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Abstract 

This project highly focuses on a total simulating solution to the robotic manipulator users. The 

existing simulators are narrow with limited applications. Therefore the simulator users do not 

have an adequate solution for the universal manipulators. The simulating solution developed 

through this project is the combination of kinematic, dynamic, trajectory planning and frictional 

model on a one interface. This project has been divided into four different research components 

because of the vast extent of the research areas. 

This thesis is based on the kinematic behavior of this robotic simulator. Under the kinematic 

behavior, the forward kinematic and the reverse kinematic have been focus on. In the forward 

kinematic bases, the systematic analytic approaches are used to develop the algorithm. This 

algorithm describes the spatial relationship between links & link parameters of the manipulator 

and it supports to find the end-effector position and orientation with respect to the joint space 

parameters in a graphical way. On the other hand the forward kinematic supports to visualize the 
manipulator in the 3D environment. 

The reverse kinematic is required to find a set of joint variables that would bring the end-effector 

in the specified position and orientation. In general this solution is non-unique for the universal 

model, but solving the inverse kinematic is most important to design the practical manipulators. 

Therefore the inverse kinematic algorithm is the combination of Jacobian transformation and the 

Taylor series expansion. This combination is ideal to solve the inverse kinematic in this 
simulator. 

The software tool is the final output of this project. The kinematics module supports to find the 

manipulator geometry and the joint angles. But the software tool is the combination of 

kinematics, dynamics and the trajectory planning. 

The object-oriented program is well adapted to this application since OOP can describe each part 

of the robot as one object with its own properties and behavior. Even if C++ is not a perfect 0 0 

language, a lot of very useful libraries are available, and maintains very good efficiency for 
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intensive computations. The robotic applications will be highly popular in the future. Therefore 

this software tool may be most important to develop the manipulator application because it 

provides a total solution for designing the application. Still nobody has developed this type of an 

application tool to manipulator designers. This software application operates with out any 

hindrance and the major advantage is that this simulator can be used for universal serial link 

manipulator for N-degree of freedom. 
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CHAPTER 1 

Introduction of the Simulator Design 

The simulation is a powerful visualizing, planning, and strategic tool in different areas of 

research and development. And it plays a very important role in robotic manipulator 

designing. The simulator facilitates the study of the structure, characteristics, motion and 

the behavior of robot manipulators at different levels of details each posing requirement 

for different simulation tools. As the complexity of the motional behavior increases, the 

role of simulation becomes more and more important. The robotic kinematic algorithms 

and their numerical solutions are quite complex to understand the characteristic and 

behavior of the robotic manipulators in the actual environment. The easiest way to 

understand the motional behavior is to visualize the exact model of robotic manipulator 

and its characteristics. Hence, the simulation tools can certainly enhance the design, 

development, and even the operation of robotic manipulators. 

Augmenting the simulation with visualization tools and interfaces, one can simulate the 

operation of the robotic systems in a very realistic way. Depending on the type of 

application different structural attributes and functional parameters have to be modeled. 

Therefore, a variety of simulation tools have been developed for the robotic manipulators 

that are used in mechanical design. 

A robotic manipulator is designed to perform a task in the 3D space. The tool or end-

effector is required to follow a planned trajectory to manipulate an object or carry out the 

task in the working space. This requires control of position of each link and joint of the 

manipulator to and orientation of the tool. To program the tool motion and joint -link 

motions, a mathematical model of the manipulator is required to refer to all its 

geometrical and time based properties in the motion. 
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Kinematics is the study of motion without regard to the force which causes it; within the 

kinematics one studies the position, velocity and acceleration and all higher order 

derivatives of the position and variables. The kinematics of manipulator involves the 

study of the geometrical and time based properties of the motion and in particular how 

various links move with respect to one another. 

1.1 Background of the requirement 

In order to perform tasks on different manipulator platforms, a kinematics model has to 

be developed for each one of them. Because the equations can become too cumbersome 

to deal with manually when the robots have more than just several joints, a method is 

needed to automate the formation of the kinematics model. Industrial robots are usually 

developed for specified pre-determined tasks. Therefore the requirement of arms 

combination and configuration are different. The manipulator arm configurations, along 

with equations needed for the manipulator arm motion, are determined and solved during 

robot development stage. This limits the robot to the prescribed tasks and to no other. 

However, for robots that must adapt to their environment or perform a wide range of 

tasks, a method is manipulator arm to adapt to changes in joint space & Cartesian space 

Changes to the equations (Jacobian and kinematics expressions). They are required when 

something changes the geometry of the manipulator arm such as when a tool is added to 

the end-effector. In order to accommodate to different manipulator platforms and to 

provide for tool acquisition, a method is needed to automate the formation of the 

kinematic model that eliminates manual calculation processes. 

1.2 Problem statement 

Robots are an integral part of today's industrial scenario. As a result, simulation has 

evolved as a major tool in the programming and the designing of robots. Simulation in 

this sense includes actually having a computer draw conclusions about the workings of a 

system. These conclusions are derived from the knowledge already available about the 

system in question. It is, in effect, a knowledge based process that utilizes the information 
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stored about a particular system in the database to predict its response to various 

situations. Robot simulator is the collection of computer programs and related 

information that is developed, marketed, manufactured and sustained for industrial robots. 

Consequently, the software for industrial robots is best seen from three points of view: 

operation; application; and manufacturing. 

The existing simulators are developed with certain limitations and no simulator designer 

has given a total solution (i.e. robotic motion, dynamic characteristic changes , trajectory 

planning and controlling) for the different manipulator designing platforms. And also 

lots of accurate simulators are already developed with the pre-defined commercial 

manipulators. (E.g. Robware for the ABB manipulators) They are very expensive and 

they can not simulate with the other manipulators. For example if any user who wants to 

add an extra link or change the link parameters (i.e. Joint type, Joint variables or 

maximum limits) they do not have facilities to change it on this simulator. 

The other simulators are study versions (e.g. Robotica) and they can not be used for 

industrial application. Major weaknesses of these simulators are, they disregard the 

dynamic constraints and the manipulator controlling. Then the simulators can not be used 

for the actual manipulator platform. The table 1.1 is explains some of the simulators and 

their features. 

Almost all simulators are developed for the rion- redundant manipulators. The reason for 

this is most of the practical manipulators are developed with the non-redundant base. 

Therefore the simulator designers are interested in doing their products on the non-

redundant base. But now a days lots of researchers are interested to do a research on the 

redundant base manipulators. Therefore today the requirements of the simulator are 

strongly feel for the universal manipulator. 

The MATLAB robotic tool box [6] by Peter I. Corke has given some kind of solution on 

this matter. But it is not a simulator. He has given a tool that can support to develop 

robotic manipulator in the Cartesian space and the joint space both. If any one wants to 
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develop the robotic manipulator on this platform he should study all the tool and 

functions that have been provided in this tool box. In the MATLAB robotic tool box, 

there are fifty seven tools and hundreds of functions available.[7] Then the manipulator 

designers should study all these tools and functions on his manipulator. And the other 

problem is, there is no logical way to array these tools. Therefore lots of bugs and 

deficiencies come in the programming process. As a result of this the manipulator 

designer has to waste a lot of time to meet with these challenges. 

1.3 Available simulators 

The most famous robot simulators and their features are as follows. This resource has 

been provided by the university of Essex U.K.[11]. The aim of this documentation 

attached to this thesis is to understand the available simulators and their features. These 

features are most important to develop the simulator for the universal manipulator. 

1. EASY-ROB by Stefan Anton is a commercial Robot Simulation Tool with 3D graphic 

and animation [11]. The user can design a robot kinematic, move the robot in joint and 

Cartesian space, write a motion program, grab and release some thing, etc. A simple 3D-

CAD System allows creation of basic elements such as block, cylinder, pyramid, cone 

and sphere in order to model a robot, tool and bodies. The user can rotate and translate 

the world view, zoom in and out and do a lot more. No additional graphic power is 

required. But this simulator is based on kinematic. Dynamic behavior of the robotic 

manipulator is not taken into account. 

2. Encarnaco Robot Simulator by Luiz Felipe Rudge Encarnacao is a robot simulation 

that provides a full 3-Dimensional environment (wire frame graphics) with one fully 

moveable robot (5 axis)[l 1]. Control can be exercised via high level control mechanisms 

(i.e. grab, move and placing objects) or manually directed from the keyboard. There are 

several possible views (2 display areas and 15 possible virtual cameras). A camera can be 

placed in one "aeroplane" (i.e. allowing the user to "fly it" and use the resulting 
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perspective as their view). With a mouse you point & click on an object and to make the 

robot grab it. Another click on some possible local will cause the robot to place the robot 

there. With keyboard you can control all parts of the robot and fly the "aeroplane". It runs 

on MS Windows 3 or above. 

3. MATLAB Robotic Toolbox by Peter I. Corke [6]. The Toolbox is based on a very 

general method of representing the kinematics and dynamics of serial-link manipulators. 

But there is no direct simulating facility. There is tools to develop the robotic 

manipulator. These parameters are encapsulated in MATLAB objects and it provides 

many functions that are useful in robotics including such things as kinematics, dynamics, 

and trajectory generation. The Toolbox is useful for simulation as well as analyzing 

results from experiments with real robots. But the reverse kinematic can not solve all type 

of non-redundant manipulators. The tool box designer (Peter I. Corke) has provided the 

close from reverse kinematic solution for standard manipulators like PUMA 560 , 

Stanford arm. 

4. Melbourne-Robots is a robot simulator written by undergraduates Andrew Conway and 

Craig Dillon on a Silicon Graphics workstation for their electrical engineering project at 

the University of Melbourne [11]. There is a latest user manual (inc. the mathematics) but 

not much in the way of installation instructions (ftp address no longer valid). 

5. Robotica is a collection of robotics problem solving functions for the Mathematica 

package [12]. This is the study pack for robotic student. It has the capability of reading 

external simulation (e.g., SIMNON) output files and displaying the motion of the robot 

when subjected to the sequence of joint variables. It requires Mathematica and X-

windows. 
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6. Simderella is a popular simulator that was released to the world in 1993 by Patrick van 

der Smagt of the University of Amsterdam [11]. It came out of his research into neural 

networks and robot control. But this is developed for 6 axis manipulator. The original 

software consisted of three programs, connel: the controller, simmel: the simulator, 

bemmel: the X-windows oriented graphics back-end. Simmel is the part which actually 

simulates the robot. It performed matrix multiplications, based on the Denavit Hartenberg 

method & calculated velocities with the Newton-Euler scheme. But this simulator is 

designed for the non-redundant manipulator. These theories are not valid for the universal 

manipulators. 

To compare the above simulating tool, no one has given a unique solution to the 

manipulator designers. Among these software tools, MATLAB tool box is one of the 

most used platforms for the modeling and simulation of various systems. But it is not a 

direct simulator. There are tools and functions to develop the manipulator simulation. It is 

a time wasting method and lots of bugs and deficiencies should be solved during the 

programming process. And also it is unable to give a total solution for the reverse 

kinematic and also the controlling of the system has been disregarded. 

1.5. Aims and objectives 

The Overall aim of the project is to give a complete solution to simulator users for 

rectifying the above weaknesses of the existing manipulators. In this scenario the 

developed simulator is the total solution for the universal serial manipulators. The final 

solution is combination of forward & reverse kinematic, dynamic solution, trajectory 

planning and manipulator controlling. But in this thesis only the kinematic behavior of 

this simulator is discussed. The 3D graphical interface is ideal to avoid the difficulties of 

programming and overcoming the bug fixing while in the programming. The graphical 

way is the easiest method to visualize the manipulator geometric in the Cartesian space 

and the joint space and behavior of the manipulator in the actual environment. To 

improve the functionality of the program and correct sequence is important to reduce the 
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processing time. Designing the correct sequence to process the program is one of the 

objectives in this project. 

Major objective of this project is designing the correct simulating tool for universal serial 

link manipulator. The new concept of this is to design any degree of freedom for serial 

link manipulator with any link combination and features. And the other aim of this thesis 

is to find a correct kinematic module supportive to the simulating requirement for the 

universal simulator. In these phenomena, the kinematic modeling of the project supports 

the study of the geometric and time based properties of the motion, and in particular how 

the various links move with respect to one another. Under this aspect, solving the forward 

and the inverse kinematic is essential to develop the kinematic algorithm to software 

coding. 

1.6 Literature survey 

Valuable support was provided by the Literature survey to direct this project in the 

correct direction. There are so many techniques used to solve the robotic manipulator 

kinematic and depending on the applicability, their capabilities are different form the 

different platform. Therefore the literature survey played a vital role to find the adaptive 

method for the required simulator application with great efficiency. Hence the literature 

survey is done to find the algorithms for the forward kinematics and the reverse 

kinematics. They are as follow, 

1.6.1 Forward kinematics modeling for the universal manipulator 

The forward kinematic directly supports to find the position and orientation of the link of 

the design manipulator. The Potential difference in the simultaneous links positions are 

used to draw the link in the 3D interface. There are several methods available for forward 

kinematic modeling to understand the motion without respect to force. They are as 

follows, 
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1. Artificial intelligent application 

2. Matrix method of the systematically assigning the co-ordinate systems.(D-H 

Parameter) 

The Artificial intelligent application like Genetic algorithm & Artificial Neural network 

[17] is ideal and accurate for the fixed manipulator. When it is used for the universal 

model different RP combination are provided. Then modeling is very difficult and 

mathematically complex. Then it is more time consuming while in the simulating 

operations. Therefore it is not suitable for the on-line application. 

Solvability matrix method of systematically assigning the co-ordinate system is the 

mathematically elegant and also it is the fastest. Therefore this method is used to solve 

the forward kinematics. 

For forward kinematic modeling, frames are assigned to each link of the manipulator 

starting from the base to the end-effector. The homogeneous transformation matrices 

relating the frame attached to successive links describe the spatial relationship between 

adjacent links[4]. The composition of these individual transform matrices determines the 

overall transform matrix, describing tool frame with respect to base frame. 

The task to be performed by a manipulator is stated in terms of the end-effector location 

in space. The values of joint variables required to accomplish the task are computed using 

the inverse kinematic model. To find the location in space, at any time, the joint variable 

values are substituted in the forward kinematic model. This chapter 4 describes the 

problem of formulation of forward kinematic model. The inverse kinematic model 

formulation will be discussed in the chapter 5. 

1.6.2 Alternative Methods of Inverse kinematic solutions 

There are several possibilities to approach the inverse kinematic problem IK. Most of 

these approaches are based on some sort of search technique [9]. 
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Algebraic approach: this approach is necessary, if one wants to calculate all possible 

solutions of the IK problem [5]. Given a specified linkage, one solves the forward 

kinematics problem explicitly. This in general leads to a set of nonlinear algebraic 

expressions in the state variables of the linkage. Given an end-effector position, the 

problem now is to algebraically solve this system of equations for the unknown state 

variables. Although it is theoretically possible to solve these using symbolic computation 

techniques, it is generally beyond today's computing power. Nevertheless, there exist 

some successful algebraic approaches for a few types of linkages. 

Neural networks: recently, [10] an increasing number of neural network approaches have 

been suggested in the area of robotics. Since this requires teaching the linkage and thus 

highly depends on its actual geometry, these approaches are not very useful for 

simulation purposes. 

Genetic programming and genetic algorithms:[ 10] due to steadily increasing computing 

power these techniques get more and more interesting in the area of Computer Animation 

especially when it comes to highly complex virtual environments. Genetic algorithms are 

directed search algorithms which try to find the solutions by mimizing the natural process 

of evolution. Currently, however, this approach is useless in VRML since today's 

browsers are not capable of providing the computing power necessary to achieve 

anything near real-time. 

Graphical analyzing method: In the closed form solution, [9] joint displacement are 

determined as explicit functions of the position and orientation of the end-effectors and 

also the solution method based on the analytical algebraic or kinematics approaches, 

giving expressions for solving unknown joint displacements. In this project, the 

requirement of inverse kinematics solving is to find joint variable by using the user 

defined trajectory Cartesian space. The inverse kinematics approach of this project is to 

find the joint variable for the universal manipulator model. In the universal manipulator 

model inverse kinematic techniques should be defined for any kind of degree of freedom 

(DOF) with any joint combinations (revolute, prismatic joint combination). 
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Jacobian based approach: [30] one idea which proves to have the highest efficiency for 

most industrial applications is based on the so-called manipulator Jacobian. Roughly 

speaking the manipulator Jacobian is a matrix which describes the relationship between 

joint and end-effector velocities. Given the velocity of the end-effector, the Jacobian 

allows to recalculate the corresponding joint velocities simply by solving a system of 

linear equations. This can be used to deduce a gradient-based iterative technique for 

solving IK. 

The fist four solutions may not be possible to solve all type of manipulators for the online 

simulation bases. A sufficient condition for non-redundant manipulator to possess close 

form solution is that both its three consecutive joint axes interest and its three consecutive 

joint axes are parallel and also the solving method & techniques are different from 

manipulator to manipulator. Therefore the first four methods of solution techniques are 

very difficult to model for these types of application. 

The Jacobian based approach is the interesting and efficient method and it can easily 

model by using the computer application. But generally, there are four methods to solve 

the inverse kinematics. Then the next challenge is to find the most suitable method to 

solve the inverse kinematic of this project. Each and every method of Jacobian base 

solutions has different kinds of advantages and disadvantages. They are as follows. 

1.6.3 Jacobian based numerical solution 

The interactive algorithms are used to reverse kinematic in the Jacobian based solutions. 

Various types of Jacobian methods can be used to solve the inverse kinematics in 

different manipulators with different limitations [11]. And also there is no limitation for 

non redundant and it can be used for redundant and non-redundant both. The Jacobian 

base solutions are not actuated compared to the close form solutions but they can solve 

for the universal type by using various techniques and it is very efficient. The most 

common methods are, 
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1- Jacobian Transpose 

2- Jacobian Pseudo inverse 

3- Damped Least Squares methods 

Jacobian transpose is the fastest method and it can be applied for any kind of degree of 

freedom but the results suffer in the singularity area and the degenerate case. The 

Jacobian transposes method and the optimization-based Newton- Raphson technique can 

stop in local minima. Therefore the interactive solution may not converge in those areas. 

But the Taylor series expression can be used to solve the inverse kinematic on this region 

[13]. Pseudo inverse have also the same problem on the singularity and degenerate case 

and it is more accurate. But there are lots of arguments to solve the inverse kinematics in 

non-redundant manipulator and also it is a very difficult model for different RP (revolute, 

prismatic) combinations. 

The damping least square method is well behaved near the singularity. But it is very 

difficult to model for the different RP combination and the convergence rate is too slow. 

Therefore this is not suited for the on-line application. 

The Jacobin transpose is the best method to solve this simulator inverse kinematics 

because it is faster and efficient than the others. But the direct result does not guarantee in 

near singular region and degenerate case. Therefore it should converge by using Newton-

Raphson techniques [30]. In the singular region Jacobin transpose is not valid. Then the 

Taylor series can be used to solve the reverse kinematics 
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CHAPTER 2 

Design Methodology 

There are two research components used in this simulating tool. They are forward 

kinematics and the reverse kinematics. The supportive way of kinematic modeling is to 

develop this simulating tool as shown in the figure 2.1. Using the kinematic control 

equation, algorithms was developed for the forward and inverse kinematics to solve the 

Cartesian space and the joint space parameters that are related to simulating process. 

Joint variables 
ql(t),q2(t),q3(t), 

q(t)4 

Direct Kinematics 
Modeling 

Joint-link parameters 
1. Link length 
2. Link twist 
3. Link offset 
4. Joint angle 

Inverse Kinematics 
Modeling 

Position & 
Orientation of 
End-effector 

Fig. 2.1 The direct and inverse kinematics model 
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2.1 Manipulator modeling fundamentals for the dynamic 

simulator 

Robot manipulator modeling consists of a geometrical definition along with a kinematical 

description of the linkages. The geometrical definition can be accomplished by creating 

representative three-dimensional (3D) computer-aided graphic models whereas the 

kinematic entities describing the relations between links, velocities, accelerations and 

other characteristics of the manipulator can be obtained from robot kinematic theory. The 

structural design of the components of a robot manipulator uses the optimized geometric 

entities resulting from the previous stages. Though there are numerous software packages 

available for 3D modeling and motion simulation,[10] there is no single all inclusive 

packages that could produce the exact physical (3D characteristics) and functional 

description (motion planning) of the robot. The simulation itself consists of the kinematic 

and dynamic parts depending upon whether or not the actuator forces and torques are 

considered when generating motion trajectories. Once the functional description of the 

manipulator is finalized, any of the widely available solid modeling tools could be used 

for the accurate description of the robot's 3D geometry and an extensive structural 

analysis could be performed. A detailed discussion of structural modeling is shown in 

figure 2.1 and the highlighted areas of this figures is the scope of this thesis. It comes 

sunder the kinematic. It should be solved to develop the dynamic constraint and the 

trajectory planning. 

The Visual C++ (version 6.0) is used for this simulator designing because it is the base 

language and processing time is less compared with the other programming tools [15]. 

The final interface is the total solution for universal manipulator simulations. The 

software tool is the final output of this project. The kinematics module helps to find the 

manipulator geometry and the joint angles. But the software tool is the combination of 

kinematics, dynamics and the trajectory planning. 
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Fig.2.2 structural designs for the proposed simulator 
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2.2 Designing approach 

The supportive way of the kinematic behavior is described in this chapter. It is helps to 

find the manipulator geometric parameters in the Cartesian space and the joint space. To 

program the end-effector motion and link- joint motions, a mathematical model of the 

manipulator is required to refer to all geometrical and/or time base properties of it motion. 

Kinematic model describes the spatial position of the joint and links, and position and 

orientation of the end-effector. [5] In designing a robot manipulator, kinematic plays a 

vital role. The mathematical tools of spatial descriptions will be discussed in the next 

chapter are used in the modeling of robotic manipulator. And the forward kinematic and 

inverse kinematic roles are considered in this chapter. The differential kinematic of 

manipulators refer to differential motion, that is, velocity, acceleration, and all higher 

order derivative of joint-links. 

2.2.1 Forward kinematic approach 

The Forward kinematics is the problem of finding the unique location (position and 

orientations) of the links and the end-effector of the robot for the given set of joint values. 

The position and orientation of link end effector position are used to draw the link in the 

Cartesian space and draw the via point in trajectory. 

2.3.2 Inverse kinematic approach 

The inverse kinematics is used to calculate the joint variable for given via points that 

have to be defined in the Cartesian space. Solving inverse kinematic is the real challenge 

for the simulator manufacturers. Specially for the universal model. The solving of the 

problem of kinematic equation of a manipulator is a nonlinear one. By using numerical 

techniques two unique solution have been obtained for inverse kinematic equation for 
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universal manipulators. They are Jacobian transformation base Newton-Rhapson 

techniques and the Taylor expression. 

In addition to dealing with static positioning problems, author may wish to analyze 

manipulators in motion. Often in performing velocity analysis of a mechanism it is 

convenient to define a matrix quantity called the Jacobian of the manipulator. The 

Jacobian specifies a mapping from velocities in joint space to velocities in Cartesian 

space. Manipulator Jacobian is the most important to find the inverse kinematic solution 

in this manipulator. The nature of these mapping changes as the configuration of the 

manipulator varies. At the singularities the existing mapping is not invertible. Then 

another mapping system like Taylor expression should be considered to solve the joint 

space parameters. An understanding of the phenomenon is important to designers and the 

users of the manipulator. 
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CHAPTER 3 

Forward Kinematics Modeling Theories 

Robotic manipulator modeling consists of a geometrical definition along with a 

kinematical description of the linkages. The geometrical definition can be accomplished 

by creating representative three-dimensional (3D) graphic models whereas the kinematic 

entities describing the relations between links, velocities, accelerations and other 

characteristics of the manipulator can be obtained from robot kinematic theory based on 

Denavit-Hartenberg(D-H) parameters[ 12] 

3.1 Mechanical structure and notation of the manipulator 

Typical robots are serial-link manipulators comprising a set of bodies, called links, in a 

chain, connected by joints which allow linear or revolute motion between connected links 

each of which exhibits just one degree of freedom (DOF) are not common. For a 

manipulator with n joints numbered from 1 to n, there are n+ 1 links, numbered from 0 to 

n. Link 0 is the base of the manipulator, generally fixed, and link n carries the end-

effector. Joint i connects links i and i-1.[5] 

A link may be considered as a rigid body defining the relationship between two 

neighboring joint axes. A link can be specified by two numbers, the link length and link 

twist, which define the relative location of the two axes in space. The link parameters for 

the first and last links are meaningless, but are arbitrarily chosen to be 0. Joints may be 

described by two parameters. The link offset is the distance from one link to the next 

along the axis of the joint. The joint angle is the rotation of one link with respect to the 

next about the joint axis. [7] 
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3.2 Denavit and Hartenberg notation for manipulator 

configuration 

Denavit and Hartenberg have proposed a matrix method of systematically assigning 

coordinate systems to each link of an articulated chain. This method is mathematically 

elegant and it is used to develop the forward kinematics algorithm for this project. 

Another advantage of this method is, it is very logical and easy to model the any kind of 

degree of freedom serial link manipulator through this method. [5] 

To facilitate describing the location of each link we affix a coordinate frame to it. The 

frame i is attached to link i. The axis of revolute joint i is aligned with z,_i. The x,_i axis is 

directed along the normal from z,-_\ to z, and for intersecting axes is parallel to z,. i x z,. The 

link and joint parameters may be summarized as follows (see figure 3.2): 

Link length (a,) - the offset distance between the z m and z, axes along the x , axis; 

Link twist (a , ) - the angle from the z i axis to the z, axis about the x, axis; 

Link offset (d,) - the distance from the origin of frame /-1 to the x, axis along the zu\ 

axis; 

Joint angle (0/) -the angle between the x,.i and x, axes about the z,_i axis. 

For a revolute axis 0, is the joint variable and dt is constant, while for a prismatic joint dj 

is variable, and 0, is constant. In many of the formulations that follow we use generalized 

coordinates, qt, where 

q,= 0, for a revolute joint 

qt= dj for a prismatic joint 

The Denavit-Hartenberg (DH) representation results in a 4x4 homogeneous 

transformation matrix. 
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Translation is qualitatively different form rotation in one important respect. In rotation, 

the origins of two coordinate frames are same. This invariance of the original 

characteristic allows the representation of rotation in 3-D space as a 3x3 rotation matrix 

Ri. However, in translation, the origins of translated frame and original frame are not 

coincident then the origins have to be translated by a 3x1 translation vector P/ [5]. 

Rotation matrix, R 

(3X3) 

Translation vector, P 

(3X1) 

Prospective 

Transformation matrix 

(1X3) 

Scale factor 

(1X1) 

Mnt i 

Fig. 3.1 -Denavit -Hartenberg parameters 

+1 
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The Rotation matrix, Ri represents the orientation of the entire link and the translation 

vector, Pi represents the position of same link of the manipulator. These 3D valves can 

be used to draw the link position and orientation with respect to the previous frame in the 

Cartesian space. [5] 

For the next link rotation matrix R ,•+/ can be written as follows, 

On 0 n in Kj+1 - Kj Kj+1 (3.3) 

And the translation matrix can be written as follows, 

°Pi+1 = W / V / (3.4) 

Where, 

°T,= 

On 0p K-i+l M+l 

0 1 

The '"'Aj matrices can be used to develop a matrix of expressions for the forward 

kinematics equation, T, for the manipulator arm. T is a 4 x 4 matrix which gives the 

position and orientation of the end-effector with respect to the base frame as a function of 

each of the joint variables qt. 

T= A\(qi)A\(q2) A*~ x(qJ (3.5) 

This method can be used to calculate the position and orientation of the serial link 

manipulator [5]. These calculated values can be used to draw the links in the Cartesian 

space on the user graphical interface. The used algorithm to draw the manipulator on the 

Cartesian space is as follows. 
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3.3 Algorithm for the manipulator link frame assignment 
• 

This algorithm assigns frame and determine the D-H -parameters for each link of an n-

DOF serial link manipulator. [5] Both, the first link 0 and the last link n, are connected to 

only one other link and thus, have more arbitrariness in frame assignment. [29] For this 

reason, the first (frame {0}) and the last (frame {n}) frames are assigned after assigning 

frames to intermediate links, link 1 to link (n-1). 

The displacement of the each joint-link is measured with respect to a frame and therefore 

the initial position of each link needs to be clearly defined. The initial position of a 

revolute joint is when the joint angle is 0 , while for the prismatic it is when the joint 

displacement d is between working range, (i.e. maximum and minimum of the variable 

displacement). 

Because of mechanical constraints, the range of the joint motion possible is restricted 

and, in some cases, this may result in a home position that is unreachable. In such cases, 

the home position is redefined by changing the initial manipulator joint and /or frame 

assignments. The new home position can be obtained by adding a constant value to the 

joint angles in case of revolute joint and to the joint displacement in the case of prismatic 

joint. This shifting of the home position is illustrated in figure 3.3. 

Normally the manipulators, the initial position as zero position is designed in the joint 

variable. But this simulator has been designed to take any position of the joint variables 

in the working range as home position. Therefore the user has a good flexibility to select 

home position including zero position. Assigning frame of the manipulator designer 

should decide the home position of his manipulator. 

The algorithm is divided into four parts. The first segment gives steps for labeling 

scheme and the second one describes the steps for frame assignment to intermediate links 

1 to (n-1). The third and fourth segments give steps for frame {0} and frame {n} 

assignment, respectively. 

Step 0- Identify and number the joints starting with base and ending with end-effector. 

Number the links from 0 to n starting with immobile base as 0 and ending with last link 

as n. 

22 



Step 1 - Align axis Z; with axis of joint (i+1) for i= 0,1, ,n-l 

Assigning frames to intermediate links-link 1 to link (n-1) for each link i repeat step 2 

and 3. 

Steps 2- The xt axis is fixed perpendicular to both Z/_/ and Z/ axes and points away from 

Zi-i . The origin of frame {i} is located at the intersection of Z/ and X-, axes. Three 

situations are possible. 

Case 1- If Z/_y and Z, axes intersect. Choose the origin at the point of their 

intersection. The xi axis will be perpendicular to the plane containing Z /./ and Z, 

axes. This will give to be zero. 

Case2- if the Z w and the Z,- axes are parallel or lie in parallel planes then their 

common normal are not uniquely defined. If joints / is revolute then Xi -axis is 

chosen along that common normal, which passes through origin of frame {i-1}. 

This will fix the origin and make </, zero. If joint i is prismatic, Xt axis is 

arbitrarily chosen as any convenient common normal and the origin is located at 

the distal end of the link L 

Case 3- if Zj_i and Z, axes coincide, the origin lies on the common axis. If joint i 

is revolute, origin is located to coincide with origin of frame {i-1} and Xt axis 

coincides with X,_/ axis to cause d, to'be zero. If joint i is prismatic , Xi axis is 

chosen parallel to Xt.i axis to make at to be zero. The origin is located at distal 

end of link i. 

Step3 - The F; axis has no choice and is fixed to complete the right-handed orthonormal 

coordinate frame {i}. 

Assigning frame to link 0, the immobile base-frame {0} 

Step 4 - The frame {0} location is arbitrary. Its choice is made based on simplification of 

the model and some convenient reference in workspace. The Xq axis, which is 
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perpendicular to Z0 axis, is chosen to parallel to XI axis in the home position to make 

0i=O or any where in working range. The origin of the frame{0} can be chosen at a 

convenient reference such as, floor, working table, and so on ,giving a constant value for 

the parameter di zero. If joint 1 is prismatic, parallel X0 -and Xj axes will make 0/ to be 

zero and origin of frame {0} is placed arbitrarily. 

Step 5 - The Y0 axis completes the right -handed orthonormal coordinate frame {0}. 

Link n, the end effector, frame assignment-frame {n} 

Step 6 -The origin of frame {n} is chosen at the tip of the manipulator, that is, a 

convenient point on the last link (the end-effector). This point is called the "tool 

point" and the frame {n} is the tool frame. 

Step 7 - the Z„ axis is fixed along the direction of Z „_/ axis and pointing away from the 

link n. It is the direction of "approach." 
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Step 8- if joint n is prismatic; take X„ parallel to Xn.j axis. If joint n is revolute, the 

choice of the Xn is similar to step 4, that is, X„ is perpendicular to both Z„_i and Z„ 

axes. Xn direction is the "normal" direction. The Y„ axis is chosen to complete the 

right-handed orthonormal frame {n}. The Yn axis is the "orientation" or "sliding" 

direction. 

Once the frames are assigned to each link, the joint parameter (0j </, a, aj) can be easily 

identified for each link, using which the direct kinematic model developed in designing 

the universal manipulator on this robotic simulator. In fixing the frames, it is desirable to 

make as many of the joint-link parameters zero as possible because the amount of the 

25 



computation necessary in later analysis is dependent on these. Hence, where there is a 

choice in frame assignment, emphasis is on making a choice, which results in as many 

zero parameters as possible. The flow chart of forward kinematic modeling is shown in 

the figure 3.4. 

Fig. 3.3 - Flow Chart of Forward Kinematic 
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3.4 Manipulator Jacobian which relates to build the inverse 

kinematic algorithm 

The manipulator Jacobian is a support to find the joint variable for the given end-effector 

position and orientation when it is moved in the desired trajectory path. Even though the 

position and orientation equations are non-linear, the relationship between the velocity of 

the distal end and the velocities of the joint angles is linear. If the forward kinematic 

problem is stated by x =f(q), then numerical solutions to the inverse kinematic problem 

typically involve differentiating the constraint equations to obtain a Jacobian matrix[5] 

, df 
J = Y q ™ 

And solving the linear matrix system 

X=Jq (3.7) 

Where, 

x = 6x1 Cartesian velocity (desired angular and liner velocity) vector 

*= [ Vx Vy Vz COx COy C02 ] T (3.8) 

q= nxl vector of n joint velocities 

q = [ 0 , e 2 e 3 d n f (3.9) 
J= 6x n Manipulator Jacobian 

The Jacobian is a function of the joint variable. The Jacobian function supports to 

develop the reverse kinematic modeling of this project. To solve the reverse kinematic is 

the key feature of this project and it will be explained in chapter 5 in detail. 
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The manipulator Jacobian, J, is a 6x n matrix (e.q.4.5) where n is the number of joints in 

the manipulator arm. The zth column of Jean be thought of as two 3x1 vectors, JLi and JAi 

, which are associated with the linear and angular velocities, respectively, of the tip of the 

robot arm due to the z'th joint velocity. So we can partition J as follows:[18] 

The Jacobian deals with small motions of the end-effector about its current position and 

arm Configuration, so each of the elements of J is a function of the joint variables, qt . 

The first three rows of J (J/,) deal with the linear velocity of the end-effector with respect 

to the base coordinate system. Each column of J L , vector iLi , is formed by differentiating 

the expression for the position of the end-effector, which is given as the last column in T, 

as follows[18]. 

J L i = 

r dx 

dqi 
dy 
dqt 

dz 
dqi-l 

(3.12) 
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The last three rows of J (J^) deal with the angular velocity of the end-effector and are 

due to the angular velocity of the end-effector generated by each joint. There is no 

contribution to the angular velocity at the end-effector for prismatic joints, so: 

J At <?( =0 for prismatic joint / 

However a revolute joint i rotates the links i to n at the angular velocity ro, as follows: 

JAi qt = coi (3.13) 

Where 

bM is the unit vector pointing along the direction of the joint axis i. For revolute joint i, 

the rotation is about the z /./ axis, by convention. In terms of coordinate frame i, b,.i is 

represented as [0, 0,1]T. 

The rotation matrix R can transform a vector in the ith frame to one in the previous (i-1) 

frame. To determine bM for Eq. (3.13), the rotation matrices to express the zM axis with 

respect to the base frame as follows: 

bi-,=K1°(q,)--tfIt1
2(qi.1) (3.14) 

To summarize above equations, 

The manipulator Jacobian defines the relation between the velocities in joint space q and 

in the Cartesian space x expressed in frame i: 

~ j(Sl)i Q (3 .15) 

or the relation between small variations in joint space Sq and small displacements in the 

Cartesian space 8%: 

8xi ~J(q)iSq (3 .16) 
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The manipulation Jacobian expressed in the base frame is given by 

°J(q)= fJtiq) °J2(q) ...°Jn(q)] (3.17) 

With, 

% (q) = Zi-1 X1"1 Pn for a revolute joint 

°Ji(q) = [Z q 1 j for a prismatic joint 

Where, 

Zi-i and 1 1 pn are expressed in the base frame and x is the vector cross product [20]. 

Expressed in the i'h frame, the Jacobian is given by 

'j(q) = 
CiRY o 

o CtRY 
}J(q) (3.18) 

This function returns 'J(q) (i = 0 when not specified) for the end-link. 

3.6. Jacobian singularities 

Those manipulator configurations at which J become noninvertible are termed as 

Jacobian singularities and the configuration is itself called singular. At the singularities, 

the Jacobian matrix loses its rank and becomes ill conditioned at values of joint variables 

q at which its determinant vanishes. 
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The study of manipulator singularities is of great significance for the following reasons: 

• 

1. It is not possible to give an arbitrary motion to end-effector; that is, singularities 

represent configurations at which structural mobility of the manipulator is reduced. 

2. At a singularity where no solution any exists for the inverse Jacobian problem. 

3. In the neighborhood of a singularity, small velocities in the Cartesian space 

require very high velocities in the joining space. This causes problems when the 

manipulator is required to track a trajectory that passes close to the singularity. 

To solve this problem in the inverse kinematics of this simulator, the Taylor series is used 

to solve the joint space parameters [7], Used method of calculating the inverse kinematics 

will be explained in next chapter. 
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CHAPTER 4 

Inverse kinematic Approach on the Simulator 

Inverse kinematics plays a key role in this simulating tool. Inverse kinematics is more 

difficult than the forward because there is no unique solution for it. The inverse equations 

are non-linear simultaneous equations, involving transcendental functions. The number of 

simultaneous equations is also generally more than the number of unknowns, making 

some of the equations mutually dependent. 

4.1 Used methods for inverse kinematic solving techniques 

The key role of this project is the configuration of a joint space for a continuous function 

of one or more real scalars; or a rotational joint, the scalar is the angle of the revolute 

joint or length of the prismatic joint.[l 1]. 

The complete configuration of the manipulator is specified by the scalars q!i q2, q3—qn 

describing the joints configurations. Assuming there are n joints and each q, value is 

called a joint variable. Certain points on the links are identified as end-effector. The end 

effector current position 5 is a function of the joint variable [17]. The target position of 

the end-effector is t. (see figure 5.1) 

The desired change in position of end-effector is Sx. Then, 

(4.1) 

(4.2) 

Let, 

Sx = t-s 

8x=t-s 
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The joint angles are written as a column vector as q= (q,,q2 ,qn)T. The end effector 

positions are function of the joint variable; this fact can be expressed as s=x (0). The 

inverse kinematic problem is to find values for the 0, so that, 

U =Si(0) ( 4 . 3 ) 

For this, the functions d/ are linearly approximated using the Jacobian matrix. The 

Jacobian matrix J is a function of the q values and is defined by 

Sx 

The basic equation for forward dynamic that describe the velocities of the end effector 

can be written as follows (using dot notation for first derivatives) 

X=J(q)q (4.5) 

The Jacobian leads to a method for solving equation (5.1) , suppose the current values for 

the q, s and t. From these, the Jacobian J=J(q) is computed. 

Then the update valve Aq for the purpose of incrementing the joint variable q by Aq, 

q=q+Aq (4.6) 

The change in end effector position caused by this change in joint angles can be 
estimated as, 

Ax « JAq (4.7) 

4.2 Inverse kinematics algorithm 

Selected method of the inverse kinematic calculation is shown in the figure 5.2. The 

solution is the combination of the Newton -Raphson base Jacobian transformation 
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method and the Taylor expression. The Taylor expression is used to calculate the inverse 

kinematic near the singularity region. Used method is explained as follows. 

4.2.1 Computed inverse kinematic model by using Newton-Raphson 

technique 

Let mj=0, it is based to solve the inverse kinematic by using the Newton -Raphson 

techniques. [30] 

°Tn(qV = °Tn(q + Sq) « °Tn(q)dT(8q) = T obj (4.8) 

Where, T obj is the end-effector transformation matrix which is selected by user in his 

trajectory Cartesian point. 

Then we can write the eqn 5.9 as follows and the ST(dq) assumes the form o f / and A 

ST(dq) = fT^q))-1^ = I + A (4.9) 

Where the / is the identity matrix & A can assume as follows. [7] 

• 0 - A Sy dx 

Sz 0 -Sx dy 
— Sy 0 dz 

• 0 0 0 (K 

From the eqn 4. 10 we can write the end-effector differential motion as follows, 

n8x= [dx dy d z 8X 8y 8Z ]T (4.11) 

Then jointing variable 5q can be found as follows 

"5x~ nJ(q)5q (4.12) 

If 8q is "small enough" the interaction stops; otherwise above procedure is repeated with 

new estimate value, 
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Ri+i =9t + S q (4.13) 
The numerical procedure finds only one solution, i.e., the one to which the iteration 

converges. 

4.2.2 Computed inverse kinematic model by using Taylor series 

If mj - 1, it is based on the following Taylor series and it can be written as follows. 

3Tn(q*) = °T n(q + 5q) « °Tn(q) d°Tn 
' dqi 

Sqi 

The partial derivatives of can be calculated as follows, aqi ' 
d°Tn 

T = °Tl-iQl
i-'Tn 

where the Q, is 

0 - 1 0 On 
1 0 0 0 
0 0 0 0 
0 0 0 oJ 

Qi 

dqi 

for arevolutejoint 

(4.13) 

(4.14) 

Qr 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0J 

for a prismatic joint 

Given the desired position represented by the homogeneous transform T o b j , this function 

returns the column vector of joint variables that is corresponding to this position [23]. On 

return, the value converge is true if the Procedure has converge to values that give the 

correct position or else it is false. 
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4.3 Calculate the singularities and test the convergence 

The NEWMAT 11 Mathematic library in C++ is used to calculate the inverse kinematic 

convergence in simulator and the NEWMAT 11 is commonly used for Object oriented 

programming in C++ [23]. In this case, it is used to check the convergence of Newton-

Raphson base Jacobian inverse calculation if it fails then the end-effector trajectory point 

in the desired manipulator may be in the singularities region or out of the working space. 

Then the inverse kinematics solves on the Taylor expansion and check the convergence. 

If it is convergence then it is in the singularity region or else then the selected trajectory 

point is out of boundary in working space [13]. It may be difficult to completely 

eliminate the possibility of unreachable positions and still get the desired motion. Second, 

if target positions are barely reachable and can be reached only with full extension of the 

links, then the situation is very similar to having unreachable targets. Unfortunately, the 

situation of target positions in unreachable positions is difficult to handle robustly. Many 

methods, such as the pseudo inverse or Jacobian transpose methods, will oscillate badly 

in this situation; however, Taylor expansion methods can still perform well with 

unreachable target positions. But The Newton-Raphson base Jacobian is more accurate 

than the Taylor expansion. Therefore the priority of the inverse calculation has been 

given to the Newton- Raphson base solution. 

The convergence theory is the superior method to achieve correct value for the inverse 

kinematic solution. In order to perform the Taylor expansion and Newton-Raphson 

techniques of reverse kinematics, the real-time computation of any order derivatives of 

inverse kinematics of any serial manipulators can be used (n joints, rotary or prismatic) 

[30], Set of tests measured how well the different methods converged accurately to fixed 

target positions. 

For these tests, the target position is moved discontinuously and the joint angles are 

updated repeatedly until either the end effector reaches it position or fails to continue 
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moving towards the end effector. In the both cases, thousand time tests for the 

convergence are separately done to find whether the target positions are reachable or not. 
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Fig. 4.2.The flow chart of Inverse Kinematic calculation 
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CHAPTER 5 
Design the Software Tool 
The developed dynamic simulator is an interactive 3D environment for viewing robot 
manipulator module as described in the tabulation dialog mode. In the developed robot 
manipulator, the jointing variables can be changed and it can be viewed on dialogs. And 
also the user can view the end effector orientation, visualizing dynamic stability and 
trajectories through time-based animation. 

5.1 Object oriented programming 

The object-oriented program is used to develop this simulating tool since OOP can 
describe each part of the robot as one object with its own properties and behavior. Even if 
C++ is not a perfect 0 0 language, a lot of very useful libraries are available, and 
maintains very good efficiency for intensive computations. The selected software tool for 
this robotic simulator is Visual C++ 6. The visual C++ developing environment is well 
adaptive and more flexible for this type of application [15]. The object oriented 
programming is also considered to be better at modeling the real world than in procedural 
programming. It allows for more complicated and flexible interactions. The object orient 
programming systems are also easier for non-technical personnel to understand and easier 
for them to participate in the maintenance and enhancement of a system because it 
appeals to natural human cognition patterns. 
For this application, an object orient programming approach is faster since many objects 
are standard across systems and can be reused for different kinds of modeling like 
kinematic, dynamic and trajectory planning. 
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5.2 Supporting C++ libraries 
• 

All kind of supportive tools and functions are not developed in the software tool 
programming process. There are many kinds of tools and techniques that can help in the 
developed software tool and they are freely available in web. This can be used in the 
programming process to save the time. C++ directly supports a variety of programming 
styles. In this, C++ deliberately differs from languages designed to support a single way 
of writing programs. For this software tool authors have used to two supportive libraries 
for the mathematical operation and developing the user interface 

5.2.1 NEWMAT 11 mathematic library 

To develop a tool for mathematical operation of the project is one of the major objectives 
of this program and this tool should support to the Visual C++ operation and it should be 
faster and mathematically elegant [16]. Among the various tools and libraries the 
NEWMAT 11 is the selected tool to solve the mathematical operation in this project. 

NEWMAT 11 developed by Robert Davies [13] is used for mathematical operation in this 
project. The simulation of robotic manipulator models in an environment that provides 
"MATLAB like" features for the treatment of matrices. NEWMAT 11 is a portable tool 
which uses the professional C++ programming. 

The package is intended for scientists and engineers who need to manipulate a variety of 
types of matrices using standard matrix operations. Emphasis is on the kind of operations 
needed in statistical calculations such as least squares, linear equation solve and eigen 
values. 

It supports matrix types 

Matrix rectangular matrix 
SquareMatrix square matrix 
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nricMatrix for use with Numerical Recipes in C programs 
UpperTriangularMatrix 
LowerTriangularMatrix 
DiagonalMatrix 
SymmetricMatrix 
BandMatrix 
UpperBandMatrix upper triangular band matrix 
LowerBandMatrix lower triangular band matrix 
SymmetricBandMatrix 
RowVector derived from Matrix 
ColumnVector derived from Matrix 
Identity Matrix diagonal matrix, elements have same value 
Only one element type (float or double) is supported. 

The package includes the operations *, +, -, Kronecker product, Schur product, 
concatenation, inverse, transpose, conversion between types, sub matrix, determinant, 
Cholesky decomposition, QR decomposition, singular value decomposition, eigenvalues 
of a symmetric matrix, sorting, fast Fourier transform, printing and an interface with 
Numerical Recipes in C. 

5.2.2 NT Graph3D graph library 

3D Data visualizing on the 2D environment is one of the challenges of the project. After 
testing and referring to different methods, tools and libraries NT Graph3D was selected 
as a reference resource to develop the user Graphical interface. It was a supportive library 
to develop a graphical tool but it does not well match to the required interface. Therefore 
the concept of development of this tool has been used and the new interface for these 3D 
data visualization[27] has been developed. 
NT Graph3D is the graphical library developed by Nikolai Teofilov. This is the key 
source which is use to develop the 3D interface. The NT Graph3D directly supports the 
visual C++. In the figure 2.2 the developed interface is shown. 
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Fig. 5.1- Proposed Interface 

5.3 Software architecture 

This simulation architecture provides developers with the opportunity to easily extend the 
current simulation engine's abilities, without requiring modifications to the simulation 
engine code itself. In the event that developers need to add substantial new abilities to the 
simulator, the simple design of the simulation engine's architecture will make it easy to 
modify the simulation engine to incorporate these new abilities. This is the art of object 
oriented programming. In the design of this architecture, the object oriented 
programming has responded in three ways of this software to meet these programming 
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requirements. They are, providing techniques for managing enormous complexity, 
achieving reuse of software components, and coupling data with the tasks that manipulate 
that data. In the visual C++ enough tools have been provided to affiliate the complexity 
of the program and the adaptability of the system tool. The designed programming 
architecture is shown in the figure 6.1. It has to be provided with the facilities to 
enhancing the simulation tool and the adaptability to the controlling application. 

In this architecture repeatability of element and the tool has been eliminated. Because of 
four different modules (i.e. kinematic, dynamic, trajectory planning and the friction 
module developing) this simulator has been developed as individual components. 
Therefore the simulator executing is faster and efficient. In the CManipulator.Cpp class 
has seven major tools. They are serialization, calculation tool box, matrix output viewer, 
3D graphics viewer, link class, 2D graphical output viewer and manipulator database 
access object. In this thesis only the related classes for the kinematic module 
development is discussed.. 

5.3.1 CManipuIator Class 
CManipulator class is the basic class of this program. It processes the forward & inverse 
kinematic algorithms. 

5.3.2 Serialization Tool. 
The Serialization is the class of data storing. This tool can be used to store the data and it 
can re-call the data. The different manipulator designing applications can be stored as a 
set of data. The stored data can be re-called and edit according to requirement of users. 

5.3.3 Calculation Tool Box 
The Calculation tool box is used to calculate all kinds of kinematic applications in this 
software. Not only the kinematic but also the dynamic and trajectory planning application 
can be calculated. 
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5.3.4 Matrix output viewer 
Matrix output viewer tool is used to view the matrix element which is related to the 
calculation process. Basically this tool is used to view the link transformation matrix and 
the Jacobian matrix in the forward kinematic. And in the reverse kinematic, the joint 
variable column vector for the reverse kinematics. 

5.3.5 Link Tool 
The link tool is used to enter link properties and there are two sub-tools. They are link list 
tool and link properties tool. The link list is used to enter link parameters and link 
properties tool is used to visualize link data. 

5.3.6 3D Graph Viewer 
The 3D Graph Viewer is used for visualizing the entered parameters on the 3D 
environment. This graphical data can be rotating, zooming and panning to analyze the 
designed manipulator. 

5.3.7 2D Graphic Output Viewer 
This tool is used to display trajectory and dynamic graphical data in a time domain. 

5.3.8 Manipulator Database Access Object 
This tool is the same as the serialization tool. It is developed for the future enhancing of 
the this software tool. This database can be used to develop the controlling part of this 
software. 
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Fig. 5.2 -Software architecture 

5.4 Functional relationships between the classes for simulator 
design 

In an object oriented software design, the functional interaction is most important to 
eliminate the data duplication and modification of the functional operation as a 
requirement. Therefore the functional operation of this project is sharing in four basic 
classes. They are Manipulator, Newmat, NT Graph, NT Graph 3D. figure 5.3 The 
Manipulator class is handled for all kinds of robotic kinematic operations including 
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kinematic calculation, updates, data storing and re-calling the application. Not only the 
kinematic but also the dynamic, trajectory planning and controlling operation are 
included too. 
All kinds of mathematical operations including the matrix operation are handled by 
Newmat. If any mathematical operation is required in the Manipulator designing 
application the Newmat is called for this operation by the Manipulator class. As an 
example, to calculate the end effector transformation in the simulating process the 
Newmat class is called to the matrix multification operation by the Manipulator class. 
The NT Graph function is called to draw the 2D graph to represent the 2 dimensional data 
by the NT Graph class. The joint angle, joint velocity, joint acceleration and the dynamic 
data in the time domain can be visualized on the graph. 
The NT Graph 3D class is used to visualize the user defined manipulator link 
arrangement in the 3D environment. All the required tools to visualize like rotating, 
Zooming and colour changing are included in this class. Different colours are used to 
represent the links as well as to draw the trajectory segment. 

5.4.1FunctionaI relationship for the forward kinematics 

The conceptual design for the kinematic development of this project is highly focused in 
this thesis and the sequence of C class which is related to the forward kinematic is shown 
in the above (Fig6.8) diagram. The entered link D-H parameters in the CNewlinkDlg 
class are stored in the Clink class as variables.'The stored variables in the Clink class are 
used to calculate the link position and orientation in the CManipulator. The CManipulator 
is the base class of this project and all key features of the kinematic modeling are 
included in this class. They are plot link, add new link, calculate Jane, Edit link 
properties etc. The plot link function is used to transfer the data to the Cverttex class and 
also the add new link function is used for storing the new link data to find the position 
and orientation of the entire link. The calculate_kine is one of key function in the 
CManipulator class. This function handles all kinds of the forward kinematic algorithm 
and the important result of this operation is the position vector of the link. In the Cvertex 
class, the calculated 3D link position value is converted to the 2D value to display on the 
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Fig.5.3. Functional relationship between the basic classes 
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computer screen. The calculated vertexes will draw on Cartesian in the 3DGraph class. 
The link joint variable can change in the link properties dialog. These changes are stored 
and update the Clink class. The updated values are repeated in the above sequence of 
forward kinematic and draw the current position on the user interface. This method is 
used to draw any number of links for any degree of freedom. The logic of the sequential 
designing is easy and flexible. 

5.4.2 The matrix viewer 

Matrix viewer is a different tool that can be view the matrix element in the kinematic 
operation and this is the subclass functional feature in the Manipulator class. Not only 
this operation but also through out this project this tool is used to test the data in the 
programming stage. This tool directly supports to check the validity of the used algorithm 
in kinematic modeling. And also it is used to check the error correction with the 
MATLAB robotic tool box results while in the programming. 

5.4.3 Functional relationship for the inverse kinematics 

The sequence of the reverse kinematic calculation is described as follows. Fig(6.9). The 
user can define his own trajectory and the end effector position and orientation can be 
found on the Cartesian space in the TP definition class. The stored end effector 
transformation matrix is used to calculate the joint space in the user define manipulator. 
This operation is done by CManipulator. The calculated joining variables will update the 
forward kinematic engine and it's draw on the Cartesian space. 
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This thesis deeply discusses the kinematic behavior but the simulator provides the total 
solution (dynamic modeling, trajectory planning and manipulator control techniques for 
the manipulator users. But they are separate research components of this project. 
Therefore this thesis does not discuss another class and designing concept. 
At the beginning, the members of this project have desired to develop separate classes 

(CKinermatic, CDyanmic, Ctrajectory etc.) which belong to their won research 
components. And further we desired to gather these classes to find the final solution of 
this project. Then some parts of the functions will be repeated and the program will get 
stuck while in the operation. Then the running efficiency of this project will reduce and 
increase the simulation error. Therefore the project members have desired to develop 
separate coding functions which are related to their won research components in the 
common classes to increase the running efficiency. 
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CHAPTER 6 
Implementation of Programming Interface 
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Fig .6.1-User Graphical interface (UGI) 
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6.1 Programming interface. 

The completed application, shown in Figure 6.1 allows users to create and edit files 

containing commands to control the simulated robot, and run a simulation. Running a 

simulation updates both the 3-dimensional representation of the robot's motion, and the 

display of the robot's joint positions in accordance with the user's program. Assigned 

manipulator link frame on D-H parameter table (fig 6.3) can be entered on new link 

dialogs and it can be viewed as graphical on the 3D interface. Then the user can find the 

desired manipulator geometric view on the 3D environment. 

Further this simulating tool provides facilities to user to the change the joining variable 

by using the link property dialog and the user can check the manipulator behavior in the 

Cartesian space. In the same instant the simulator updates both the 3-dimensional 

representation of the robot's motion and the display of the robot's joint positions in 

accordance with the user's designing. 

User Graphical interface is used to display the user defined manipulator visualization. 

The right hand side buttons can be used to study the kinematic behaviors in forward and 

inverse bases, trajectory planning in the Cartesian and the joint space in a graphical form 

and dynamic modeling in a 2D graphical view. Further mode bottom can be used to rotate 

the 3D Viewer and zooming. The color of the -X,Y,Z grid and the back ground can be 

changed by using the properties Button. (See fig 6.2) 

6.2 New link entering dialog 

The new link dialog can be used to enter the link parameters as D-H parameter mode. 

The group box of joint type can be used to select the joint type whether it is revaluate or 

prismatic. When the user selects the joint type by using the radio button the joint Variable 

group box will display the joint variable. Then the value of joint variable should be 
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entered on that edit box. The link properties group box can be used to enter the D-H 

parameters like link offset, link length, link twist etc. 

Not only the D-H parameter entering but also the new link dialog can change the color in 

the entire link and joint according the link thickness as required for the designing. 

Further more it is provided to enter joint mass, viscosity co-efficient of the link and the 

coulomb friction co-efficient of the link 

WW». j 

Fig. 6.2- Interface Properties 

( 
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6.4. Link properties dialog 

When the link properties button is pressed the above dialog will be displayed. The 

designed manipulator link joint variable need to change through this dialog and it will 

display the current orientation and the position matrixes and if the user can change the 

current joint variable and this new values will update the matrix values on this dialog box 

(fig 6.4). In the same instant, the manipulator new position and the orientation values will 

update on the graphical interface. 
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Fig. 6.4- Link properties dialog 

6.5 Trajectory planning and inverse kinematic calculation 

To plan the trajectory the TP Definition button should be pressed and then the following 

dialog will display (fig 6.5). This dialog can be used to enter the position and orientation 

in the time domain and the user can plan his won trajectory. Then the tool box can 

calculate the joint variable in the joining space by using the calculate_Inverse_kine. Then 

the inverse calculation will activate and update the new joint variable. The converge tool 

is used to find the precision end-effectors point in the Cartesian space. 
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Fig. 6.5- Trajectory planning definition Dialog 

And also the simulator will check the convergence of the calculation and display the 

message whether it is convergence or not (see fig.6.6). According to these results user 

graphical interface will update the new geometric view of the user designed manipulator. 

Fig .6.6- Algorithm convergence massage box 
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CHAPTER 7 

Implementation and Results 

The developed simulator was implemented with the industrial manipulator to check 

accuracy of the used algorithms. In this phenomenon, the manipulator took geometrical 

parameter form the manipulator broacher and regenerates the manipulator on the 

simulating interface. The results were checked with the forward and reverse algorithms. 

And the implemented method and the results are discussed in this chapter. 

7.1 Testing the developed simulator on actual manipulator 

Testing the software program on the actual environment is most important to understand 

the practical behavior of the actual simulator and accuracy of used algorithms. The ABB 

IRB 6000 robotic manipulator has been selected to test the developed algorithm of this 

project. It can be viewed on the developed simulator as shown in the figure 7.1. The ABB 

IRB 6000 is the world famous manipulator for many kinds of operation. It's 

configuration as follows [22]. 

Table 7.1 ABB IRB 6000 Manipulator Configuration 

Linki ai(m) aj(degree) di(m) Oi(degree) qi 

1 188 +90° 900 6>i 0i 

2 0 -90° 0 02 02 

3 1175 0 0 03 03 

4 1300 0 0 04 04 

5 0 -90° 0 05-90° 05 

6 0 0 200 06 06 
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7.2 Testing process 
• 

In the forward kinematic process, the ABB IRB 6000 actual manipulator configuration 

was used to test the simulator accuracy. The method of comparison is, the selected joint 

variables and the arm configurations in the actual manipulator were regenerated on the 

developed simulator. After the actual manipulator end effector position and orientations 

checked with the simulated manipulator end effector position and orientation. For this 

process the BullEye is used to take the accurate reading with respect to base frame. The 

BullEye is a special tool which is used to measure the end effector position and 

orientation for the manipulator teaching process. The test results are shown in the table 

7.2. In this testing process calibration tool orientation is disregarded. According to the 

above results the forward kinematic algorithms and the programming code are corrected 

and reliable. 

Table 7.2-Froward kinematic results comparison 

Joint variable Simulated values Actual value 
0, <=>2 &3 04 &s 06 X y z X y z 

112° -28° -5° 105° 105° -26° 1488.8 1145 2074.3 1488 1145 2075 
0 -70° -70° 40° 70° 37° 876 1145 2226 876.1 1145 2226.1 

90° 36° 43° 0 55° 90° 660.85 491.47 849.92 661.5 492 850 
135° 45° -60° 47° -60° 112° 204' 487 208 204.3 487 208.1 
-90° 0 43° -59° -155° 90° 349 200 900 350 200 900 

In the inverse kinematic process, the manipulator end effector was moved to the different 

places in the Cartesian environment with respect to the base fame that the end effector 

position and orientation readings were taken form the manipulator controller for the 

known joint angles. After that this end effector positions and orientations were fed to the 

simulator and the joint variables readings were taken for the entire points. The actual 

readings and the simulated readings are shown in the table 7.3 and the end effector 
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transformation matrixes for the entire points are shown in the table7.4. According to 

these results the actual readings are slightly deviated from the simulated readings in some 

point. The problem of this is that these points are located in the singularity. In this region 

simulated values are deviated from the actual readings. But no other algorithms are 

developed to solve the inverse kinematic as accurate results for the universal manipulator. 

In future if any body develops a more powerful algorithm it can be adapted to this 

software without any hindrance. 

1 0.3 0.6 0.4 0.2 1 49am-QQ?A -0 6 -0.8 i 
•iPP* 

Fig. 7.1 ABB IRB 6000 Manipulator 
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Table 7.3 - Inverse kinematic results 
comparison 

Reading 

1 
2 

3 

4 

Actual valves 
Hi 82 03 e4 &, 82 Qi &4 &5 
73° -123° -78° 91° 103° -63° 73° -123° -78° 91° 103° 
0 -70° -87° 37° 70° 37° 0 -70° -86° 40° 70° 

65° -57° 43° 0 145° 90° 65° -57° 43° 12° 143° 
65° -57° 43° 34° 121° 103° 70° -57° 43° 37° 134° 

Simulated values 

Point 1 
-0.6073 -(16972 04031 15001 

0-2318 -0.6330 -0.7345 

0.7652 -0.3501 0.5410 

0 0 o 

Point 3" 

Point 2 

1145.3 

2315.7 

1 

0-8776 -02531 04301 ^ 

0-4791 0.4731 -0.7381 

0.0211 0.8413 0.5431 

0 0 0 

-687.4 

1356.3 

1 

0-0^02 -0^5462 08645 4632~ 

0-9976 0.0896 -0.0934 2651.8 

0.7845 0.8453 -0.5432 .1334.0 

0 0 0 1 

Point 4 
"0-9867 -04563 ^03421 I g ^ T 

-0.0123 -0.2375 0.5631 2775.8 

-0.3452 0.3428 0.5432' 1 875.2 

0 0 0 1 

&6 

-63° 

37° 

90° 

104° 

Table 7.4- End effector N a t i o n tnatnx for the fourdifferen, Cartesian points f„ r 

inverse kinematic results comparison 
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7.3 Further development 

i s d e s i s n e d , o e n h a n c e ^ — * -Junctions. Therefore the expansion ean be done without dup,Seating t h e data and the 

z r r c a n be main,aiMd at - ~ - * - — s — 

- « research toptc in c o m p u t e r g r a p h i c s SQ ^ ^ ^ 

attract the attention of more *id more researchers in the new c e M l u y . ^ 

r r z r o m to proHem - - - — * - — - i : : 

r z r i n V e K e k i n e m a t i C " , h e r e a ' C h a " e n g e ° f no body has 
this ^ a C C U r a t e m e U , 0 d & r , h e U n i V e r S a ' * selected mcth d o 

S simulator inverse hincmatic is most suitabie for the universal manipn,ator ^ 

erse mematic soiution is die combination of different apphcation oriented h i n e l l 

so vmg techniques then the simuiator will give a mo r e cor.ec, inverse hinematic Z 
But there is a lot of work to do. • 

Hext Step of this project is to introduce, the developed simulator as a commercial product 

But this simulator should be tested in a different pmctical environments. T h c l " 

to plan to tahe a feed bach from the simulator user through the interne, „ ^ 

.n die fhturc dns will he a good simulating too, for the manipU,a,or u s e r s 

62 



Conclusions 

This thesis is designed to understand the kinematic behavior in the dynamic simulator for 

the universal manipulator. Different kinds of alternative kinematic techniques are used to 

develop the algorithms to find the joint space parameters and end-effector position and 

orientation in a graphical way. Among the various techniques, the D-H parameter 

analytical method is selected to view the developed manipulator on the graphical 

interface. This method is more efficient and accurate to solve the forward kinematics. 

In the inverse kinematic, the Jacobian base Newton-Raphson techniques and the Taylor 

series expansion are used to find the joint space parameters from the end effector 

parameters. This combination is well adaptive to solve inverse kinematic for the universal 

manipulator. The final results are converged for 1000 times to error minimizing of this 

used method. If it increases higher than the 1000 there is no improvement in the results 

and it will increase the time. 

The developed simulator was implemented on the industrial manipulator (ABB IRB 

6000) to test the algorithms that are used for the kinematic modeling. According to the 

results, there is no deviation from actual values and the simulated values for the 

simulation. Therefore the used kinematic theories are correct for the simulating process. 

Finally, the goal of this project has been achieved and this simulator may be a good tool 

for the redundant base and non- redundant base manipulator users and the designers. 
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Appendix A -Function of forward kinematics 
void CManipulator: :Calculate_kine() 
//Calculate Direct kinematics at each Link 
{ 

int i = 1; 
ColumnVector PreviousEnd(3); PreviousEnd=0.0; 
Real arPreviousEnd[3]; 
ColumnVector tmp_Pos(3); tmp_Pos=0.0; 
IdentityMatrix 1(3); 
m_Pos=tmp_Pos; 
m_Rot=I; 
//ViewMatrix(m_Pos,"m_Pos"); 
//ViewMatrix(m_Rot,"m_Rot"); 

POSITION Pos = m_LinkList->GetHeadPosition(); 
while( Pos != NULL) 
{ 

CLink* pLink = m_LinkList->GetNext( Pos ) ; 
m_Pos = m_Pos + m_Rot*pLink->m_p; 
m_Rot = m_Rot*pLink->m_R; 

pLink->m_Start_Vertex.x=Pre viousEnd( 1); 
pLink->m_Start_Vertex.y=PreviousEnd(2); 
pLink->m_Start_Vertex.z=PreviousEnd(3); 

pLink->m_End_Vertex.x=m_Pos( 1); 
pLink->m_End_Vertex.y=m_Pos(2); 
pLink->m_End_Vertex.z=m_Pos(3); 

pLink->m_pb=m_Pos; 
pLink->m_Rb=m_Rot; 

PreviousEnd=m_Pos; //Hold previous end posision for start of Next Link 
//ViewMatrix(m_Pos,"m_Pos"); 
//ViewMatrix(m_Rot,"m_Rot"); 

i++; 
} 

} 

ReturnMatrix CManipulator: :Torque_ZeroVelocity(Column Vector qpp) 
//Joint torque, when joint velocity is 0, based on Recursive Newton-Euler formulation. 
{ 

int i=l; 
ColumnVector ltorque(mnDOF); 
Matrix Rt, temp; 
if(qpp.Nrows() != m nDOF) AfxMessageBox("qpp is Invalied"); 
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Column Vector m_z0(3); 
m_zO(l) = 0.0; m_z0(2) = 0.0; m_z0(3) = 1.0; 
Column Vector Previous_vp(3); Previous_vp=9.81; 
ColumnVector Previous_wp(3); Previous_wp=0.0; 
POSITION Pos = m_LinkList->GetHeadPosition(); 

while( Pos != NULL ) 
{ 

CLink* pLink = m_LinkList->GetNext( P o s ) ; 
Rt = pLink->m_R.t(); 

if(pLink->m_njoint_type== 0) 
{ /<:' 1 

pLink->m_wp = Rt*(Previous_wp + m_z0*qpp(i)); 
pLink->m_vp = CrossProduct(pLink->m_wp,pLink->m_p) + 

Rt*(Previous_vp); 
} 
else 
{ 

pLink->m_wp = Rt*Previous_wp; 
pLink->m_vp = Rt*(Previous_vp + m_z0*qpp(i))+ 

CrossProduct(pLink->m_wp,pLink->m_p); 
} 
pLink->m_acc = CrossProduct(pLink->m_wp,pLink->m_r) + pLink->m_vp; 
Previous_vp=pLink->m_vp; 
Previous_wp=pLink->m_wp; 
i++; 

} 
Matrix PreviousLink Rot; PreviousLink_Rot=0.0; 
i=m_nDOF; 

ColumnVector N e x t f n v ; 
ColumnVector Next_n_nv; 
Pos = m_LinkList->GetTailPosition(); 
while( Pos != NULL ) 
{ 

CLink* pLink = m_LinkList->GetPrev( Pos ) ; 
pLink->m_F = pLink->m_acc * pLink->m_m; 
pLink->m_N = pLink->m_I*pLmk->m_wp; 
if(i = ranDOF) 
{ 

pLink->m_f_nv = pLink->m_F; 
pLink->m_n_nv = CrossProduct(pLink->m_p,pLink->m_f_nv) 

+ CrossProduct(pLink->m_r,pLink->m_F) + pLink->m_N; 
PreviousLink_Rot=pLink->m_R; //Set Las Link m_R as Previous one 
Next_f_nv=pLink->m_f_nv;//Set from last Link 
Next_n_nv=pLink->m_n_nv;//Set from last Link 

} 
else 
{ 

pLink->m_f_nv = PreviousLink_Rot*Next_f_nv + pLink->m_F; 
pLink->m_n_nv = PreviousLink_Rot*Next_n_nv + 

CrossProduct(pLink->m_p,pLink->m_f_nv) 
+ CrossProduct(pLink->m_r,pLink->m_F) + pLink->m_N; 

} 
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PreviousLink_Rot=pLink->m_R; 
if(pLink->m_njoint_type == 0) 
temp = ((m_z0.t()*pLink->m_R)*pLink->m_n_nv); 

else 

temp = ((m_z0.t()*pLink->m_R)*pLink->m_f_nv); 
ltorque(i) = temp(l,l); 
Next_f_nv=pLink->m_f_nv; 
Next_n_nv=pLink->m_n_nv; 
i - ; 

} 

ltorque.Release(); return ltorque; 

} 

ReturnMatrix CManipulator: :Inertia(Column Vector q) 
{ 

//AfxMessageBox(" Inertia"); 
Matrix M(m_nDOF,m_nDOF); 
ColumnVector torque(mnDOF); 
Setq(q); 

//IdentityMatrix I(mnDOF); 
//torque=I; 

for(int i = 1; i <= mnDOF; i++) 
{ 

for(int j = 1; j <= m nDOF; j++) 
{ 

torque(j) = ( i = = j ? 1.0 : 0.0); 
} 
torque = TorqueZeroVelocity(torque); 
M.Column(i) = torque; 

} 
M.ReleaseQ; return M; 
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Appendix B -Function of Jacobian matrix 

ReturnMatrix CManipulator: :GetIacobian() 
{ 

int i, j= l ; 
Matrix jac(6,m_nDOF); 
Matrix pr, temp(3,l); 

POSITION Pos = m_LinkList->GetHeadPosition(); 
while( Pos != NULL) 
{ 

CLink* pLink = m_LinkList->GetNext( P o s ) ; 
if(pLink->m_njoint_type == 0) //if Revolute 
{ 

temp( 1,1) = pLink->m_R( 1,3); 
temp(2,l) = pLink->m_R(2,3); 
temp(3,l) = pLink->m_R(3,3); 
//pr = p[dof]-p[i-l]; 
pr=m_Pos-pLink->m_pb; ///Check correct one is m_pb or m_p 
temp = CrossProduct(temp,pr); 
j ac( l j ) = temp(l,1); 
jac(2j) = temp(2,l); 
jac(3j) = temp(3,l); 
jac(4j) = pLink->m_R( 1,3); 
jac(5,j) = pLink->m_R(2,3); 
jac(6,j) = pLink->m_R(3,3); 

} 
else //Prismatic 
{ 

jac(l,j) = pLink->m_R(l,3); 
jac(2 j ) = pLink->m_R(2,3); 
jac(3 j ) = pLink->m_R(3,3); 
jac(4j) = jac(5j) = jac(6j) = 0.0; 

} 
j++; 
} 

Matrix zeros(3,3); 
zeros = (Real) 0.0; 
Matrix RT = m_Rot.t(); 
Matrix Rot; 
Rot = ((RT & zeros) | (zeros & RT)); 
jac = Rot*jac; 

jac.Release(); return jac; 
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Appendix C -Function of inverse kinematics 

void CManipulator: :Caculate_Inverse_Kine() 
{ 

Matrix TransformationMatrix(4,4); TransformationMatrix=0.0; 
RecordsetPtr rsTrajectoryDef; 

CMDBA MDBA; 
MDBA.Connect(); 
C String csSQL; 
csSQL="SELECT * FROM tbltrajectoryDef'; 
rsTrajectoryDef=MDBA.GetRecordSet(csSQL); 
if(rsTrajectoryDef->GetRecordCount()>0) 
{ 

CString csFVal = _T(""); 
//int nFval=0; 

double dblFval=0; 
_variant_t vField(_T("")); 
_variant_t vResult; 

while(rsTrajectoryDef->A_EOF != VARIANT TRUE) 
{ 

TransformationMatrix( 1,1 )=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Roll_l ")-> Value); 

TransformationMatrix(2,l)=Getdouble_Value(rsTrajectoryDef->GetFieIds()-
>GetItem("Rot_Roll_2")-> Value); 

TransformationMatrix(3,1 )=Getdouble_Value(rsTraj ectoryDef->GetFields()-
>GetItem("Rot_Roll_3")->Value); 

TransformationMatrix( 1,2)=Getdouble_Value(rsTraj ectoryDef->GetFields()-
>GetItem("Rot_Pitch_l")-> Value); 

TransformationMatrix(2,2)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Pitch_2")-> Value); 

TransformationMatrix(3,2)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Pitch_3")-> Value); 

TransformationMatrix(l,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw 1 ")-> Value); 

TransformationMatrix(2,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw_2")-> Value); 

TransformationMatrix(3,3)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("Rot_Yaw_3")-> Value); 

TransformationMatrix(l,4)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_x")-> Value); 

TransformationMatrix(2,4)=GetdoubIe_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_y")-> Value); 

TransformationMatrix(3,4)=Getdouble_Value(rsTrajectoryDef->GetFields()-
>GetItem("CPos_z")-> Value); 
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TransformationMatrix(4,1)=0;TransformationMatrix(4,2)=0;TransforrnationMatrix(4,3)=0;Transformation 
Matrix(4,4)=l; 

• 

CString csMatrixName; 
csMatrixName.Format("TransformationMatrixat%f 

sec",Getdouble_Value(rsTrajectoryDef->GetFields()->GetItem("TimeI")-> Value)); 
//ViewMatrix(TransformationMatrix, csMatrixName); 
/////////////// 

ColumnVector tmpq(mnDOF); 
bool converge; 
tmp_q=Inverse_Kine(TransformationMatrix, 0,m_nDOF, converge); 

//ViewMatrix(tmp_q,"tmp_q from Inverse Kine"); 
if(converge) 
{ 

} 
else 
{ 

AfxMessageBox("Algorithem is not converge"); 
} 

/////////////// 
PlotLinks(); 
rsTrajectoryDef->MoveNext(); 

} 
} 
else 

AfxMessageBox("No Records in the Trajectory Definition"); 
} 

ReturnMatrix CManipulator::Inverse_Kine(Matrix &Tobj, int mj, int endlink, bool &converge) 
//Numerical inverse kinematics. 

//Tobj: Transformation matrix expressing the desired end effector pose, 
//mj: Select algorithm type, 0: based on Jacobian, 1: based on derivative of T. 
//converge: Indicate if the algorithm converge, 
//endlink: the link to pretend is the end effector 

{ 
IdentityMatrix 1(4); 
ColumnVector qPrev, qout, dq, q_tmp; 
Matrix B, M; 
UpperTriangularMatrix U; 

qPrev = Getq(); 
qout = qPrev; 
q_tmp = qout; 

converge = false; 
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if(mj = 0) { // Jacobian based 

Matrix Ipd(4,4), A, B(6,l),tmp(4,4); 

for(int j = 1; j <= NITMAX; j++) 
{ 

tmp=I; 
Calculate_kine(); 
tmp.SubMatrix(l,3,l,3) = m_Rot; 
tmp.SubMatrix( 1,3,4,4) = m_Pos; 
Ipd =tmp.i()*Tobj; 
tmp.Release(); 
B(l , l) = Ipd(l,4); 
B(2,l) = Ipd(2,4); 
B(3,l) = Ipd(3,4); 
B(4,l) = Ipd(3,2); 
B(5,l) = Ipd(l,3); 
B(6,l) = Ipd(2,l); 
A=GetJacobian(); 
QRZ(A,U); 
QRZ(A,B,M); 
dq = U.i()*M; 
while(dq.MaximumAbsoIuteValue() > 1) 

dq /= 10; 

for(int k = 1; k<= dq.nrows(); k++) 
qout(k)+=dq(k); 

Setq(qout); 

if (dq.MaximumAbsoluteValue() < ITOL) 

//AfxMessageBox("Algorithem is converge"); 
converge = true; 
break; 

} 
} 

} else // using partial derivative of T 
{ 

Matrix tmp(4,4); 
Matrix A(12,m_nDOF); 
ComputeLinkPositionPartialDerivative(); 
for(int j = 1; j <= NITMAX; j++) 
{ 

tmp=I; 
Calculate_kine(); 
tmp.SubMatrix(l,3,l,3) = m_Rot; 
tmp.SubMatrix( 1,3,4,4) = mPos ; 
B = (Tobj-tmp).SubMatrix(l ,3,1,4).AsColumn(); 
intk=l; 
POSITION Pos = m_LinkList->GetHeadPosition(); 
while( Pos != NULL ) 
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{ 
CLink* pLink = m_LinkList->GetNext( Pos); 
A.SubMatrix( 1,12,k,k) 

>m_PositionPartialDerivative.SubMatrix(l ,3,1,4).AsColumn(); 
k++; 

} 

QRZ(A,U); 
QRZ(A,B,M); 
dq = U.i()*M; 

while(dq.MaximumAbsoluteValue() > 1) 
dq/= 10; 

for(k = 1; k<=m_nDOF; k++) 
qout(k)+=dq(k); 
Setq(qout); 
if (dq.MaximumAbsoluteValueO < ITOL) 
{ 

converge = true; 
break; 

} 
} 

} 

if(converge) 
{ 

int i = 1; 
POSITION Pos = m_LinkList->GetHeadPosition(); 
while( Pos != NULL) 
{ 

CLink* pLink = m_LinkList->GetNext( P o s ) ; 
if(pLink->m_njoint_type = 0) //if Revolute 
{ 

qout(i) = fmod(qout(i), 2*m_PI); 
} 
i++; 

} 
Setq(qPrev); 
qout.Release(); 
return qout; 

} 

} 
else 
{ 

Setq(qPrev); 
q_tmp.Release(); 
return q_tmp; 

ReturnMatrix CManipulator: :GeUacobian() 
{ 
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inti,j=l; 
Matrix jac(6,m_nD0F); 
Matrix pr, temp(3,l); 

POSITION Pos = m_LinkList->GetHeadPosition(); 
while( Pos != NULL) 
{ 
CLink* pLink = m_LinkList->GetNext( Pos ) ; 

if(pLink->m_njoint_type = 0) //if Re volute 
{ 

temp(l,l) = pLink->m_R( 1,3); 
temp(2,l) = pLink->m_R(2,3); 
temp(3,l) = pLink->m_R(3,3); 
//pr = p[dof]-p[i-l]; 
pr=m_Pos-pLink->m_pb; ///Check correct one is m_pb or m_p 
temp = CrossProduct(temp,pr); 
jac( l j ) = temp(l,l); 
jac(2 j ) = temp(2,l): 
jac(3j) = temp(3,l): 
jac(4j) = pLink->m_R( 1,3) 
jac(5 j ) = pLink->m_R(2,3) 
jac(6,j) = pLink->m_R(3,3) 

} 
else //Prismatic 
{ 

jac( l j ) = pLink->m_R( 1,3); 
jac(2 j ) = pLink->m_R(2,3); 
jac(3 j ) = pLink->m_R(3,3); 
jac(4j) = jac(5j) = jac(6j) = 0.0; 

j++; 
} 

Matrix zeros(3,3); 
zeros = (Real) 0.0; 
Matrix RT = m_Rot.t(); 
Matrix Rot; 
Rot = ((RT & zeros) | (zeros & RT)); 
jac = Rot*jac; 

jac.ReleaseQ; return jac; 
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