PREPARATION AND CHARACTERIZATION OF NATURAL RUBBER-MONTMORILLONITE CLAY NANOCOMPOSITES AND THEIR VULCANIZATES

SUDARSHANA GERARD JAYARAJ PERERA (148014X)

Degree of Doctor of Philosophy in Chemical and Process Engineering

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

May 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature of the Candidate

Date

The above candidate has carried out research for the PhD dissertation under my supervision.

Signature of the Supervisor

Date

Signature of the Supervisor

Date

DEDICATION

То,

My ever loving... Parents, Wife & Son

ACKNOWLEDGEMENT

I wish to express my most sincere gratitude and appreciation to my principal supervisor – Dr. Mrs. SM Egodage, Senior Lecturer of University of Moratuwa Sri Lanka, who provided me with the most valuable and wonderful opportunity to read for a PhD. research degree under her guidance in the field of rubber nanocomposites. It is difficult to express in words for her invaluable guidance, encouragement, and support on me throughout the study. Her thoughtfulness deeply inspired me to take the correct decision at a crucial stage in the study.

Prof. S Walpalage, the Head of the Department of Chemical Process and Engineering, University of Moratuwa, and the co-supervisor of the research, with his vast experience and professional knowledge in this specialist field of research kept me on track with his guidance, supervision, and support throughout the research period. Many thanks are extended to my both supervisors for their valuable advices and constructive comments on my research.

I am indebted and immensely thankful to the Senate Research Grant Committee, University of Moratuwa for providing me with a research grant (SRC/CAP/14/05) to realize this research project.

Prof. PG Rathnasiri the present research coordinator and Dr. Ms. MY Gunasekara the former research coordinator of the Department of Chemical and Process Engineering of the University of Moratuwa also provided me with several useful inputs, and stimulating discussions during my research project. I am also deeply grateful to the former Heads of the Department of Chemical and Process Engineering, University of Moratuwa, Prof. PG Rathnasiri and Dr. Mrs. SHP Gunawardena enabled me to complete this research by providing me constant administrative support in accomplishing this task, and I am also deeply indebted for their assistance and support.

I would like to acknowledge Dr. S Siriwardena, the Deputy Director and Dr. Mrs. DG Edirisinghe, the Head of the Rubber Technology and Development department, at the Rubber Research Institute of Sri Lanka, and Prof. SU Adikary and Mr. VSC Weragoda, the former Heads of the Department of Material Science and Engineering of the University of Moratuwa for permitting me to use their laboratory premises with great guidance.

I wish to thank Mrs. WSMD Silva, the technical officer of the Department of Chemical Process and Engineering, University of Moratuwa, for her help to conduct most of my experimental works in the laboratory premises. I also wish to place on record the valuable support and assistance on practical aspects received during the entire research project from Mrs. HBR Sajeewani, Mr. CL Gunaratne the technical officers, Mr. DS Dayananda and Mr. SMRN Dhammika the laboratory assistants at the Department of Chemical Process and Engineering, Mr. MAPC Gunawardena, DF Ranasinghe and MTMR Jayaweera the technical officers and Mr. RRP Perera the laboratory assistant at the Department of Material Science and Engineering, University of Moratuwa, Mr. AMKSP Adikari, Mr WDM Sampath, the research officers and Mr. V.G.M.J Abeywardena, the technical officer at the Rubber Research Institute of Sri Lanka.

Last but not least, I would like to thank my wife Jeewani, son Dulnith and both our parents for their care, love, and sacrifice, and also for understanding, encouragement, and assistance throughout the completion of the research.

ABSTRACT

Preparation and characterization of Natural rubber-montmorillonite clay nanocomposites and their vulcanizates

Rubber-clay nanocomposites at low nanoclay loadings are generally prepared using mechanical mixing method as similar to mixing of conventional fillers with rubber. However, the resultant properties prepared with mixing method were reported as not high as expected and the main challenge was the retaining of exfoliated clay structures in the final product after vulcanization. This study focuses on the development of nanocomposites with superior properties from Natural rubber (NR) and Montmorillonite clay (MMT), through development of suitable clay structures, by incorporating of nanoclay into rubber at the latex stage. Twelve series of nanocomposites were prepared to study the effect of processing method (acid cocoagulation named ACC method and acid free co-coagulation named AFCC method using latex, and mechanical mixing method with pale crepe); gelling agents (sodium silicofluoride-G1, cetyl trimethyl ammonium bromide (CTAB)-G2 and combination of CTAB and sodium dodycyl sulphate (SDS)-G3); type of natural rubber latex (field NRL and centrifuged NRL); modifications of MMT and NRL. MMT was organically modified with a cationic surfactant of CTAB to enhance interactions with NR. The modified MMT (OMMT) was further treated with bis(triethoxysilylpropyl) tetrasulfide to facilitate separation of clay layers in the clay stacks, and the treated clay was designated as OMMT-S. The NRL was grafted with succinimide to enhance the compatibility with OMMT-S. The incorporation of OMMT-S into Succinimide grafted NRL was the novelty of the study. These nanocomposites prepared were compounded with the curing and other compounding ingredients to prepare nanocomposite vulcanizates. The clay dispersions, nanocomposites, nanocomposite compounds were characterized by XRD, SEM, FTIR, TGA and the mechanical and thermal properties of the nanocomposite vulcanizates were determined as per the international standards.

Tensile strength, elongation at break, mod 300% and hardness of the nanocomposite vulcanizates prepared using AFCC and ACC methods initially increased and then decreased with the increase of MMT loading while tear strength remained unchanged. The nanocomposite vulcanizates prepared using AFCC method showed higher mechanical properties compared to the nanocomposite vulcanizates prepared using AFCC method. However, AFCC method exhibited slow drying characteristics. The optimum MMT loadings for nanocomposites prepared using AFCC method and ACC method were recorded at 8 phr and 12 phr, respectively, due to formation of aggregated clay structures at higher loadings, as evident by SEM images. Addition of a gelling agent successfully solved the slow drying problem associated with the AFCC method, however, G1 and G2 gelling agents exhibited significant changes to the properties of the vulcanizates. G3 gelling agent functioned effectively by facilitating quick gel formation, and by exhibiting better mechanical properties of the nanocomposite vulcanizates.

Replacement of MMT by OMMT in nanocomposite vulcanizates prepared using AFCC method without a gelling agent showed enhanced mechanical properties at a lower loading of 2 phr. The mechanical properties were further enhanced with the addition of the G3 gelling agent to the nanocomposites with OMMT and is associated with greater interactions between OMMT and NR. The optimum loading was recorded at 5 phr. Replacement of OMMT by OMMT-S in nanocomposite vulcanizate prepared with G3 gelling agent exhibited greater tensile strength and elongation at break at 2 phr loading, and greater mod 300%, tear strength and hardness at 5 phr. XRD analysis and SEM images of nanocomposite vulcanizates revealed that the addition of OMMT-S promotes existences of separated clay layers and fine morphology in the vulcanizates. The nanocomposite vulcanizates prepared using mechanical mixing method incorporating OMMT and OMMT-S into pale crepe gave comparatively lower mechanical properties due to presence of clay aggregates.

The novel nanocomposite vulcanizates prepared with grafted NRL and OMMT-S with the G3 gelling agent showed overall remarkable mechanical properties at 5 phr. The X-ray diffractograms of the nanocomposite vulcanizates showed exfoliated clay structures and fine morphology. The remarkable properties obtained due to fine morphology developed through exfoliated clay structures as a result of rubber filler interactions are tensile strength of 41 MPa, mod 300% of 6 MPa, elongation at break of 620%, tear strength of 49 N/mm, hardness of 55 IRHD, and abrasion loss of 190 mm³.

Keywords

Nanocomposite, Organoclay, Acid-free Co-coagulation, Modified natural rubber, Exfoliated clay

TABLE OF CONTENTS

Page Number

Declaration	i
Dedication	ii
Acknowledgement	iii
Abstract	V
Table of Content	vii
List of Figures	xii
List of Table	xvi
List of Abbreviations	xviii
List of Appendices	XX
 INTRODUCTION 1.1 Natural Rubber 1.2 Nanoclay structures and rubber-clay nanocomposites 	1 1 2
2. LITERATURE REVIEW2.1 Natural rubber	6 6
2.1.1 Natural rubber latex 2.1.1.1 Field natural rubber latex	6 7
2.1.1.2 Centrifuged natural rubber latex	10
2.1.2 Raw natural rubber in dry form	10
2.1.2.1 Ribbed smoked sheet	10
2.1.2.2 Crepe rubber	11
2.1.2.3 Technically specified rubber	11
2.1.3 Dry rubber compounding	12
2.2 Fillers	15
2.2.1 Functions of fillers and their importance	15
2.2.2 Types of fillers	15
2.2.2.1 Carbon black	17
2.2.2.2 Silica	18
2.2.2.3 Clay or layered silicate	19
2.3 Nanocomposites	21
2.3.1 Types of structures in nanocomposites	23
2.3.1.1 Intercalated structures	23
2.3.1.2 Exfoliated structures	24
2.3.1.3 Encapsulated structures	24
2.3.2 Montmorillonite clay in nanocomposites	25
2.3.3 Importance of modification of MMT	27

2.4 Rubber-clay nanocomposites	31
2.4.1 Melt blending	34
2.4.2 Solution blending	36
2.4.3 Emulsion blending	38
2.4.4 In-situ polymerization	41
2.4.5 In-situ template synthesis	41
2.5 Properties of NR-clay nanocomposites prepared by different methods	42
3.MATERIALS & METHODS	49
3.1 Materials	49
3.1.1 Natural rubber	49
3.1.2 Nanoclay	49
3.1.3 Chemical ingredients	49
3.2 Methodology – preparation of nanocomposites	51
3.2.1 Preparation of suspensions, dispersions and solutions	51
3.2.2 Removal of ammonia and magnesium ions from field latex	52
3.2.3 Preparation of de-proteinized centrifuged latex	53
3.2.4 Preparation of 3 % (w/w) MMT suspension	53
3.2.5 Modification of MMT	53
3.2.5.1 Preparation of OMMT powder	54
3.2.5.2 Preparation of 3% (w/w) OMMT suspension	54
3.2.5.3 Preparation of OMMT-S powder	54
3.2.5.4 Preparation of 3% (w/w) OMMT-S suspension	55
3.2.6 Modification of NRL	55
3.2.7 Preparation of NR-clay nanocomposite	56
3.2.7.1 Preparation of A/FL/M series nanocomposites	56
3.2.7.2 Preparation of B/FL/M series nanocomposites	58
3.2.7.3 Preparation of B/FL/G1/M series nanocomposites	58
3.2.7.4 Preparation of B/FL/G2/M series nanocomposites	58
3.2.7.5 Preparation of B/CL/G2/M series nanocomposites	58
3.2.7.6 Preparation of B/CL/G3/M series nanocomposites	59
3.2.7.7 Preparation of B/CL/O series nanocomposites	59
3.2.7.8 Preparation of B/CL/G3 series nanocomposites	59
3.2.7.9 Preparation of B/gL/G3 series nanocomposites	59
3.2.7.10 Preparation of C/PC series nanocomposites	60
3.2.8 Preparation of NR-clay nanocomposite compounds	61
3.2.9 Preparation of NR-clay nanocomposite vulcanizates	61
3.3 Characterization of materials, nanocomposites and nanocomposite	
vulcanizates	62
3.3.1 Characterization of NRL, CTAB and modified and unmodified	
MMT	62
3.3.1.1 Determination of nitrogen content of NRL	62
3.3.1.2 Spectroscopic analysis of CTAB and modified and unmodified MMT	62

3.3.1.3	X-ray diffraction analysis of modified and unmodified MMT	63		
3.3.1.4	Spectroscopic analysis of NRL and SI grafted NRL	63		
3.3.1.5	Determination of grafting efficiency of SI grafted NRL			
3.3.1.6	Thermogravimetric analysis	64		
3.3.2 Cha	aracterization of nanocomposites	64		
3.3.2.1	Determination of metal ion content	64		
3.3.2.2	Determination of bound rubber content	65		
3.3.2.3	Viscosity	65		
3.3.2.4	Morphology	65		
3.3.2.5	Dynamic mechanical thermal analysis	65		
3.3.2.6	Ash content	66		
3.3.3 Cha	aracterization of nanocomposite compound	66		
3.3.3.1	Cure characteristics	66		
3.3.3.2	Determination of activation energy	67		
3.3.4 Cha	aracterization of nanocomposite vulcanizates	67		
3.3.4.1	Determination of crosslink density	68		
3.3.4.2	Determination of rubber-clay interaction	69		
3.3.4.3	Different scanning calorimetry analysis	70		
3.3.4.4	Determination of mechanical properties	70		
3.3.4.5	Abrasion loss	70		
3.3.4.6	Determination of ageing properties	71		
4. RESULTS A	AND DISCUSSION	72		
4.1 NR-C	Clay nanocomposites with MMT	72		
4.1.1 Eff	ect of processing method and MMT loading on properties	72		
4.1.1.1	Ash content	72		
4.1.1.2	XRD analysis	72		
4.1.1.3	SEM analysis	75		
4.1.1.4	Cure characteristics	76		
4.1.1.5	Crosslink density	78		
4.1.1.6	Mechanical properties	80		
4.1.1.7	Metal ion content and ageing properties	85		
4.1.1.8	DSC analysis	88		
4.1.2 E	Effect of gelling agent	90		
4.1.2.1	SSF gelling agent	90		
4.1.2.2	CTAB gelling agent	96		
4.1.2.3	Effect of type of latex	97		
4.1.2.4	Effect of the combination of CTAB gelling agent with SDS	98		
4.2 NR- c	clay nanocomposites with OMMT	100		
4.2.1 C	Characterization of OMMT	100		
4.2.1.1	FTIR analysis	100		
4.2.1.2	XRD analysis	101		
4.2.2 E	Effect of OMMT loading	101		
4.2.2.1	Cure characteristics	102		

4.2.2.2 XRD Analysis	104
4.2.2.3 Morphology	106
4.2.2.4 Crosslink density and rubber-clay interaction	108
4.2.2.5 Dynamic mechanical thermal analysis	109
4.2.2.6 Mechanical properties	111
4.2.3 The effect of gelling agent	117
4.2.3.1 Cure characteristics	117
4.2.3.2 Crosslink density	118
4.2.3.3 Mechanical properties	118
4.2.3.4 Glass transition temperature	119
4.2.4 Type of clay	120
4.2.5 Effect of processing method	122
4.2.5.1 Cure characteristics	123
4.2.5.2 Morphology	125
4.2.5.3 XRD analysis	128
4.2.5.4 Crosslink density	131
4.2.5.5 Bound rubber content	132
4.2.5.6 DMTA study	132
4.2.5.7 Mechanical properties	133
4.2.5.8 Abrasion loss	138
4.2.5.9 Ageing properties	138
4.3 NR-Clay nanocomposites with modified OMMT and NRL	139
4.3.1 Characterization of OMMT-S	140
4.3.2 The effect of OMMT-S on properties of nanocomposite	
vulcanizates	141
4.3.2.1 Cure characteristics	142
4.3.2.2 Morphology	144
4.3.2.3 XRD analysis	146
4.3.2.4 Viscosity	147
4.3.2.5 Bound rubber content	148
4.3.2.6 Crosslink density	148
4.3.2.7 DMTA study	149
4.3.2.8 Mechanical properties	150
4.3.2.9 Abrasion loss	153
4.3.2.10 Ageing properties	154
4.3.3 The effect of OMMT-S on properties of nanocomposites	
prepared using different processing methods	155
4.3.3.1 Cure characteristics	155
4.3.3.2 Morphology	156
4.3.3.3 Crosslink density	158
4.3.3.4 Mechanical properties	158
4.3.3.5 Abrasion loss	160
4.3.3.6 Ageing properties	161
4.3.4 Characterization of modified NRL	161

4.3.4.1	Characterization of SI grafted NR	162
4.3.5 Effe	ect of use of SI grafted NRL on properties of nanocomposites	163
4.3.5.1	Cure characteristics	164
4.3.5.2	Morphology	166
4.3.5.3	XRD analysis	168
4.3.5.4	Bound rubber content	169
4.3.5.5	Crosslink density	169
4.3.5.6	Viscosity	170
4.3.5.7	DMTA study	171
4.3.5.8	Mechanical properties	171
4.3.5.9	Abrasion loss	174
4.3.5.10	Ageing properties	174
4.3.5.11	TGA study	175
4.4. Propos	sed structures of NR-clay nanocomposites	177
4.5 Propos	sed reaction mechanisms for modification of NR and clay	180
5. CONCLUTI	ONS AND RECOMMENDATIONS FOR FUTURE WORK	180
5.1 Conclu	usions	186
5.2 Recon	nmendations for future work	188

LIST OF FIGURES

Figure 2. 1	First model for the membrane structure of a rubber particle	8
Figure 2. 2	Second model of the membrane structure of a rubber particle	9
Figure 2. 3	Arrangement of the long-chain cation in layered silicates	20
Figure 2. 4	Types of structures in Nanocomposites	24
Figure 2. 5	Structure of Montmorillonite clay	26
Figure 2. 6	Structure of (a) unmodified Clay (b) Organoclay	29
Figure 2. 7	Structure of TESPT coupling agent	30
Figure 2.8	Filler-rubber interaction with TESPT	31
Figure 2. 9	Steps of melt blending	35
Figure 2. 10	Steps of solution blending	37
Figure 2. 11	Steps of emulsion blending	39
Figure 4. 1	XRD diffractogram of (a). B/FL/M nanocomposite (b). MMT	73
Figure 4. 2	XRD diffractogram of A/FL/M8 and B/FL/M8 nanocomposites	75
Figure 4. 3	SEM image of A/FL/M8 nanocomposite	75
Figure 4. 4	SEM image of B/FL/M8 nanocomposite	76
Figure 4. 5	Crosslink densities of B/FL/M and A/FL/M nanocomposite	
	vulcanizates	79
Figure 4. 6	Stress-strain curves of A/FL/M and B/FL/M nanocomposite	
	vulcanizates	81
Figure 4. 7	Tensile strength of A/FL/M and B/FL/M nanocomposite vulcanizate	es
		82
Figure 4.8	Elongation at break of A/FL/M and B/FL/M nanocomposite	
	vulcanizates	83
Figure 4. 9	mod 300% of A/FL/M and B/FL/M nanocomposite vulcanizates	84
Figure 4. 10	Tear strength of A/FL/M and B/FL/M nanocomposite vulcanizate	s 85
Figure 4. 11	Hardness of A/FL/M and B/FL/M nanocomposite vulcanizates	85
Figure 4. 12	DSC thermograms of A/FL/M and B/FL/M nanocomposite	
	vulcanizates	89
Figure 4. 13	Structure of the siloxane network between MMT layers	91
Figure 4. 14	Crosslink density of B/FL/M and B/FL/G1/M nanocomposite	
	vulcanizates	92
Figure 4. 15	Tensile Strength of B/FL/M and B/FL/G1/M nanocomposite	
	vulcanizates	93
Figure 4. 16	Elongation at break of B/FL/M and B/FL/G1/M nanocomposite	
	vulcanizates	94
Figure 4. 17	mod 300% of B/FL/M and B/FL/G1/M nanocomposite	
	vulcanizates	94
Figure 4. 18	Tear strength of B/FL/M and B/FL/G1/M nanocomposite	
	vulcanizate	95
Figure 4. 19	FTIR spectra of CTAB_MMT_and OMMT	100
	The spectru of CTTD, MAT, and OMAT	

Figure 4. 21	Nucleophilic substitution of quaternary ammonium cation by	
	oxigen anion of clay	102
Figure 4. 22	M _H -M _L and CRI of B/CL/O nanocomposite Compounds	104
Figure 4. 23	The X-ray diffractogram of OMMT and B/CL/O nanocomposite	
	vulcanizates	106
Figure 4. 24	SEM image of a tensile fracture surface of B/CL/O2	
	nanocomposite vulcanizate	107
Figure 4. 25	SEM image of a tensile fracture surface of B/CL/O8	
	nanocomposite vulcanizate	107
Figure 4. 26	Crosslink density and Q_f/Q_g of B/CL/O nanocomposite	
	vulcanizates	108
Figure 4. 27	Storage moduli versus temperature curves of B/CL/O	
	nanocomposite vulcanizates	109
Figure 4. 28	tan δ vs temperature curves of B/CL/O nanocomposite	
	vulcanizates	111
Figure 4. 29	Stress versus strain curves of B/CL/O nanocomposite	
	vulcanizates	112
Figure 4. 30	Tensile strength and elongation at break of B/CL/O	
	nanocomposite vulcanizates	113
Figure 4. 31	mod 300% and tear strength of B/CL/O nanocomposite	
	vulcanizates	114
Figure 4. 32	Hardness of B/CL/O nanocomposite vulcanizates	115
Figure 4. 33	SEM image of B/CL/G3/M2 nanocomposite vulcanizate	121
Figure 4. 34	SEM image of B/CL/G3/O2 nanocomposite vulcanizate	122
Figure 4. 35	ts2, t90 and CRI of B/CL/G3 & C/PC nanocomposite	
-	compounds	123
Figure 4. 36	Activation energy of B/CL/G3 & C/PC nanocomposite	
-	compounds	124
Figure 4. 37	M _H -M _L of B/CL/G3 and C/PC nanocomposite compounds	125
Figure 4. 38	SEM image of CT-B/CL/G3	126
Figure 4. 39	SEM image of C/PC/O2 nanocomposite vulcanizate	126
Figure 4. 40	SEM image of B/CL/G3/O5 nanocomposite vulcanizate	127
Figure 4. 41	SEM image of C/PC/O5 nanocomposite vulcanizate	127
Figure 4. 42	XRD diffractogram of B/CL/G3 and C/PC nanocomposites	
-	vulcanizates	130
Figure 4. 43	Suggested structure for the gelling cluster	131
Figure 4. 44	Crosslink density and bound rubber content of B/CL/G3 and	
0	C/PC nanocomposite vulcanizates	131
Figure 4. 45	tan δ of B/CL/G3 and C/PC nanocomposite vulcanizates	133
Figure 4. 46	Stress strain curves of B/CL/G3 and C/PC nanocomposite	
2	vulcanizates	134
Figure 4. 47	Tensile properties of B/CL/G3 and C/PC nanocomposite	
-	vulcanizates	135

Figure 4. 48	Tear strength and hardness of B/CL/G3, and C/PC nanocomp	osite
	vulcanizates	137
Figure 4. 49	Abrasion loss of B/CL/G3 and C/PC nanocomposite vulcanizates	138
Figure 4. 50	Ageing properties of CT-B/CL/G3 and CT-C/PC vulcanizates	139
Figure 4. 51	FTIR spectrum of CTAB, MMT, OMMT and OMMT-S	140
Figure 4. 52	XRD diffractogram of OMMT and OMMT-S	141
Figure 4. 53	ts2, t90 and CRI of B/CL/G3 nanocomposite compounds	142
Figure 4. 54	Activation energy of vulcanization in B/CL/G3 nanocomposite	
	compounds	143
Figure 4. 55	M _H -M _L of B/CL/G3 nanocomposite compounds	144
Figure 4. 56	SEM graph of B/CL/G3/OS2 nanocomposite vulcanizate	144
Figure 4. 57	SEM graph of B/CL/G3/OS5 nanocomposite vulcanizate	145
Figure 4. 58	XRD diffractograms of B/CL/G3 nanocomposite vulcanizates	147
Figure 4. 59	Viscosity of B/CL/G3 nanocomposites	147
Figure 4. 60	Bound rubber content of B/CL/G3 nanocomposites and crosslink	
	density of B/CL/G3 nanocomposite vulcanizates	148
Figure 4. 61	tan δ of B/CL/G3 nanocomposite vulcanizates	150
Figure 4. 62	Stress strain curve of B/CL/G3 nanocomposite vulcanizates	151
Figure 4. 63	Tensile properties of B/CL/G3 nanocomposite vulcanizates	152
Figure 4. 64	Tear strength and hardness of B/CL/G3 nanocomposite	
	vulcanizate	153
Figure 4. 65	Abrasion loss of B/CL/G3 nanocomposite vulcanizates	154
Figure 4. 66	Ageing properties of B/CL/G3 nanocomposite vulcanizates	154
Figure 4. 67	ts2, t90 and CRI of B/CL/G3 and C/PC nanocomposite	
	compounds	156
Figure 4. 68	M _H -M _L of B/CL/G3 and B/CL/O nanocomposites	157
Figure 4. 69	SEM image C/PC/OS2 nanocomposite vulcanizate	157
Figure 4. 70	SEM image of C/PC/OS5 nanocomposite vulcanizate	158
Figure 4. 71	Crosslink Density of B/CL/G3 and C/PC nanocomposite	
	vulcanizates	158
Figure 4. 72	Tensile properties of B/CL/G3 and C/PC nanocomposite	
	vulcanizates	159
Figure 4.73	Tear strength and hardness of B/CL/G3 and C/PC nanocomposite	
	vulcanizates	159
Figure 4. 74	Abrasion loss of B/CL/G3 and C/PC nanocomposite vulcanizates	160
Figure 4.75	Ageing properties of B/CL/G3 and C/PC nanocomposite	
	vulcanizates	161
Figure 4. 76	FTIR spectra of NRL and SI modified NRL	162
Figure 4. 77	ts2, t90 and CRI of B/CL/G3 and B/gL/G3 nanocomposite	
	compounds	164
Figure 4. 78	Activation energy of B/CL/G3 and B/gL/G3 nanocomposite	
	compounds	165
Figure 4. 79	M _H -M _L of B/CL/G3 and B/gL/G3 nanocomposite compounds	165
Figure 4. 80	SEM image of B/gL/G3/OS2 nanocomposite vulcanizate	166

Figure 4. 81	SEM image of B/gL/G3/OS5 nanocomposite vulcanizate	167	
Figure 4. 82	XRD diffractograms of B/CL/G3 and B/gL/G3 nanocomposite		
-	vulcanizate	168	
Figure 4.83	Bound rubber content and crosslink density of B/CL/G3 and		
-	B/gL/G3 nanocomposite	169	
Figure 4. 84	Variation of Viscosity of B/CL/G3 and B/gL/G3 nanocomposite	s	
C	with time	170	
Figure 4. 85	tan δ of B/CL/G3 and B/gL/G3 nanocomposite vulcanizates	171	
Figure 4. 86	Stress strain curves of B/CL/G3 and B/gL/G3 nanocomposite		
C	vulcanizates	172	
Figure 4. 87	Tensile properties of B/CL/G3 and B/gL/G3 nanocomposite		
C	vulcanizates	173	
Figure 4. 88	Tear strength and hardness of B/CL/G3 and B/gL/G3		
C	nanocomposite vulcanizates	174	
Figure 4. 89	Abrasion loss of B/CL/G3 and B/GL/G3 nanocomposite		
C	vulcanizate	175	
Figure 4. 90	Ageing properties of B/CL/G3 and B/gL/G3 nanocomposite		
C	vulcanizates	176	
Figure 4. 91	Percentage of weight lost in nanocomposite by TGA study	176	
Figure 4. 92	Proposed structure of CT-B/CL/G3 vulcanizate	177	
Figure 4. 93	Proposed structure for B/CL/G3 nanocomposite vulcanizate with	ı	
-	2 phr loading of OMMT	178	
Figure 4. 94	Proposed structure for B/CL/G3 nanocomposite vulcanizates wit	h	
-	5 phr loading of OMMT	178	
Figure 4. 95	Proposed structure for B/CL/G3/OS2 and B/CL/G3/OS5		
-	nanocomposite vulcanizates	179	
Figure 4. 96	Proposed structure for B/GL/G3 nanocomposite vulcanizate	179	
Figure 4. 97	The formation of grafted TESPT in OMMT-S	180	
Figure 4. 98	The formation of grafted siloxane network TESPT grafted		
-	on clay	181	
Figure 4. 99	The structure of OMMT-S clay grafted on NRL	181	
Figure 4. 100	Reaction between MAH and ammonia	182	
Figure 4. 101	The formation of SA grafted NRL before drying	182	
Figure 4. 102	The formation of SA grafted NRL and OMMT-S before		
-	dehydration	183	
Figure 4. 103	The Structure of SI grafted NR and OMMT-S after dehydration	183	
Figure 4. 104	The structure of the proposed multifunctional coupling system	184	
Scheme 2.1	Outline reaction scheme of vulcanization of rubber	13	

LIST OF TABLES

Table 2.1	Features of Kaolinite clay and Montmorillonite clay	21
Table 2. 2	Properties of nanocomposites prepared by melt blending	43
Table 2.3	Properties of nanocomposite prepared by solution blending	45
Table 2. 4	Properties of nanocomposite prepared by emulsion blending	45
Table 3. 1	Chemical ingredients	50
Table 3. 2	Concentrations of the suspensions, dispersions and solutions	52
Table 3. 3	Modifying agents for MMT and resultant products	53
Table 3.4	Formulation of SI grafted NRL	55
Table 3. 5	Raw materials and methods used in preparation of nanocomposites	57
Table 3. 6	Formulation of B/CL/G3 series nanocomposites	60
Table 3.7	Formulation of B/gL/G3 series nanocomposites	60
Table 3.8	Formulation of C/PC series nanocomposites	61
Table 3.9	Formulation of nanocomposite compound	61
Table 4. 1	Cure characteristics of A/FL/M and B/FL/M nanocomposite	
	compounds	78
Table 4. 2	Content of metal ion	86
Table 4. 3	Ageing properties of CT-A/FL and CT-B/FL nanocomposite	
	vulcanizates	87
Table 4. 4	Ageing properties of A/FL/M8 and B/FL/M8 nanocomposite	
	vulcanizates	88
Table 4.5	Mechanical properties of B/FL/M2, B/FL/G2/M nanocomposite	
	vulcanizate	96
Table 4. 6	Mechanical properties of B/FL/G2/M and B/CL/G2/M	
	nanocomposite vulcanizates	97
Table 4. 7	The cure and mechanical properties of B/CL/G2/M2 and	
	B/CL/G3/M2 nanocomposites	99
Table 4. 8	Peak assignment of the FTIR spectrum for CTAB	101
Table 4. 9	Cure characteristics of B/CL/O nanocomposite compounds	103
Table 4. 10	Ageing properties of B/CL/O nanocomposite vulcanizates	116
Table 4. 11	Properties of B/CL/O2 and B/CL/G3/O2 nanocomposite	
	compound and vulcanizate of controls	117
Table 4. 12	Mechanical properties of B/CL/G3/M2 and B/CL/G3/O2	
	nanocomposite vulcanizates	120
Table 4. 13	Observations on SEM images of B/CL/G3 and MB- G	
	nanocomposite vulcanizates	128
Table 4. 14	Peak assignment of the FTIR spectrum for OMMT-S	140
Table 4. 15	Evaluation of SEM images of B/CL/G3 nanocomposite	<u>.</u> .
	vulcanizates	146
Table 4. 16	Evaluation of SEM images of B/gL/G3 nanocomposite	
	vulcanizates	167

Table 4. 17Mechanical properties of different nanocomposite at 5 phr
clay loading and percentage as compared to B/FL/M5
nanocomposite vulcanizate

184

LIST OF ABBREVIATIONS

ACC	-	Acid Co-Coagulation
AFCC	-	Acid Free Co-Coagulation
AFCC-G1	-	AFCC used with gelling agent SSF
AFCC-G2	-	AFCC used with gelling agent CTAB
AFCC-G3	-	AFCC used with gelling agent CTAB and SDS
CEC	-	Cation Exchange Capasity
CRI	-	Cure Rate Index
CTAB	-	Cetyl Trimethyl Ammonium bromide
DMTA	-	Dynamic Mechanical Thermal Analysis
DRC	-	Dry Rubber Content
DSC	-	Differential Scanning Calorimetry
FTIR	-	Fourier Transform Infrared
HCl	-	Hydrochloric Acid
IRHD	-	International Rubber Hardness Degrees
КОН	-	Potassium Hydroxide
NR	-	Natural Rubber
NRL	-	Natural Rubber Latex
MA	-	Maleamic Acid
MAH	-	Maleic Anhydride
MBTS	-	Mercaptobenzothiazole Sulphanamide
M_{H}	-	Maximum Torque
M_L	-	Minimum Torque
MMT	-	Montmorillonite
mod 300%	-	Modulus at 300% elongation
OMMT	-	MMT Clay modified by CTAB
OMMT-S	-	OMMT clay modified by TESPT
PRV	-	Property retention value

RSS	-	Ribbed Smoke Sheet
SA	-	Succinamic acid
SBR	-	Styrene Buitadiene Rubber
SDS	-	Sodium Dodecyl Sulfate
SEM	-	Scanning Electron Microscopy
SI	-	Succinimide
SSF	-	Sodium Silicofluoride
TEPA	-	Tetraethylenepentamine
TESPT	-	Bis(Triethoxysilylpropyl) Tetrasulfide
T_{g}	-	Glass Transition Temperature
TMTD	-	Tetramethyl Thiurium Disulfide
XRD	-	X-ray Diffraction
ZnO	-	Zinc Oxide

LIST OF APPENDICES

Appendix-A: Specification of high ammonia centrifuged latex
Appendix-B: Specification of field latex
Appendix-C: Average raw rubber specification for crepe rubber by RRISL
Appendix-D: Mechanical properties of nanocomposite vulcanizates
Appendix-E: Cure properties of nanocomposite compounds
Appendix-F: Abrasion loss of nanocomposite vulcanizates
Appendix-G: Journal publications
Appendix-H: Conference publications