taylor series expression can be used to solve the inverse kinematic on this region

[13]. Pseudo inverse have also the same problem on the singularity and degenerate case

and it is more accurate. But there are lots of arguments to solve the inverse kinematics in

non-redundant manipulator and also it is a very difficult model for different RP (revolute,

prismatic) combinations.

The damping least square method is well behaved near the singularity. But it is very

difficult to model for the different RP combination and the convergence rate is too slow.

Therefore this is not suited for the on-line application.

The Jacobin transpose is the best method to solve this simulator inverse kinematics

because it is faster and efficient than the others. But the direct result does not guarantee in

near singular region and degenerate case. Therefore it should converge by using Newton-

Raphson techniques [30]. In the singular region Jacobin transpose is not valid. Then the

Taylor series can be used to solve the reverse kinematics

12

CHAPTER 2

Design Methodology

There are two research components used in this simulating tool. They are forward

kinematics and the reverse kinematics. The supportive way of kinematic modeling is to

develop this simulating tool as shown in the figure 2.1. Using the kinematic control

equation, algorithms was developed for the forward and inverse kinematics to solve the

Cartesian space and the joint space parameters that are related to simulating process.

Joint variables
ql(t),q2(t),q3(t),

q(t)4

Direct Kinematics
Modeling

Joint-link parameters
1. Link length
2. Link twist
3. Link offset
4. Joint angle

Inverse Kinematics
Modeling

Position &
Orientation of
End-effector

Fig. 2.1 The direct and inverse kinematics model

13

2.1 Manipulator modeling fundamentals for the dynamic

simulator

Robot manipulator modeling consists of a geometrical definition along with a kinematical

description of the linkages. The geometrical definition can be accomplished by creating

representative three-dimensional (3D) computer-aided graphic models whereas the

kinematic entities describing the relations between links, velocities, accelerations and

other characteristics of the manipulator can be obtained from robot kinematic theory. The

structural design of the components of a robot manipulator uses the optimized geometric

entities resulting from the previous stages. Though there are numerous software packages

available for 3D modeling and motion simulation,[10] there is no single all inclusive

packages that could produce the exact physical (3D characteristics) and functional

description (motion planning) of the robot. The simulation itself consists of the kinematic

and dynamic parts depending upon whether or not the actuator forces and torques are

considered when generating motion trajectories. Once the functional description of the

manipulator is finalized, any of the widely available solid modeling tools could be used

for the accurate description of the robot's 3D geometry and an extensive structural

analysis could be performed. A detailed discussion of structural modeling is shown in

figure 2.1 and the highlighted areas of this figures is the scope of this thesis. It comes

sunder the kinematic. It should be solved to develop the dynamic constraint and the

trajectory planning.

The Visual C++ (version 6.0) is used for this simulator designing because it is the base

language and processing time is less compared with the other programming tools [15].

The final interface is the total solution for universal manipulator simulations. The

software tool is the final output of this project. The kinematics module helps to find the

manipulator geometry and the joint angles. But the software tool is the combination of

kinematics, dynamics and the trajectory planning.

14

Fig.2.2 structural designs for the proposed simulator

15

2.2 Designing approach

The supportive way of the kinematic behavior is described in this chapter. It is helps to

find the manipulator geometric parameters in the Cartesian space and the joint space. To

program the end-effector motion and link- joint motions, a mathematical model of the

manipulator is required to refer to all geometrical and/or time base properties of it motion.

Kinematic model describes the spatial position of the joint and links, and position and

orientation of the end-effector. [5] In designing a robot manipulator, kinematic plays a

vital role. The mathematical tools of spatial descriptions will be discussed in the next

chapter are used in the modeling of robotic manipulator. And the forward kinematic and

inverse kinematic roles are considered in this chapter. The differential kinematic of

manipulators refer to differential motion, that is, velocity, acceleration, and all higher

order derivative of joint-links.

2.2.1 Forward kinematic approach

The Forward kinematics is the problem of finding the unique location (position and

orientations) of the links and the end-effector of the robot for the given set of joint values.

The position and orientation of link end effector position are used to draw the link in the

Cartesian space and draw the via point in trajectory.

2.3.2 Inverse kinematic approach

The inverse kinematics is used to calculate the joint variable for given via points that

have to be defined in the Cartesian space. Solving inverse kinematic is the real challenge

for the simulator manufacturers. Specially for the universal model. The solving of the

problem of kinematic equation of a manipulator is a nonlinear one. By using numerical

techniques two unique solution have been obtained for inverse kinematic equation for

16

universal manipulators. They are Jacobian transformation base Newton-Rhapson

techniques and the Taylor expression.

In addition to dealing with static positioning problems, author may wish to analyze

manipulators in motion. Often in performing velocity analysis of a mechanism it is

convenient to define a matrix quantity called the Jacobian of the manipulator. The

Jacobian specifies a mapping from velocities in joint space to velocities in Cartesian

space. Manipulator Jacobian is the most important to find the inverse kinematic solution

in this manipulator. The nature of these mapping changes as the configuration of the

manipulator varies. At the singularities the existing mapping is not invertible. Then

another mapping system like Taylor expression should be considered to solve the joint

space parameters. An understanding of the phenomenon is important to designers and the

users of the manipulator.

17

CHAPTER 3

Forward Kinematics Modeling Theories

Robotic manipulator modeling consists of a geometrical definition along with a

kinematical description of the linkages. The geometrical definition can be accomplished

by creating representative three-dimensional (3D) graphic models whereas the kinematic

entities describing the relations between links, velocities, accelerations and other

characteristics of the manipulator can be obtained from robot kinematic theory based on

Denavit-Hartenberg(D-H) parameters[12]

3.1 Mechanical structure and notation of the manipulator

Typical robots are serial-link manipulators comprising a set of bodies, called links, in a

chain, connected by joints which allow linear or revolute motion between connected links

each of which exhibits just one degree of freedom (DOF) are not common. For a

manipulator with n joints numbered from 1 to n, there are n+ 1 links, numbered from 0 to

n. Link 0 is the base of the manipulator, generally fixed, and link n carries the end-

effector. Joint i connects links i and i-1.[5]

A link may be considered as a rigid body defining the relationship between two

neighboring joint axes. A link can be specified by two numbers, the link length and link

twist, which define the relative location of the two axes in space. The link parameters for

the first and last links are meaningless, but are arbitrarily chosen to be 0. Joints may be

described by two parameters. The link offset is the distance from one link to the next

along the axis of the joint. The joint angle is the rotation of one link with respect to the

next about the joint axis. [7]

18

LIBRARY
UNIVERSITY OF MORATUWA, SH! LANKA

MORATUWA

3.2 Denavit and Hartenberg notation for manipulator

configuration

Denavit and Hartenberg have proposed a matrix method of systematically assigning

coordinate systems to each link of an articulated chain. This method is mathematically

elegant and it is used to develop the forward kinematics algorithm for this project.

Another advantage of this method is, it is very logical and easy to model the any kind of

degree of freedom serial link manipulator through this method. [5]

To facilitate describing the location of each link we affix a coordinate frame to it. The

frame i is attached to link i. The axis of revolute joint i is aligned with z,_i. The x,_i axis is

directed along the normal from z,-_\ to z, and for intersecting axes is parallel to z,. i x z,. The

link and joint parameters may be summarized as follows (see figure 3.2):

Link length (a,) - the offset distance between the z m and z, axes along the x , axis;

Link twist (a ,) - the angle from the z i axis to the z, axis about the x, axis;

Link offset (d,) - the distance from the origin of frame /-1 to the x, axis along the zu\

axis;

Joint angle (0/) -the angle between the x,.i and x, axes about the z,_i axis.

For a revolute axis 0, is the joint variable and dt is constant, while for a prismatic joint dj

is variable, and 0, is constant. In many of the formulations that follow we use generalized

coordinates, qt, where

q,= 0, for a revolute joint

qt= dj for a prismatic joint

The Denavit-Hartenberg (DH) representation results in a 4x4 homogeneous

transformation matrix.

19

9 1 2 0 8

COS0J — sin cos a t sin Qt sin a t] ajcos 9i
sin 0i cos sin - cos 0i sin a t j o-i sin

0 sin COS (X(i di

i
L 0 0 0

i di

i

Translation is qualitatively different form rotation in one important respect. In rotation,

the origins of two coordinate frames are same. This invariance of the original

characteristic allows the representation of rotation in 3-D space as a 3x3 rotation matrix

Ri. However, in translation, the origins of translated frame and original frame are not

coincident then the origins have to be translated by a 3x1 translation vector P/ [5].

Rotation matrix, R

(3X3)

Translation vector, P

(3X1)

Prospective

Transformation matrix

(1X3)

Scale factor

(1X1)

Mnt i

Fig. 3.1 -Denavit -Hartenberg parameters

+1

20

The Rotation matrix, Ri represents the orientation of the entire link and the translation

vector, Pi represents the position of same link of the manipulator. These 3D valves can

be used to draw the link position and orientation with respect to the previous frame in the

Cartesian space. [5]

For the next link rotation matrix R ,•+/ can be written as follows,

On 0 n in Kj+1 - Kj Kj+1 (3.3)

And the translation matrix can be written as follows,

°Pi+1 = W / V / (3.4)

Where,

°T,=

On 0p K-i+l M+l

0 1

The '"'Aj matrices can be used to develop a matrix of expressions for the forward

kinematics equation, T, for the manipulator arm. T is a 4 x 4 matrix which gives the

position and orientation of the end-effector with respect to the base frame as a function of

each of the joint variables qt.

T= A\(qi)A\(q2) A*~ x(qJ (3.5)

This method can be used to calculate the position and orientation of the serial link

manipulator [5]. These calculated values can be used to draw the links in the Cartesian

space on the user graphical interface. The used algorithm to draw the manipulator on the

Cartesian space is as follows.

21

3.3 Algorithm for the manipulator link frame assignment
•

This algorithm assigns frame and determine the D-H -parameters for each link of an n-

DOF serial link manipulator. [5] Both, the first link 0 and the last link n, are connected to

only one other link and thus, have more arbitrariness in frame assignment. [29] For this

reason, the first (frame {0}) and the last (frame {n}) frames are assigned after assigning

frames to intermediate links, link 1 to link (n-1).

The displacement of the each joint-link is measured with respect to a frame and therefore

the initial position of each link needs to be clearly defined. The initial position of a

revolute joint is when the joint angle is 0 , while for the prismatic it is when the joint

displacement d is between working range, (i.e. maximum and minimum of the variable

displacement).

Because of mechanical constraints, the range of the joint motion possible is restricted

and, in some cases, this may result in a home position that is unreachable. In such cases,

the home position is redefined by changing the initial manipulator joint and /or frame

assignments. The new home position can be obtained by adding a constant value to the

joint angles in case of revolute joint and to the joint displacement in the case of prismatic

joint. This shifting of the home position is illustrated in figure 3.3.

Normally the manipulators, the initial position as zero position is designed in the joint

variable. But this simulator has been designed to take any position of the joint variables

in the working range as home position. Therefore the user has a good flexibility to select

home position including zero position. Assigning frame of the manipulator designer

should decide the home position of his manipulator.

The algorithm is divided into four parts. The first segment gives steps for labeling

scheme and the second one describes the steps for frame assignment to intermediate links

1 to (n-1). The third and fourth segments give steps for frame {0} and frame {n}

assignment, respectively.

Step 0- Identify and number the joints starting with base and ending with end-effector.

Number the links from 0 to n starting with immobile base as 0 and ending with last link

as n.

22

Step 1 - Align axis Z; with axis of joint (i+1) for i= 0,1, ,n-l

Assigning frames to intermediate links-link 1 to link (n-1) for each link i repeat step 2

and 3.

Steps 2- The xt axis is fixed perpendicular to both Z/_/ and Z/ axes and points away from

Zi-i . The origin of frame {i} is located at the intersection of Z/ and X-, axes. Three

situations are possible.

Case 1- If Z/_y and Z, axes intersect. Choose the origin at the point of their

intersection. The xi axis will be perpendicular to the plane containing Z /./ and Z,

axes. This will give to be zero.

Case2- if the Z w and the Z,- axes are parallel or lie in parallel planes then their

common normal are not uniquely defined. If joints / is revolute then Xi -axis is

chosen along that common normal, which passes through origin of frame {i-1}.

This will fix the origin and make </, zero. If joint i is prismatic, Xt axis is

arbitrarily chosen as any convenient common normal and the origin is located at

the distal end of the link L

Case 3- if Zj_i and Z, axes coincide, the origin lies on the common axis. If joint i

is revolute, origin is located to coincide with origin of frame {i-1} and Xt axis

coincides with X,_/ axis to cause d, to'be zero. If joint i is prismatic , Xi axis is

chosen parallel to Xt.i axis to make at to be zero. The origin is located at distal

end of link i.

Step3 - The F; axis has no choice and is fixed to complete the right-handed orthonormal

coordinate frame {i}.

Assigning frame to link 0, the immobile base-frame {0}

Step 4 - The frame {0} location is arbitrary. Its choice is made based on simplification of

the model and some convenient reference in workspace. The Xq axis, which is

23

perpendicular to Z0 axis, is chosen to parallel to XI axis in the home position to make

0i=O or any where in working range. The origin of the frame{0} can be chosen at a

convenient reference such as, floor, working table, and so on ,giving a constant value for

the parameter di zero. If joint 1 is prismatic, parallel X0 -and Xj axes will make 0/ to be

zero and origin of frame {0} is placed arbitrarily.

Step 5 - The Y0 axis completes the right -handed orthonormal coordinate frame {0}.

Link n, the end effector, frame assignment-frame {n}

Step 6 -The origin of frame {n} is chosen at the tip of the manipulator, that is, a

convenient point on the last link (the end-effector). This point is called the "tool

point" and the frame {n} is the tool frame.

Step 7 - the Z„ axis is fixed along the direction of Z „_/ axis and pointing away from the

link n. It is the direction of "approach."

24

1J

lii

s.»

M

m

)2

Different home
angle position

Fig.3.2-End-effector location in the different
home position

Zero home angel
position

Step 8- if joint n is prismatic; take X„ parallel to Xn.j axis. If joint n is revolute, the

choice of the Xn is similar to step 4, that is, X„ is perpendicular to both Z„_i and Z„

axes. Xn direction is the "normal" direction. The Y„ axis is chosen to complete the

right-handed orthonormal frame {n}. The Yn axis is the "orientation" or "sliding"

direction.

Once the frames are assigned to each link, the joint parameter (0j </, a, aj) can be easily

identified for each link, using which the direct kinematic model developed in designing

the universal manipulator on this robotic simulator. In fixing the frames, it is desirable to

make as many of the joint-link parameters zero as possible because the amount of the

25

computation necessary in later analysis is dependent on these. Hence, where there is a

choice in frame assignment, emphasis is on making a choice, which results in as many

zero parameters as possible. The flow chart of forward kinematic modeling is shown in

the figure 3.4.

Fig. 3.3 - Flow Chart of Forward Kinematic

26

3.4 Manipulator Jacobian which relates to build the inverse

kinematic algorithm

The manipulator Jacobian is a support to find the joint variable for the given end-effector

position and orientation when it is moved in the desired trajectory path. Even though the

position and orientation equations are non-linear, the relationship between the velocity of

the distal end and the velocities of the joint angles is linear. If the forward kinematic

problem is stated by x =f(q), then numerical solutions to the inverse kinematic problem

typically involve differentiating the constraint equations to obtain a Jacobian matrix[5]

, df
J = Y q ™

And solving the linear matrix system

X=Jq (3.7)

Where,

x = 6x1 Cartesian velocity (desired angular and liner velocity) vector

*= [Vx Vy Vz COx COy C02] T (3.8)

q= nxl vector of n joint velocities

q = [0 , e 2 e 3 d n f (3.9)
J= 6x n Manipulator Jacobian

The Jacobian is a function of the joint variable. The Jacobian function supports to

develop the reverse kinematic modeling of this project. To solve the reverse kinematic is

the key feature of this project and it will be explained in chapter 5 in detail.

27

4 \ 4 > ,
80j

% dpy

se, d&2 SOn

A, i
• • • • •

daz

36, d02 80.

The manipulator Jacobian, J, is a 6x n matrix (e.q.4.5) where n is the number of joints in

the manipulator arm. The zth column of Jean be thought of as two 3x1 vectors, JLi and JAi

, which are associated with the linear and angular velocities, respectively, of the tip of the

robot arm due to the z'th joint velocity. So we can partition J as follows:[18]

The Jacobian deals with small motions of the end-effector about its current position and

arm Configuration, so each of the elements of J is a function of the joint variables, qt .

The first three rows of J (J/,) deal with the linear velocity of the end-effector with respect

to the base coordinate system. Each column of J L , vector iLi , is formed by differentiating

the expression for the position of the end-effector, which is given as the last column in T,

as follows[18].

J L i =

r dx

dqi
dy
dqt

dz
dqi-l

(3.12)

28

The last three rows of J (J^) deal with the angular velocity of the end-effector and are

due to the angular velocity of the end-effector generated by each joint. There is no

contribution to the angular velocity at the end-effector for prismatic joints, so:

J At <?(=0 for prismatic joint /

However a revolute joint i rotates the links i to n at the angular velocity ro, as follows:

JAi qt = coi (3.13)

Where

bM is the unit vector pointing along the direction of the joint axis i. For revolute joint i,

the rotation is about the z /./ axis, by convention. In terms of coordinate frame i, b,.i is

represented as [0, 0,1]T.

The rotation matrix R can transform a vector in the ith frame to one in the previous (i-1)

frame. To determine bM for Eq. (3.13), the rotation matrices to express the zM axis with

respect to the base frame as follows:

bi-,=K1°(q,)--tfIt1
2(qi.1) (3.14)

To summarize above equations,

The manipulator Jacobian defines the relation between the velocities in joint space q and

in the Cartesian space x expressed in frame i:

~ j(Sl)i Q (3 .15)

or the relation between small variations in joint space Sq and small displacements in the

Cartesian space 8%:

8xi ~J(q)iSq (3 .16)

29

The manipulation Jacobian expressed in the base frame is given by

°J(q)= fJtiq) °J2(q) ...°Jn(q)] (3.17)

With,

% (q) = Zi-1 X1"1 Pn for a revolute joint

°Ji(q) = [Z q 1 j for a prismatic joint

Where,

Zi-i and 1 1 pn are expressed in the base frame and x is the vector cross product [20].

Expressed in the i'h frame, the Jacobian is given by

'j(q) =
CiRY o

o CtRY
}J(q) (3.18)

This function returns 'J(q) (i = 0 when not specified) for the end-link.

3.6. Jacobian singularities

Those manipulator configurations at which J become noninvertible are termed as

Jacobian singularities and the configuration is itself called singular. At the singularities,

the Jacobian matrix loses its rank and becomes ill conditioned at values of joint variables

q at which its determinant vanishes.

30

The study of manipulator singularities is of great significance for the following reasons:

•

1. It is not possible to give an arbitrary motion to end-effector; that is, singularities

represent configurations at which structural mobility of the manipulator is reduced.

2. At a singularity where no solution any exists for the inverse Jacobian problem.

3. In the neighborhood of a singularity, small velocities in the Cartesian space

require very high velocities in the joining space. This causes problems when the

manipulator is required to track a trajectory that passes close to the singularity.

To solve this problem in the inverse kinematics of this simulator, the Taylor series is used

to solve the joint space parameters [7], Used method of calculating the inverse kinematics

will be explained in next chapter.

31

CHAPTER 4

Inverse kinematic Approach on the Simulator

Inverse kinematics plays a key role in this simulating tool. Inverse kinematics is more

difficult than the forward because there is no unique solution for it. The inverse equations

are non-linear simultaneous equations, involving transcendental functions. The number of

simultaneous equations is also generally more than the number of unknowns, making

some of the equations mutually dependent.

4.1 Used methods for inverse kinematic solving techniques

The key role of this project is the configuration of a joint space for a continuous function

of one or more real scalars; or a rotational joint, the scalar is the angle of the revolute

joint or length of the prismatic joint.[l 1].

The complete configuration of the manipulator is specified by the scalars q!i q2, q3—qn

describing the joints configurations. Assuming there are n joints and each q, value is

called a joint variable. Certain points on the links are identified as end-effector. The end

effector current position 5 is a function of the joint variable [17]. The target position of

the end-effector is t. (see figure 5.1)

The desired change in position of end-effector is Sx. Then,

(4.1)

(4.2)

Let,

Sx = t-s

8x=t-s

32

The joint angles are written as a column vector as q= (q,,q2 ,qn)T. The end effector

positions are function of the joint variable; this fact can be expressed as s=x (0). The

inverse kinematic problem is to find values for the 0, so that,

U =Si(0) (4 . 3)

For this, the functions d/ are linearly approximated using the Jacobian matrix. The

Jacobian matrix J is a function of the q values and is defined by

Sx

The basic equation for forward dynamic that describe the velocities of the end effector

can be written as follows (using dot notation for first derivatives)

X=J(q)q (4.5)

The Jacobian leads to a method for solving equation (5.1) , suppose the current values for

the q, s and t. From these, the Jacobian J=J(q) is computed.

Then the update valve Aq for the purpose of incrementing the joint variable q by Aq,

q=q+Aq (4.6)

The change in end effector position caused by this change in joint angles can be
estimated as,

Ax « JAq (4.7)

4.2 Inverse kinematics algorithm

Selected method of the inverse kinematic calculation is shown in the figure 5.2. The

solution is the combination of the Newton -Raphson base Jacobian transformation

33

method and the Taylor expression. The Taylor expression is used to calculate the inverse

kinematic near the singularity region. Used method is explained as follows.

4.2.1 Computed inverse kinematic model by using Newton-Raphson

technique

Let mj=0, it is based to solve the inverse kinematic by using the Newton -Raphson

techniques. [30]

°Tn(qV = °Tn(q + Sq) « °Tn(q)dT(8q) = T obj (4.8)

Where, T obj is the end-effector transformation matrix which is selected by user in his

trajectory Cartesian point.

Then we can write the eqn 5.9 as follows and the ST(dq) assumes the form o f / and A

ST(dq) = fT^q))-1^ = I + A (4.9)

Where the / is the identity matrix & A can assume as follows. [7]

• 0 - A Sy dx

Sz 0 -Sx dy
— Sy 0 dz

• 0 0 0 (K

From the eqn 4. 10 we can write the end-effector differential motion as follows,

n8x= [dx dy d z 8X 8y 8Z]T (4.11)

Then jointing variable 5q can be found as follows

"5x~ nJ(q)5q (4.12)

If 8q is "small enough" the interaction stops; otherwise above procedure is repeated with

new estimate value,

34

Ri+i =9t + S q (4.13)
The numerical procedure finds only one solution, i.e., the one to which the iteration

converges.

4.2.2 Computed inverse kinematic model by using Taylor series

If mj - 1, it is based on the following Taylor series and it can be written as follows.

3Tn(q*) = °T n(q + 5q) « °Tn(q) d°Tn
' dqi

Sqi

The partial derivatives of can be calculated as follows, aqi '
d°Tn

T = °Tl-iQl
i-'Tn

where the Q, is

0 - 1 0 On
1 0 0 0
0 0 0 0
0 0 0 oJ

Qi

dqi

for arevolutejoint

(4.13)

(4.14)

Qr

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0J

for a prismatic joint

Given the desired position represented by the homogeneous transform T o b j , this function

returns the column vector of joint variables that is corresponding to this position [23]. On

return, the value converge is true if the Procedure has converge to values that give the

correct position or else it is false.

35

4.3 Calculate the singularities and test the convergence

The NEWMAT 11 Mathematic library in C++ is used to calculate the inverse kinematic

convergence in simulator and the NEWMAT 11 is commonly used for Object oriented

programming in C++ [23]. In this case, it is used to check the convergence of Newton-

Raphson base Jacobian inverse calculation if it fails then the end-effector trajectory point

in the desired manipulator may be in the singularities region or out of the working space.

Then the inverse kinematics solves on the Taylor expansion and check the convergence.

If it is convergence then it is in the singularity region or else then the selected trajectory

point is out of boundary in working space [13]. It may be difficult to completely

eliminate the possibility of unreachable positions and still get the desired motion. Second,

if target positions are barely reachable and can be reached only with full extension of the

links, then the situation is very similar to having unreachable targets. Unfortunately, the

situation of target positions in unreachable positions is difficult to handle robustly. Many

methods, such as the pseudo inverse or Jacobian transpose methods, will oscillate badly

in this situation; however, Taylor expansion methods can still perform well with

unreachable target positions. But The Newton-Raphson base Jacobian is more accurate

than the Taylor expansion. Therefore the priority of the inverse calculation has been

given to the Newton- Raphson base solution.

The convergence theory is the superior method to achieve correct value for the inverse

kinematic solution. In order to perform the Taylor expansion and Newton-Raphson

techniques of reverse kinematics, the real-time computation of any order derivatives of

inverse kinematics of any serial manipulators can be used (n joints, rotary or prismatic)

[30], Set of tests measured how well the different methods converged accurately to fixed

target positions.

For these tests, the target position is moved discontinuously and the joint angles are

updated repeatedly until either the end effector reaches it position or fails to continue

36

moving towards the end effector. In the both cases, thousand time tests for the

convergence are separately done to find whether the target positions are reachable or not.

t»

U

I.I

II

It

It

H

n

%

Fig. 4.1- Manipulator moves in the Cartesian space.

ys\ <
Previous position

37

Fig. 4.2.The flow chart of Inverse Kinematic calculation

38

CHAPTER 5
Design the Software Tool
The developed dynamic simulator is an interactive 3D environment for viewing robot
manipulator module as described in the tabulation dialog mode. In the developed robot
manipulator, the jointing variables can be changed and it can be viewed on dialogs. And
also the user can view the end effector orientation, visualizing dynamic stability and
trajectories through time-based animation.

5.1 Object oriented programming

The object-oriented program is used to develop this simulating tool since OOP can
describe each part of the robot as one object with its own properties and behavior. Even if
C++ is not a perfect 0 0 language, a lot of very useful libraries are available, and
maintains very good efficiency for intensive computations. The selected software tool for
this robotic simulator is Visual C++ 6. The visual C++ developing environment is well
adaptive and more flexible for this type of application [15]. The object oriented
programming is also considered to be better at modeling the real world than in procedural
programming. It allows for more complicated and flexible interactions. The object orient
programming systems are also easier for non-technical personnel to understand and easier
for them to participate in the maintenance and enhancement of a system because it
appeals to natural human cognition patterns.
For this application, an object orient programming approach is faster since many objects
are standard across systems and can be reused for different kinds of modeling like
kinematic, dynamic and trajectory planning.

39

5.2 Supporting C++ libraries
•

All kind of supportive tools and functions are not developed in the software tool
programming process. There are many kinds of tools and techniques that can help in the
developed software tool and they are freely available in web. This can be used in the
programming process to save the time. C++ directly supports a variety of programming
styles. In this, C++ deliberately differs from languages designed to support a single way
of writing programs. For this software tool authors have used to two supportive libraries
for the mathematical operation and developing the user interface

5.2.1 NEWMAT 11 mathematic library

To develop a tool for mathematical operation of the project is one of the major objectives
of this program and this tool should support to the Visual C++ operation and it should be
faster and mathematically elegant [16]. Among the various tools and libraries the
NEWMAT 11 is the selected tool to solve the mathematical operation in this project.

NEWMAT 11 developed by Robert Davies [13] is used for mathematical operation in this
project. The simulation of robotic manipulator models in an environment that provides
"MATLAB like" features for the treatment of matrices. NEWMAT 11 is a portable tool
which uses the professional C++ programming.

The package is intended for scientists and engineers who need to manipulate a variety of
types of matrices using standard matrix operations. Emphasis is on the kind of operations
needed in statistical calculations such as least squares, linear equation solve and eigen
values.

It supports matrix types

Matrix rectangular matrix
SquareMatrix square matrix

40

nricMatrix for use with Numerical Recipes in C programs
UpperTriangularMatrix
LowerTriangularMatrix
DiagonalMatrix
SymmetricMatrix
BandMatrix
UpperBandMatrix upper triangular band matrix
LowerBandMatrix lower triangular band matrix
SymmetricBandMatrix
RowVector derived from Matrix
ColumnVector derived from Matrix
Identity Matrix diagonal matrix, elements have same value
Only one element type (float or double) is supported.

The package includes the operations *, +, -, Kronecker product, Schur product,
concatenation, inverse, transpose, conversion between types, sub matrix, determinant,
Cholesky decomposition, QR decomposition, singular value decomposition, eigenvalues
of a symmetric matrix, sorting, fast Fourier transform, printing and an interface with
Numerical Recipes in C.

5.2.2 NT Graph3D graph library

3D Data visualizing on the 2D environment is one of the challenges of the project. After
testing and referring to different methods, tools and libraries NT Graph3D was selected
as a reference resource to develop the user Graphical interface. It was a supportive library
to develop a graphical tool but it does not well match to the required interface. Therefore
the concept of development of this tool has been used and the new interface for these 3D
data visualization[27] has been developed.
NT Graph3D is the graphical library developed by Nikolai Teofilov. This is the key
source which is use to develop the 3D interface. The NT Graph3D directly supports the
visual C++. In the figure 2.2 the developed interface is shown.

41

HI
DOF-O

Mode I Rotate j J

Propatiet [

Plot I

Save 1

T«t |

Test Matiat |

Testtoob |

Fowaid Kinematic |

q vector |

Simulate torque Qnv dyn) [

InvDyntanTP [

AixeieialionFa'Dm j

Properties I

VjcwSraph

CaoiateJnv«M_Kine [

TPOelrto |

TPA |

J H H H H K
Manipulator

Fig. 5.1- Proposed Interface

5.3 Software architecture

This simulation architecture provides developers with the opportunity to easily extend the
current simulation engine's abilities, without requiring modifications to the simulation
engine code itself. In the event that developers need to add substantial new abilities to the
simulator, the simple design of the simulation engine's architecture will make it easy to
modify the simulation engine to incorporate these new abilities. This is the art of object
oriented programming. In the design of this architecture, the object oriented
programming has responded in three ways of this software to meet these programming

42

requirements. They are, providing techniques for managing enormous complexity,
achieving reuse of software components, and coupling data with the tasks that manipulate
that data. In the visual C++ enough tools have been provided to affiliate the complexity
of the program and the adaptability of the system tool. The designed programming
architecture is shown in the figure 6.1. It has to be provided with the facilities to
enhancing the simulation tool and the adaptability to the controlling application.

In this architecture repeatability of element and the tool has been eliminated. Because of
four different modules (i.e. kinematic, dynamic, trajectory planning and the friction
module developing) this simulator has been developed as individual components.
Therefore the simulator executing is faster and efficient. In the CManipulator.Cpp class
has seven major tools. They are serialization, calculation tool box, matrix output viewer,
3D graphics viewer, link class, 2D graphical output viewer and manipulator database
access object. In this thesis only the related classes for the kinematic module
development is discussed..

5.3.1 CManipuIator Class
CManipulator class is the basic class of this program. It processes the forward & inverse
kinematic algorithms.

5.3.2 Serialization Tool.
The Serialization is the class of data storing. This tool can be used to store the data and it
can re-call the data. The different manipulator designing applications can be stored as a
set of data. The stored data can be re-called and edit according to requirement of users.

5.3.3 Calculation Tool Box
The Calculation tool box is used to calculate all kinds of kinematic applications in this
software. Not only the kinematic but also the dynamic and trajectory planning application
can be calculated.

43

5.3.4 Matrix output viewer
Matrix output viewer tool is used to view the matrix element which is related to the
calculation process. Basically this tool is used to view the link transformation matrix and
the Jacobian matrix in the forward kinematic. And in the reverse kinematic, the joint
variable column vector for the reverse kinematics.

5.3.5 Link Tool
The link tool is used to enter link properties and there are two sub-tools. They are link list
tool and link properties tool. The link list is used to enter link parameters and link
properties tool is used to visualize link data.

5.3.6 3D Graph Viewer
The 3D Graph Viewer is used for visualizing the entered parameters on the 3D
environment. This graphical data can be rotating, zooming and panning to analyze the
designed manipulator.

5.3.7 2D Graphic Output Viewer
This tool is used to display trajectory and dynamic graphical data in a time domain.

5.3.8 Manipulator Database Access Object
This tool is the same as the serialization tool. It is developed for the future enhancing of
the this software tool. This database can be used to develop the controlling part of this
software.

44

Fig. 5.2 -Software architecture

5.4 Functional relationships between the classes for simulator
design

In an object oriented software design, the functional interaction is most important to
eliminate the data duplication and modification of the functional operation as a
requirement. Therefore the functional operation of this project is sharing in four basic
classes. They are Manipulator, Newmat, NT Graph, NT Graph 3D. figure 5.3 The
Manipulator class is handled for all kinds of robotic kinematic operations including

45

kinematic calculation, updates, data storing and re-calling the application. Not only the
kinematic but also the dynamic, trajectory planning and controlling operation are
included too.
All kinds of mathematical operations including the matrix operation are handled by
Newmat. If any mathematical operation is required in the Manipulator designing
application the Newmat is called for this operation by the Manipulator class. As an
example, to calculate the end effector transformation in the simulating process the
Newmat class is called to the matrix multification operation by the Manipulator class.
The NT Graph function is called to draw the 2D graph to represent the 2 dimensional data
by the NT Graph class. The joint angle, joint velocity, joint acceleration and the dynamic
data in the time domain can be visualized on the graph.
The NT Graph 3D class is used to visualize the user defined manipulator link
arrangement in the 3D environment. All the required tools to visualize like rotating,
Zooming and colour changing are included in this class. Different colours are used to
represent the links as well as to draw the trajectory segment.

5.4.1FunctionaI relationship for the forward kinematics

The conceptual design for the kinematic development of this project is highly focused in
this thesis and the sequence of C class which is related to the forward kinematic is shown
in the above (Fig6.8) diagram. The entered link D-H parameters in the CNewlinkDlg
class are stored in the Clink class as variables.'The stored variables in the Clink class are
used to calculate the link position and orientation in the CManipulator. The CManipulator
is the base class of this project and all key features of the kinematic modeling are
included in this class. They are plot link, add new link, calculate Jane, Edit link
properties etc. The plot link function is used to transfer the data to the Cverttex class and
also the add new link function is used for storing the new link data to find the position
and orientation of the entire link. The calculate_kine is one of key function in the
CManipulator class. This function handles all kinds of the forward kinematic algorithm
and the important result of this operation is the position vector of the link. In the Cvertex
class, the calculated 3D link position value is converted to the 2D value to display on the

46

1
«newmat classes »
All mathematical function
Include in this classes
E.g. Matrix operation -

«ManipuIator classes»
This class is handled all
related functions and tools
for the simulator
developing process.
E.g. Kinematic calculation

« N T Graph 2D c lasses»
All 2D graphs are drawn by
these classes

Fig.5.3. Functional relationship between the basic classes

47

computer screen. The calculated vertexes will draw on Cartesian in the 3DGraph class.
The link joint variable can change in the link properties dialog. These changes are stored
and update the Clink class. The updated values are repeated in the above sequence of
forward kinematic and draw the current position on the user interface. This method is
used to draw any number of links for any degree of freedom. The logic of the sequential
designing is easy and flexible.

5.4.2 The matrix viewer

Matrix viewer is a different tool that can be view the matrix element in the kinematic
operation and this is the subclass functional feature in the Manipulator class. Not only
this operation but also through out this project this tool is used to test the data in the
programming stage. This tool directly supports to check the validity of the used algorithm
in kinematic modeling. And also it is used to check the error correction with the
MATLAB robotic tool box results while in the programming.

5.4.3 Functional relationship for the inverse kinematics

The sequence of the reverse kinematic calculation is described as follows. Fig(6.9). The
user can define his own trajectory and the end effector position and orientation can be
found on the Cartesian space in the TP definition class. The stored end effector
transformation matrix is used to calculate the joint space in the user define manipulator.
This operation is done by CManipulator. The calculated joining variables will update the
forward kinematic engine and it's draw on the Cartesian space.

48

Class for entering Link parameters

« C n e w linkDlg»
Apply Q

Do Data ExchageQ
On drawIteamQ
On InitDialogQ

Basic class of the simulator

« CManipulator »
calculate_kine()

Edit Link Properties()
Getq()

GetDOF()
Plot Link()

Serialization ()
view matrix (Matrix M, CString CS tile).

"I

Class for generate
the vertexes

« C V e r t e x »
[Cvertex(doubleax, doubleay, doubleaz]

Class for plot links

« C l i n k l i s t »
Add link (Clink.* pNewLink

Claer listQ
Delete Link(CLink * PLink)
Get Position(CLink * PLink)

Link Count()
Loading
Stroting

Update Link(POSITION Pos, CLink * plink.

Class for changing Joint variable
« C l i n k Properties»

CLink Properties(Cwnd * pPerent = NULL)
DoDataExhange(CData Exchange * PDx)

On Init Dialog()
Plot Link()

Class for displaying the numerical
results (e.g. transformation matrix)

«CMatrix Viewer»
CMatrixViewer(Wnd * pPerent = NULL)
DoData Exchange(CDataExchange * PDx)

On Botton Close()
On Init Dialog()

« Cl ink»
[Polt Link(CGraph3D * m_Graph3D]

n Viewing the plotted link
«CGraph 3 D »
[C Plot xyz()]

Fig .5.4 Functional sequence of C class for forward kinematic

n

49

This thesis deeply discusses the kinematic behavior but the simulator provides the total
solution (dynamic modeling, trajectory planning and manipulator control techniques for
the manipulator users. But they are separate research components of this project.
Therefore this thesis does not discuss another class and designing concept.
At the beginning, the members of this project have desired to develop separate classes

(CKinermatic, CDyanmic, Ctrajectory etc.) which belong to their won research
components. And further we desired to gather these classes to find the final solution of
this project. Then some parts of the functions will be repeated and the program will get
stuck while in the operation. Then the running efficiency of this project will reduce and
increase the simulation error. Therefore the project members have desired to develop
separate coding functions which are related to their won research components in the
common classes to increase the running efficiency.

50

Class for Trajectory planning Class for start calculation
« CTPADefDlg»

CTPADefDlg(CWnd * pPerent = NULL
DoData Excahnge(CDataExchage * pDX)

On BUTTON Add
On BUTTON Delete
On BUTTON Close

Set Dfinition
On Init Dialog

«CManipuIatorDlg»
[OnBUTTONCalculatelnverseKInQ]

Basic class for inverse kinematic

« CManipulator »
calculate_Inverse_Kine()

computeLink Position partial Darivatives()
Edit Link Properties()

Inverse_kine(Matrix, Tobj, Init, Int endlink, column vetor and pos_dot)
Getq()

Kine_PD (matrix, Tobj, int mj, int end link, bool and converge)
GetDOF()

Get jacobian
Plot Link()

Serialization()
Edit Link properties

Class for link properties update & edit Class for generate the vertexes
«CIink l i s t »

Add link (Clink.* pNewLink
Claer list()

Delete Link(CLink * PLink)
Get Position(CLink * PLink)

Link Count()
Loading
Stroting

Update Link(POSITION Pos, CLink * plink

« C V e r t e x »
[Cvertex(doubleax, doubleay, doubleaz]

Class for plot links r
« Cl ink»

[Polt Link(CGraph3D * m_Graph3D]

Viewing the plotted link

«CGraph 3 D »
[C Plot xyz()]

Fig .5.5 funtional sequence of C classes in inverese kinematic

51

CHAPTER 6
Implementation of Programming Interface

DOF-5
Add Next Lrtt

Mode] Rotate jJ

Properties)
Clipboard 1

Wot 1
Save j
Ted 1

Test Matrix j
Test tools |

kucmelics Test j
Forward Kinematic ;j

qyecta [
SimUate tCTqoe pnv dyri)|

Inv Oyn from TP)

Link Properties)
View Graph j

CaeulateJnveiieJOra |
TP Definition |

TRft !

Fig .6.1-User Graphical interface (UGI)

52

6.1 Programming interface.

The completed application, shown in Figure 6.1 allows users to create and edit files

containing commands to control the simulated robot, and run a simulation. Running a

simulation updates both the 3-dimensional representation of the robot's motion, and the

display of the robot's joint positions in accordance with the user's program. Assigned

manipulator link frame on D-H parameter table (fig 6.3) can be entered on new link

dialogs and it can be viewed as graphical on the 3D interface. Then the user can find the

desired manipulator geometric view on the 3D environment.

Further this simulating tool provides facilities to user to the change the joining variable

by using the link property dialog and the user can check the manipulator behavior in the

Cartesian space. In the same instant the simulator updates both the 3-dimensional

representation of the robot's motion and the display of the robot's joint positions in

accordance with the user's designing.

User Graphical interface is used to display the user defined manipulator visualization.

The right hand side buttons can be used to study the kinematic behaviors in forward and

inverse bases, trajectory planning in the Cartesian and the joint space in a graphical form

and dynamic modeling in a 2D graphical view. Further mode bottom can be used to rotate

the 3D Viewer and zooming. The color of the -X,Y,Z grid and the back ground can be

changed by using the properties Button. (See fig 6.2)

6.2 New link entering dialog

The new link dialog can be used to enter the link parameters as D-H parameter mode.

The group box of joint type can be used to select the joint type whether it is revaluate or

prismatic. When the user selects the joint type by using the radio button the joint Variable

group box will display the joint variable. Then the value of joint variable should be

53

entered on that edit box. The link properties group box can be used to enter the D-H

parameters like link offset, link length, link twist etc.

Not only the D-H parameter entering but also the new link dialog can change the color in

the entire link and joint according the link thickness as required for the designing.

Further more it is provided to enter joint mass, viscosity co-efficient of the link and the

coulomb friction co-efficient of the link

WW». j

Fig. 6.2- Interface Properties

(
54

*

6.4. Link properties dialog

When the link properties button is pressed the above dialog will be displayed. The

designed manipulator link joint variable need to change through this dialog and it will

display the current orientation and the position matrixes and if the user can change the

current joint variable and this new values will update the matrix values on this dialog box

(fig 6.4). In the same instant, the manipulator new position and the orientation values will

update on the graphical interface.

Paten! Lit* : n > Unk Number: r r
Joint T y p e —

f Revdute
C Prismatic

Joint Vatiable

Joint Angle (Theta) p f "

Link Parameters
Link Offset (d)

Link Length (a)

Link Twist (Alpha)

Min joint variable

Max join* variable

Offset in joint angle

f T

n r

pr
pr
r r

Vertices
Start Vertex
End Vertex

(0.0J3)
(0.0.0)

P rope r t i es————

m(Mas$)

8 (Viscous coefficient]

1.5
j 399

• {Coulomb fiction coefficient) J 888

Link Color |L"l!® " J

fe y _ ;
Basic colors:

i r
mrmmmmmm

Joint Cofor { I

Draw Thickness I T 3

Close Apply
mmrmr

Custom colors:
p p —

j"""'"" j""""" j '""""' | ' ll' lTl lf 11III llll' 1̂111111111 |

Define Custom Colors»

"OK Cancel

Fig. 6.3- New Link Dialog

55

Link: J

Revolute

Rotation Matrix r P o s i t i o n —

-0.638256 0.769565 •0.019968
•0.084727 -0.044442 0,995413
0.765147 0.637020 0.093569

0.679937
•0.237281
3.610899

Apply Close

Fig. 6.4- Link properties dialog

6.5 Trajectory planning and inverse kinematic calculation

To plan the trajectory the TP Definition button should be pressed and then the following

dialog will display (fig 6.5). This dialog can be used to enter the position and orientation

in the time domain and the user can plan his won trajectory. Then the tool box can

calculate the joint variable in the joining space by using the calculate_Inverse_kine. Then

the inverse calculation will activate and update the new joint variable. The converge tool

is used to find the precision end-effectors point in the Cartesian space.

56

t r k Properties

View Graph

C a f t t a J m t t t t J Q n e

TP Defritcn

Fig. 6.5- Trajectory planning definition Dialog

And also the simulator will check the convergence of the calculation and display the

message whether it is convergence or not (see fig.6.6). According to these results user

graphical interface will update the new geometric view of the user designed manipulator.

Fig .6.6- Algorithm convergence massage box

57

CHAPTER 7

Implementation and Results

The developed simulator was implemented with the industrial manipulator to check

accuracy of the used algorithms. In this phenomenon, the manipulator took geometrical

parameter form the manipulator broacher and regenerates the manipulator on the

simulating interface. The results were checked with the forward and reverse algorithms.

And the implemented method and the results are discussed in this chapter.

7.1 Testing the developed simulator on actual manipulator

Testing the software program on the actual environment is most important to understand

the practical behavior of the actual simulator and accuracy of used algorithms. The ABB

IRB 6000 robotic manipulator has been selected to test the developed algorithm of this

project. It can be viewed on the developed simulator as shown in the figure 7.1. The ABB

IRB 6000 is the world famous manipulator for many kinds of operation. It's

configuration as follows [22].

Table 7.1 ABB IRB 6000 Manipulator Configuration

Linki ai(m) aj(degree) di(m) Oi(degree) qi

1 188 +90° 900 6>i 0i

2 0 -90° 0 02 02

3 1175 0 0 03 03

4 1300 0 0 04 04

5 0 -90° 0 05-90° 05

6 0 0 200 06 06

58

7.2 Testing process
•

In the forward kinematic process, the ABB IRB 6000 actual manipulator configuration

was used to test the simulator accuracy. The method of comparison is, the selected joint

variables and the arm configurations in the actual manipulator were regenerated on the

developed simulator. After the actual manipulator end effector position and orientations

checked with the simulated manipulator end effector position and orientation. For this

process the BullEye is used to take the accurate reading with respect to base frame. The

BullEye is a special tool which is used to measure the end effector position and

orientation for the manipulator teaching process. The test results are shown in the table

7.2. In this testing process calibration tool orientation is disregarded. According to the

above results the forward kinematic algorithms and the programming code are corrected

and reliable.

Table 7.2-Froward kinematic results comparison

Joint variable Simulated values Actual value
0, <=>2 &3 04 &s 06 X y z X y z

112° -28° -5° 105° 105° -26° 1488.8 1145 2074.3 1488 1145 2075
0 -70° -70° 40° 70° 37° 876 1145 2226 876.1 1145 2226.1

90° 36° 43° 0 55° 90° 660.85 491.47 849.92 661.5 492 850
135° 45° -60° 47° -60° 112° 204' 487 208 204.3 487 208.1
-90° 0 43° -59° -155° 90° 349 200 900 350 200 900

In the inverse kinematic process, the manipulator end effector was moved to the different

places in the Cartesian environment with respect to the base fame that the end effector

position and orientation readings were taken form the manipulator controller for the

known joint angles. After that this end effector positions and orientations were fed to the

simulator and the joint variables readings were taken for the entire points. The actual

readings and the simulated readings are shown in the table 7.3 and the end effector

59

transformation matrixes for the entire points are shown in the table7.4. According to

these results the actual readings are slightly deviated from the simulated readings in some

point. The problem of this is that these points are located in the singularity. In this region

simulated values are deviated from the actual readings. But no other algorithms are

developed to solve the inverse kinematic as accurate results for the universal manipulator.

In future if any body develops a more powerful algorithm it can be adapted to this

software without any hindrance.

1 0.3 0.6 0.4 0.2 1 49am-QQ?A -0 6 -0.8 i
•iPP*

Fig. 7.1 ABB IRB 6000 Manipulator

60

Table 7.3 - Inverse kinematic results
comparison

Reading

1
2

3

4

Actual valves
Hi 82 03 e4 &, 82 Qi &4 &5
73° -123° -78° 91° 103° -63° 73° -123° -78° 91° 103°
0 -70° -87° 37° 70° 37° 0 -70° -86° 40° 70°

65° -57° 43° 0 145° 90° 65° -57° 43° 12° 143°
65° -57° 43° 34° 121° 103° 70° -57° 43° 37° 134°

Simulated values

Point 1
-0.6073 -(16972 04031 15001

0-2318 -0.6330 -0.7345

0.7652 -0.3501 0.5410

0 0 o

Point 3"

Point 2

1145.3

2315.7

1

0-8776 -02531 04301 ^

0-4791 0.4731 -0.7381

0.0211 0.8413 0.5431

0 0 0

-687.4

1356.3

1

0-0^02 -0^5462 08645 4632~

0-9976 0.0896 -0.0934 2651.8

0.7845 0.8453 -0.5432 .1334.0

0 0 0 1

Point 4
"0-9867 -04563 ^03421 I g ^ T

-0.0123 -0.2375 0.5631 2775.8

-0.3452 0.3428 0.5432' 1 875.2

0 0 0 1

&6

-63°

37°

90°

104°

Table 7.4- End effector N a t i o n tnatnx for the fourdifferen, Cartesian points f„ r

inverse kinematic results comparison

61

7.3 Further development

i s d e s i s n e d , o e n h a n c e ^ — * -Junctions. Therefore the expansion ean be done without dup,Seating t h e data and the

z r r c a n be main,aiMd at - ~ - * - — s —

- « research toptc in c o m p u t e r g r a p h i c s SQ ^ ^ ^

attract the attention of more *id more researchers in the new c e M l u y . ^

r r z r o m to proHem - - - — * - — - i : :

r z r i n V e K e k i n e m a t i C " , h e r e a ' C h a " e n g e ° f no body has
this ^ a C C U r a t e m e U , 0 d & r , h e U n i V e r S a ' * selected mcth d o

S simulator inverse hincmatic is most suitabie for the universal manipn,ator ^

erse mematic soiution is die combination of different apphcation oriented h i n e l l

so vmg techniques then the simuiator will give a mo r e cor.ec, inverse hinematic Z
But there is a lot of work to do. •

Hext Step of this project is to introduce, the developed simulator as a commercial product

But this simulator should be tested in a different pmctical environments. T h c l "

to plan to tahe a feed bach from the simulator user through the interne, „ ^

.n die fhturc dns will he a good simulating too, for the manipU,a,or u s e r s

62

Conclusions

This thesis is designed to understand the kinematic behavior in the dynamic simulator for

the universal manipulator. Different kinds of alternative kinematic techniques are used to

develop the algorithms to find the joint space parameters and end-effector position and

orientation in a graphical way. Among the various techniques, the D-H parameter

analytical method is selected to view the developed manipulator on the graphical

interface. This method is more efficient and accurate to solve the forward kinematics.

In the inverse kinematic, the Jacobian base Newton-Raphson techniques and the Taylor

series expansion are used to find the joint space parameters from the end effector

parameters. This combination is well adaptive to solve inverse kinematic for the universal

manipulator. The final results are converged for 1000 times to error minimizing of this

used method. If it increases higher than the 1000 there is no improvement in the results

and it will increase the time.

The developed simulator was implemented on the industrial manipulator (ABB IRB

6000) to test the algorithms that are used for the kinematic modeling. According to the

results, there is no deviation from actual values and the simulated values for the

simulation. Therefore the used kinematic theories are correct for the simulating process.

Finally, the goal of this project has been achieved and this simulator may be a good tool

for the redundant base and non- redundant base manipulator users and the designers.

63

References

[1] Nayar, H.D. Serial-link manipulator design software for modeling, visualization and
performance analysis, Control, Automation, Robotics and Vision, 2002. ICARCV
2002. 7th International Conference on Volume 3, Issue , 2-5 Dec. 2002 Page(s): 1359
- 1364 vol.3

[2] R P Paul ,B Shimano, Kinematics control equations for simple manipulators. Robotics
and Automation, 1988. Proceedings., 1988 IEEE International Conference on Volume
, Issue , 24-29 Apr 1988 Page(s):297 - 302 vol.1

[3] Eric M.Schwartz NON-COMMENSURATE MANIPULATOR JACOBIAN ,
Machine Intelligence Laboratory, University of Florida, IASTED International
Conference ROBOTICS AND APPLICATIONS June 25-27, 2003, Salzburg, Austria

[4] K Mittal & I J Nagrath , Robotics and control text book ,1st edition ,Tata McGraw
Hill publication, India,2004, chapter(s)-l,3,4,5

[5] J J. Craig, Introduction of robotic mechanics and control text book, second edition,
PEARSON Education publication ,2005, Chapter(s)-3,4,5

[6] Peter I Corke , (http://www.cat.csiro.au/cmst/staff/pic/robot), Robotic tool box for
MATLAB CSIRO Manufacturing Science and Technology Pinjarra Hills,
AUSTRALIA.2001 Page(s) 2-10

[7] Deepak Tolani, Ambarish Goswami, and Norman I .Badler Real-Time Inverse
Kinematics Techniques for Anthropomorphic Limbs Robotics and Automation, 1988.
Proceedings., 1988 IEEE International Conference on Volume , Issue , 24-29 Apr
1988 Page(s):669-674 vol.2

[8] Samuel R. Buss ,Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares methods. Department of Mathematics
University of California, San Diego La Jolla, CA 92093-0112 sbuss@math.ucsd.edu
April 17, 2004

[9] Hick perent,Power point presentation for inverse kinematics

[10] Takahashi, T.; Kawamura, A.High speed numerical calculation method for on-line
inverse kinematic of robot manipulators

[11] Robot Simulator on the Net -Essex University resource (eurobot@essex.ac.uk)

[12] Samuel R Buss, Jin-su kin, Selectively Damped Least Squares for Inverse
Kinematics. Technical Report CS-2000-19 , Waterloo, Ontario, Canada, 2000

http://www.cat.csiro.au/cmst/staff/pic/robot
mailto:sbuss@math.ucsd.edu
mailto:eurobot@essex.ac.uk

[13] Javier Roldan, Carl Crance, David Dooner ,Reverse kinematic analysis of the
spatial six axis robotic manipulator with consecutive joint axes parallel.

[14] Why C++ is not just an Object Oriented Programming Language, AT&T Bell
Laboratories.Murray Hill, New Jersey 07974

[15] R B Davies, Documentation for newmatl 1, a matrix library in C++Copyright (C)
2005:,22 April, 2006.

[16] Steve Rotenberg UCSD, Inverse Kinematic Analysis -power point presentation by
CSE169: Computer Animation. Instructor: Winter 2005

[17] Ezio Malis, Lionel Morin ,Sylvie Boude. Two New Algorithms for Forward and
Inverse Kinematics under Degenerate Conditions

[18] Newton-Raphson base inverse kinematic Solution. D The Shodor Education
Foundation, Inc. in cooperation with the Department of Chemistry,
The University of North Carolina at Chapel Hill

[19] Kang Teresa Ge Solving Inverse Kinematics Constraint Problems for Highly
Articulated Models, the University of Waterloo

[20] Brad Howard ,Interface Design for Offline Robot Programming with the use of
Virtual Simulation, Iowa State University 2112 Lincoln Way Ames IA, 50014 (319)
296-2112 bhoward@iastate.edu

[21] ABB IRB industrial application manual by ABB Industries

(www. ABB .com/Robotic)

[22] John E. Lloyd Vincent Hayward , A Discrete Algorithm for Fixed-path Trajectory
Generation at Kinematic Singularities. Computer Science Dept., University of British
Columbia Center for Intelligent Machines, McGill University Vancouver, B.C.,
Canada Montr'eal, P.Q., Canada

lloyd@cs.ubc.ca havward@cim.mcgill.ca

[23] Removing the Singularities of Serial Manipulators by Transforming The Workspace
John E. Lloyd Computer Science Dept., University of British Columbia Vancouver,
B.C., Canada lloyd@cs.ubc.ca

[24] Jinhyun Kim ,Kinematic Singularity Avoidance for Autonomous Manipulation in
Underwater Robotics & Bio-Mechatronics Lab., Pohang University of Science &
Technology (POSTECH), Pohang, KOREA, 2003

[25] B. Sivaraman, T. Burks, and J. Schueller. "Using Modern Robot Synthesis and
Analysis Tools for the Design of Agricultural Manipulators". Agricultural

mailto:bhoward@iastate.edu
mailto:lloyd@cs.ubc.ca
mailto:havward@cim.mcgill.ca
mailto:lloyd@cs.ubc.ca

Engineering International: the CIGR Ejournal. Invited Overview Paper No. 2. Vol.
VIII. January, 2006.

[26] Nikolai Teofilov, 3D Graph ActiveX Control, nteofilov@yahoo.de

[27] B. Sivaraman, T. F. Burks 1, J. K. Schueller,Using Modern Robot Synthesis and
Analysis Tools for the Design of Agricultural Manipulators University of Florida,
Dept. of Agr. and Bio. Engineering

[28] Lorenzo Fluckiger*, Laurent Piguet**, Charles Baur*. Generic robotic kinematic
generator for virtual environment interfaces Published in SPIE Telemanipulator and
Telepresence Technologies III, Vol. 2901, pp. 186-195, Boston, Nov. 1996.
NASA Ames Research Center - Intelligent Mechanisms Group Moffet Field, CA
94301 flueckiger@dmt.epfl.ch

[29] Peng Song, MODELING, ANALYSIS AND SIMULATION OF MULTIBODY
SYSTEMS WITH CONTACT AND FRICTION, Dissertation in Mechanical
Engineering and Applied Mechanics

[30] Herman Bruyninckx *, Serial robots, 19 Aug 2005. (http://www.roble.info/)

mailto:nteofilov@yahoo.de
mailto:flueckiger@dmt.epfl.ch
http://www.roble.info/

Appendix A -Function of forward kinematics
void CManipulator: :Calculate_kine()
//Calculate Direct kinematics at each Link
{

int i = 1;
ColumnVector PreviousEnd(3); PreviousEnd=0.0;
Real arPreviousEnd[3];
ColumnVector tmp_Pos(3); tmp_Pos=0.0;
IdentityMatrix 1(3);
m_Pos=tmp_Pos;
m_Rot=I;
//ViewMatrix(m_Pos,"m_Pos");
//ViewMatrix(m_Rot,"m_Rot");

POSITION Pos = m_LinkList->GetHeadPosition();
while(Pos != NULL)
{

CLink* pLink = m_LinkList->GetNext(Pos) ;
m_Pos = m_Pos + m_Rot*pLink->m_p;
m_Rot = m_Rot*pLink->m_R;

pLink->m_Start_Vertex.x=Pre viousEnd(1);
pLink->m_Start_Vertex.y=PreviousEnd(2);
pLink->m_Start_Vertex.z=PreviousEnd(3);

pLink->m_End_Vertex.x=m_Pos(1);
pLink->m_End_Vertex.y=m_Pos(2);
pLink->m_End_Vertex.z=m_Pos(3);

pLink->m_pb=m_Pos;
pLink->m_Rb=m_Rot;

PreviousEnd=m_Pos; //Hold previous end posision for start of Next Link
//ViewMatrix(m_Pos,"m_Pos");
//ViewMatrix(m_Rot,"m_Rot");

i++;
}

}

ReturnMatrix CManipulator: :Torque_ZeroVelocity(Column Vector qpp)
//Joint torque, when joint velocity is 0, based on Recursive Newton-Euler formulation.
{

int i=l;
ColumnVector ltorque(mnDOF);
Matrix Rt, temp;
if(qpp.Nrows() != m nDOF) AfxMessageBox("qpp is Invalied");

A1

Column Vector m_z0(3);
m_zO(l) = 0.0; m_z0(2) = 0.0; m_z0(3) = 1.0;
Column Vector Previous_vp(3); Previous_vp=9.81;
ColumnVector Previous_wp(3); Previous_wp=0.0;
POSITION Pos = m_LinkList->GetHeadPosition();

while(Pos != NULL)
{

CLink* pLink = m_LinkList->GetNext(P o s) ;
Rt = pLink->m_R.t();

if(pLink->m_njoint_type== 0)
{ /<:' 1

pLink->m_wp = Rt*(Previous_wp + m_z0*qpp(i));
pLink->m_vp = CrossProduct(pLink->m_wp,pLink->m_p) +

Rt*(Previous_vp);
}
else
{

pLink->m_wp = Rt*Previous_wp;
pLink->m_vp = Rt*(Previous_vp + m_z0*qpp(i))+

CrossProduct(pLink->m_wp,pLink->m_p);
}
pLink->m_acc = CrossProduct(pLink->m_wp,pLink->m_r) + pLink->m_vp;
Previous_vp=pLink->m_vp;
Previous_wp=pLink->m_wp;
i++;

}
Matrix PreviousLink Rot; PreviousLink_Rot=0.0;
i=m_nDOF;

ColumnVector N e x t f n v ;
ColumnVector Next_n_nv;
Pos = m_LinkList->GetTailPosition();
while(Pos != NULL)
{

CLink* pLink = m_LinkList->GetPrev(Pos) ;
pLink->m_F = pLink->m_acc * pLink->m_m;
pLink->m_N = pLink->m_I*pLmk->m_wp;
if(i = ranDOF)
{

pLink->m_f_nv = pLink->m_F;
pLink->m_n_nv = CrossProduct(pLink->m_p,pLink->m_f_nv)

+ CrossProduct(pLink->m_r,pLink->m_F) + pLink->m_N;
PreviousLink_Rot=pLink->m_R; //Set Las Link m_R as Previous one
Next_f_nv=pLink->m_f_nv;//Set from last Link
Next_n_nv=pLink->m_n_nv;//Set from last Link

}
else
{

pLink->m_f_nv = PreviousLink_Rot*Next_f_nv + pLink->m_F;
pLink->m_n_nv = PreviousLink_Rot*Next_n_nv +

CrossProduct(pLink->m_p,pLink->m_f_nv)
+ CrossProduct(pLink->m_r,pLink->m_F) + pLink->m_N;

}

A2

PreviousLink_Rot=pLink->m_R;
if(pLink->m_njoint_type == 0)
temp = ((m_z0.t()*pLink->m_R)*pLink->m_n_nv);

else

temp = ((m_z0.t()*pLink->m_R)*pLink->m_f_nv);
ltorque(i) = temp(l,l);
Next_f_nv=pLink->m_f_nv;
Next_n_nv=pLink->m_n_nv;
i - ;

}

ltorque.Release(); return ltorque;

}

ReturnMatrix CManipulator: :Inertia(Column Vector q)
{

//AfxMessageBox(" Inertia");
Matrix M(m_nDOF,m_nDOF);
ColumnVector torque(mnDOF);
Setq(q);

//IdentityMatrix I(mnDOF);
//torque=I;

for(int i = 1; i <= mnDOF; i++)
{

for(int j = 1; j <= m nDOF; j++)
{

torque(j) = (i = = j ? 1.0 : 0.0);
}
torque = TorqueZeroVelocity(torque);
M.Column(i) = torque;

}
M.ReleaseQ; return M;

A3

Appendix B -Function of Jacobian matrix

ReturnMatrix CManipulator: :GetIacobian()
{

int i, j= l ;
Matrix jac(6,m_nDOF);
Matrix pr, temp(3,l);

POSITION Pos = m_LinkList->GetHeadPosition();
while(Pos != NULL)
{

CLink* pLink = m_LinkList->GetNext(P o s) ;
if(pLink->m_njoint_type == 0) //if Revolute
{

temp(1,1) = pLink->m_R(1,3);
temp(2,l) = pLink->m_R(2,3);
temp(3,l) = pLink->m_R(3,3);
//pr = p[dof]-p[i-l];
pr=m_Pos-pLink->m_pb; ///Check correct one is m_pb or m_p
temp = CrossProduct(temp,pr);
j ac(l j) = temp(l,1);
jac(2j) = temp(2,l);
jac(3j) = temp(3,l);
jac(4j) = pLink->m_R(1,3);
jac(5,j) = pLink->m_R(2,3);
jac(6,j) = pLink->m_R(3,3);

}
else //Prismatic
{

jac(l,j) = pLink->m_R(l,3);
jac(2 j) = pLink->m_R(2,3);
jac(3 j) = pLink->m_R(3,3);
jac(4j) = jac(5j) = jac(6j) = 0.0;

}
j++;
}

Matrix zeros(3,3);
zeros = (Real) 0.0;
Matrix RT = m_Rot.t();
Matrix Rot;
Rot = ((RT & zeros) | (zeros & RT));
jac = Rot*jac;

jac.Release(); return jac;

B1

Appendix C -Function of inverse kinematics

void CManipulator: :Caculate_Inverse_Kine()
{

Matrix TransformationMatrix(4,4); TransformationMatrix=0.0;
RecordsetPtr rsTrajectoryDef;

CMDBA MDBA;
MDBA.Connect();
C String csSQL;
csSQL="SELECT * FROM tbltrajectoryDef';
rsTrajectoryDef=MDBA.GetRecordSet(csSQL);
if(rsTrajectoryDef->GetRecordCount()>0)
{

CString csFVal = _T("");
//int nFval=0;

double dblFval=0;
_variant_t vField(_T(""));
_variant_t vResult;

while(rsTrajectoryDef->A_EOF != VARIANT TRUE)
{

TransformationMatrix(1,1)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Roll_l ")-> Value);

TransformationMatrix(2,l)=Getdouble_Value(rsTrajectoryDef->GetFieIds()-
>GetItem("Rot_Roll_2")-> Value);

TransformationMatrix(3,1)=Getdouble_Value(rsTraj ectoryDef->GetFields()-
>GetItem("Rot_Roll_3")->Value);

TransformationMatrix(1,2)=Getdouble_Value(rsTraj ectoryDef->GetFields()-
>GetItem("Rot_Pitch_l")-> Value);

TransformationMatrix(2,2)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Pitch_2")-> Value);

TransformationMatrix(3,2)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Pitch_3")-> Value);

TransformationMatrix(l,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw 1 ")-> Value);

TransformationMatrix(2,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw_2")-> Value);

TransformationMatrix(3,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw_3")-> Value);

TransformationMatrix(l,4)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_x")-> Value);

TransformationMatrix(2,4)=GetdoubIe_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_y")-> Value);

TransformationMatrix(3,4)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_z")-> Value);

CI

TransformationMatrix(4,1)=0;TransformationMatrix(4,2)=0;TransforrnationMatrix(4,3)=0;Transformation
Matrix(4,4)=l;

•

CString csMatrixName;
csMatrixName.Format("TransformationMatrixat%f

sec",Getdouble_Value(rsTrajectoryDef->GetFields()->GetItem("TimeI")-> Value));
//ViewMatrix(TransformationMatrix, csMatrixName);
///////////////

ColumnVector tmpq(mnDOF);
bool converge;
tmp_q=Inverse_Kine(TransformationMatrix, 0,m_nDOF, converge);

//ViewMatrix(tmp_q,"tmp_q from Inverse Kine");
if(converge)
{

}
else
{

AfxMessageBox("Algorithem is not converge");
}

///////////////
PlotLinks();
rsTrajectoryDef->MoveNext();

}
}
else

AfxMessageBox("No Records in the Trajectory Definition");
}

ReturnMatrix CManipulator::Inverse_Kine(Matrix &Tobj, int mj, int endlink, bool &converge)
//Numerical inverse kinematics.

//Tobj: Transformation matrix expressing the desired end effector pose,
//mj: Select algorithm type, 0: based on Jacobian, 1: based on derivative of T.
//converge: Indicate if the algorithm converge,
//endlink: the link to pretend is the end effector

{
IdentityMatrix 1(4);
ColumnVector qPrev, qout, dq, q_tmp;
Matrix B, M;
UpperTriangularMatrix U;

qPrev = Getq();
qout = qPrev;
q_tmp = qout;

converge = false;

C2

if(mj = 0) { // Jacobian based

Matrix Ipd(4,4), A, B(6,l),tmp(4,4);

for(int j = 1; j <= NITMAX; j++)
{

tmp=I;
Calculate_kine();
tmp.SubMatrix(l,3,l,3) = m_Rot;
tmp.SubMatrix(1,3,4,4) = m_Pos;
Ipd =tmp.i()*Tobj;
tmp.Release();
B(l , l) = Ipd(l,4);
B(2,l) = Ipd(2,4);
B(3,l) = Ipd(3,4);
B(4,l) = Ipd(3,2);
B(5,l) = Ipd(l,3);
B(6,l) = Ipd(2,l);
A=GetJacobian();
QRZ(A,U);
QRZ(A,B,M);
dq = U.i()*M;
while(dq.MaximumAbsoIuteValue() > 1)

dq /= 10;

for(int k = 1; k<= dq.nrows(); k++)
qout(k)+=dq(k);

Setq(qout);

if (dq.MaximumAbsoluteValue() < ITOL)

//AfxMessageBox("Algorithem is converge");
converge = true;
break;

}
}

} else // using partial derivative of T
{

Matrix tmp(4,4);
Matrix A(12,m_nDOF);
ComputeLinkPositionPartialDerivative();
for(int j = 1; j <= NITMAX; j++)
{

tmp=I;
Calculate_kine();
tmp.SubMatrix(l,3,l,3) = m_Rot;
tmp.SubMatrix(1,3,4,4) = mPos ;
B = (Tobj-tmp).SubMatrix(l ,3,1,4).AsColumn();
intk=l;
POSITION Pos = m_LinkList->GetHeadPosition();
while(Pos != NULL)

C3

{
CLink* pLink = m_LinkList->GetNext(Pos);
A.SubMatrix(1,12,k,k)

>m_PositionPartialDerivative.SubMatrix(l ,3,1,4).AsColumn();
k++;

}

QRZ(A,U);
QRZ(A,B,M);
dq = U.i()*M;

while(dq.MaximumAbsoluteValue() > 1)
dq/= 10;

for(k = 1; k<=m_nDOF; k++)
qout(k)+=dq(k);
Setq(qout);
if (dq.MaximumAbsoluteValueO < ITOL)
{

converge = true;
break;

}
}

}

if(converge)
{

int i = 1;
POSITION Pos = m_LinkList->GetHeadPosition();
while(Pos != NULL)
{

CLink* pLink = m_LinkList->GetNext(P o s) ;
if(pLink->m_njoint_type = 0) //if Revolute
{

qout(i) = fmod(qout(i), 2*m_PI);
}
i++;

}
Setq(qPrev);
qout.Release();
return qout;

}

}
else
{

Setq(qPrev);
q_tmp.Release();
return q_tmp;

ReturnMatrix CManipulator: :GeUacobian()
{

C4

inti,j=l;
Matrix jac(6,m_nD0F);
Matrix pr, temp(3,l);

POSITION Pos = m_LinkList->GetHeadPosition();
while(Pos != NULL)
{
CLink* pLink = m_LinkList->GetNext(Pos) ;

if(pLink->m_njoint_type = 0) //if Re volute
{

temp(l,l) = pLink->m_R(1,3);
temp(2,l) = pLink->m_R(2,3);
temp(3,l) = pLink->m_R(3,3);
//pr = p[dof]-p[i-l];
pr=m_Pos-pLink->m_pb; ///Check correct one is m_pb or m_p
temp = CrossProduct(temp,pr);
jac(l j) = temp(l,l);
jac(2 j) = temp(2,l):
jac(3j) = temp(3,l):
jac(4j) = pLink->m_R(1,3)
jac(5 j) = pLink->m_R(2,3)
jac(6,j) = pLink->m_R(3,3)

}
else //Prismatic
{

jac(l j) = pLink->m_R(1,3);
jac(2 j) = pLink->m_R(2,3);
jac(3 j) = pLink->m_R(3,3);
jac(4j) = jac(5j) = jac(6j) = 0.0;

j++;
}

Matrix zeros(3,3);
zeros = (Real) 0.0;
Matrix RT = m_Rot.t();
Matrix Rot;
Rot = ((RT & zeros) | (zeros & RT));
jac = Rot*jac;

jac.ReleaseQ; return jac;

C5

11 1 3 °CT 2Qm ,
& ~ Y

v f
fey y <V„ Jef

	91208 Thesis pre-text
	91208 Thesis Chap 1
	91208 Thesis Chap 2
	91208 Thesis Chap 3
	91208 Thesis Chap 4
	91208 Thesis Chap 5
	91208 Thesis Chap 6
	91208 Thesis Chap 7
	91208 Thesis post-text

