THE EFFECT OF FIRING TEMPERATURE ON MICRO-STRUCTURAL PROPERTIES OF NON-EXPANSIVE CLAYS IN DEVELOPMENT OF EFFECTIVE INTERNAL CURING CONCRETE AGGREGATE

Manamperi Mudiyanselage Hasitha Wikum Bandara

168022M

Thesis submitted in partial fulfilment of the requirement for the degree Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

May 2020

DECLARATION OF THE CANDIDATE & SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

M.M.H.W Bandara Department of Civil Engineering University of Moratuwa Sri Lanka

The above candidate has carried out research for the PhD thesis under my supervision.

Prof. W. K. Mampearachchi

Department of Civil Engineering

University of Moratuwa

Sri Lanka

ABSTRACT

Internal curing concrete provides number of advantages in the concrete construction industry. It provides adequate water to hydrate all the cement. Moreover, internal curing increases the durability, compressive strength and eliminates the formation of shrinkage cracks. The most popular internal curing materials are the manufactured and natural lightweight aggregates. Those aggregates generally produce using expansive clays. Natural lightweight aggregates and expansive clay mines are not available in most countries limiting the production of internal curing concrete to a few countries. Moreover, those aggregates have various disadvantages in use of internal curing concrete production. Mainly, it reduces the compressive strength of concrete. Furthermore, some aggregates have lower water absorption capacity, and some have lower water desorption capacity. Thus, the main focus of this research is to develop an effective pore structure for internal curing aggregate using non-expansive clays.

Different clay samples were obtained from local mine in Nachchaduwa, Dankotuwa, Metiagoda, and another clay sample was imported from China. Subsequently, those were chemically analyzed, and the percentage of each chemical composition was obtained. Afterwards, selected clay types were identified as bloating and unbolting clays according to the method that was suggested by Charles M. Riley. Nachchaduwa and dankotuwa; Metiagoda and China clay samples were identified as bloating and unbolting clays respectively. After that, the level of expansion was identified based on the bloating coefficient. All the clay samples showed lower bloating coefficient than 2.5. Thus, they were categorized as non expansive clays.

The requirements for effective internal curing aggregates were identified through an extensive literature review and limits of those parameters were defined based on the literature review. Moreover, a aggregate production process was established by considering various effect of clay heating on development of pore structure. The effective range of heating temperature of each clay type was identified according to a simultaneous thermal analysis. Subsequently, clay specimens of equal sizes were prepared using each clay samples and heated at selected range of temperature to produce various pore structures within the clay specimens. Afterwards, heated samples were cooled, crushed, and fine aggregates were produced. Pore size, pore connectivity, pore strength and the pore expansion of each aggregate were identified through an extensive analysis of the pore structure. Afterwards, the aggregates were categorized based on the properties of the pore structure of each aggregate.

The internal curing properties of those pore structures were measured based on water absorption, water desorption and density of the aggregates. Afterwards, performance of those pore structures was identified, and limits of the effective pore structures were defined. Bloted non-expansive clay materials were identified as the most suitable materials to produce effective pore structure within heated clay mass. Conversely, unbloted non-expansive materials were not suitable to produce internal curing aggregate. According to the research findings, the effective pore structure should contain at least 27% of open porosity. The mean pore radius and the pore expansion should range from 0.3 to 0.5μ m and from 1.1 to 1.5 mean bloating coefficient respectively. Furthermore, the compressive strength of pore structure should be greater than 10N/mm².

Finally, two different aggregates which have the effective pore structure and less effective pore structure were selected for verification process. The selected aggregates were produced in larger scale using industrial facilities of Rajarata and Midaya factories. Subsequently, three different types of grade 30 concrete were prepared from each aggregate type to validate the effectiveness of pore structure. Those concrete types were external curing concrete (ECC), non-

curing concrete (NCC) and internal curing concrete (ICC). Moreover, internal curing concrete with 3 days external curing (ICC/3EC) was prepared to study the combined effect of external and internal curing. ECC specimens were kept under submerged for curing, ECC/3EC samples were kept in submerged only for 3 days. NCC and ICC specimens were kept in open space. During the preparation of concrete specimens, workability of the samples was measured. Afterwards, concrete specimens were tested to obtain the compressive strength values at 7, 14 and 28 days. Subsequently, the drying shrinkage of the internal curing concretes which contain the selected aggregates was measured. According to those results, the aggregates which contain the effective pore structure exhibit effective internal curing properties while other aggregate failed to act as an effective internal curing aggregate.

Keywords: Self-expansion; Poorly expansive clay; Black coring; Porous structure; Water absorption; Sand replacement; Strength

DEDICATION

- To my mother who could not get a better sleep for the last 28 years.
- To my father who went through all the troubles to make me who I am today.
- To my supervisor who believed in me and empowered me to achieve this dream.
- To the people of Sri Lanka whom I owe a debt of gratitude for paying for my education

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. W.K. Mampearachchi for the continuous support, patience and motivation not only in academic work but also in difficult life situations. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and a mentor for my Ph.D. study.

Besides my supervisor, I am also immensely grateful to my progress review committee: Prof. Adikary S.U., Prof. Asoka Perera, and Prof. R. U. Halwatura for their insightful comments and encouragement, but also for the hard questions which incented me to widen my research from various perspectives.

I wish to express my sincere thanks to the laboratory staff of Highway Engineering Laboratory, Structural Engineering Laboratory, Environment Engineering Laboratory and Materials Engineering Laboratory of Department of Civil of Engineering, University of Moratuwa.

I wish to express my sincere thanks to the laboratory staff of Materials Engineering Laboratory of Department of Materials Science and Engineering, University of Moratuwa. I wish to express my special thanks to technical officer Mr. Rathnayake and Mr Mihiranga who have provided tremendous help and support in use of furnace and SEM. They did not allow me to do only research work, but they taught me about those machines and made my confidence.

I extend my gratitude to the staff of Rajarata tiles (Pvt) Ltd and Midaya ceramics (Pvt) Ltd for giving me the opportunity to use their factory premises and machines to carry out my research work. I wish to express my special thanks to Mr.Thusitha who is the chief engineer and Mr.Jude Fernando who is the director of Midaya ceramic.

I thank my fellow research colleagues for the stimulating discussions, for all the support they have given me to successfully complete my experimental work.

Finally, I am profoundly grateful to my parents for their love and support throughout my life. Thank you both for giving me strength to reach for the stars and chase my dreams. My brothers deserve my wholehearted thanks as well. Also, I would like to thank my loving life partner Thathsarani for her understanding and support through thick and thin of my journey.

TABLE OF CONTENTS

De	clara	tion of the Candidate & Supervisor	i	
Abstract Dedication			ii	
			iv	
Ac	knov	ledgement	v	
Ta	ble of	Contents	viii	
Lis	st of]	ligures	xii	
Lis	st of '	Fables	xiii	
Lis	st of A	Abbreviations	xiv	
1	Intr 1.1 1.2 1.3	Objectives	1 2 3 4	
2	Lite	rature Review	5	
	2.1 2.2 2.3	Curing of concrete	5 5 7 8 9 11 12 12 13 14 14 16 16	
	2.4	2.5.0 Summary of findings Different methods of internal curing	18 19	

		2.4.1	Internal curing with materials which can bound water chemically	19
		2.4.2	Internal curing with materials which have unbound water	20
		2.4.3	Internal curing with materials which can absorb water physically	20
		2.4.4	Internal curing with materials which can held water physically	21
		2.4.5	Internal sealing with water soluble chemicals	24
		2.4.6	Comparison of internal curing methods	25
	2.5	Develo	ppment of the Pore structure for EICA	26
		2.5.1	Parameters of pore structure of the EICA	26
		2.5.2	Effective pore structure (EPS)	29
	2.6	Effect	of heating process on development of pore structures	30
		2.6.1	Effect on material type	30
		2.6.2	Effect on strength development	32
		2.6.3	Effect on water absorption and desorption kinetics	38
		2.6.4	Summary	41
3	Rese	earch M	lethodology	42
	3.1	Introdu	uction	42
	3.2	Raw m	naterials selection	42
	3.3	Selecti	on of heating temperature	45
	3.4	Prepar	ation of clay specimens	45
	3.5	Heatin	g process	46
	3.6	Measu	rement of the level of expansion (Kp)	46
	3.7	Produc	ed aggregates with different pore structures	47
	3.8	Identif	ication of the pore structure of the aggregates	50
		3.8.1	Measurement of the pore connectivity	50
		3.8.2	Measurements of Pore sizes and pore distribution	50
		3.8.3	Measurements of the Compressive Strength	51
	3.9	Interna	Il curing Properties of the pore structures	52
		3.9.1	Measurements of the water absorption	52
		3.9.2	Measurements of the water desorption	52
		3.9.3	Measurements of the density	53
		3.9.4	Summary	54
4	Resi	ilts and	Analysis	55
	4.1	Develo	opment of the heating process	55
		4.1.1	Simultaneous thermal analysis (STA)	55
		4.1.2	Level of Self-expansion	60
		4.1.3	Summary	61
	4.2	Identif	ication of different pore structures	66
		4.2.1	Variation of pore size and pore distribution	66
		4.2.2	Variation of pore connectivity	74
		4.2.3	Variation of the compressive strength	78
	4.3	Summa	ary of the identified pore structures	80
	4.4	Measu	rements of internal curing properties of pore structures	83
		4.4.1	Variation of density	83
		4.4.2	Variation of water absorption	86

		4.4.3 Variation of water desorption	89
	4.5	Summary of the internal curing properties of the pore structures	92
	4.6 Identification of the effective pore structure (EPS) for internal curir		
		aggregate	95
		4.6.1 Relationship among density, expansion and compressive strength	ı 95
		4.6.2 Relationship between water absorption and open porosity	97
		4.6.3 Relationship between mean pore size and water desorption	98
		4.6.4 The effective pore structure.	100
5	Res	ult Validation	103
	5.1	Validation of the test results	103
		5.1.1 Introduction	103
		5.1.2 Aggregate production in industrial facilities	103
		5.1.3 Mix design	105
		5.1.4 Compressive strength and workability	106
		5.1.5 Drying shrinkage	107
	5.2	Validation of the test results	107
		5.2.1 Water absorption	107
		5.2.2 Drying shrinkage	108
		5.2.3 Compressive strength and workability	110
	5.3	Summary	114
6	Con	clusion and Recommendation	115
	6.1	Recommendations and future work	116
Aj	ppend	lix A SEM images and identified pores	129
A	opend	lix B Real scale work study of calculating the unit cost of internal	
	curi	ing concrete aggregate	151
	B .1	Raw materials extraction	152
	B.2	Raw materials transportation	154
	B.3	Raw materials preparation	155
	B. 4	Firing cost	157
	B.5	Aggregate preparation cost	158
	B.6	Overall supervision cost	159
	B .7	Calculation of the unit cost for aggregate	159

LIST OF FIGURES

2.1	Curing methods of concrete	7
2.2	Internal and external drying of concrete	8
2.3	Conventional curing and Internal curing	9
2.4	Self-desiccation of a concrete system	15
2.5	Requirement of ICA to produce effective ICC.	17
2.6	Polymer network of SAP.	21
2.7	Visualization of water transport through pore system	27
2.8	Visualization of water transport and pore isolation	29
2.9	Visualization of the parameters of smart aggregate	29
2.10	Bloating clays	31
2.11	Visualization of gases movements	32
2.12	Variation of strength with firing temperature and staying time	35
2.13	Variation of K_p according to firing temperature and staying time	37
2.14	Control variables of the heating process	41
3.1	Production process of different pore structures	42
3.2	Selected clay mines.	43
3.3	Percentage chemical composition of bloating clays.	44
3.4	preparation of clay specimens.	46
3.5	Heating process	47
3.6	Prepared aggregate from Nachchaduwa clay.	48
3.7	Prepared aggregate from Dankotuwa clay.	48
3.8	Prepared aggregate from Metiagoda clay.	49
3.9	Prepared aggregate from China clay.	49
3.10	Measurement of submerged weight of aggregates	50
3.11	Pore structure analysis	51
3.12	Loading machine	51
3.13	Aggregate soaking process	52
3.14	Humidity chamber	53
3.15	Measuring aggregate weight in Phynometer	54
4.1	STA of Nachchaduwa clay sample	56
4.2	STA of Dankotuwa clay sample	57
4.3	Metiagoda clay sample	58
4.4	STA of China clav sample	59
4.5	level of Self expansion in Nachchaduwa clav	62
4.6	level of Self expansion in Dankotuwa clav	63
4 7	1	

4.8	level of Self expansion in China clay	65
4.9	SEM images of the different pore structure (Nachchaduwa clay)	68
4.10	Identified boundaries of pores in SEM images (Nachchaduwa clay)	68
4.11	SEM images of the different pore structure (Dankotuwa clay)	69
4.12	Identified boundaries of pores in SEM images (Dankotuwa clay)	69
4.13	SEM image of the pore structure of the aggregate (Metiagoda)	70
4.14	SEM images of the different pore structure (Metiagoda clay)	71
4.15	Identified boundaries of pores in SEM images (Metiagoda clay)	71
4.16	SEM images of the different pore structure (China clay)	73
4.17	Identified boundaries of pores in SEM images (China clay)	73
4.18	SEM image of the pore structure of the aggregate (China)	74
4.19	Open porosity variation of Nachchaduwa clay	75
4.20	Open porosity variation of Dankotuwa clay.	76
4.21	Open porosity variation of Metiagoda clay	77
4.22	Open porosity variation of China clay	77
4.23	Variation of the compressive strength in Nachchaduwa clay	78
4.24	Variation of the compressive strength in Dankotuwa clay	79
4.25	Variation of the compressive strength in Metiagoda clay	80
4.26	Variation of the compressive strength in China clay	81
4.27	Variation of density in Nachchaduwa clay	83
4.28	Variation of density in Dankotuwa clay	84
4.29	Variation of density in Metiagoda clay	85
4.30	Variation of density in China clay	85
4.31	Variation of water absorption in Nachchaduwa clay	86
4.32	Variation of water absorption in Dankotuwa clay	87
4.33	Variation of water absorption in Metiagoda clay	88
4.34	Variation of water absorption in China clay	89
4.35	Variation of water desorption in Nachchaduwa clay samples	90
4.36	Variation of water desorption in Dankotuwa clay samples	91
4.37	Variation of water desorption in Metiagoda clay samples	92
4.38	Variation of water desorption in China clay samples	93
4.39	Relationship between density and K_p	96
4.40	Relationship between density and Strength	96
4.41	China clay sample	98
4.42	Relationship between pore size and water desorption	99
4.43	Relationship between pore size and K_n	100
4.44	Aggregates which satisfy the main requirement of EICC	101
51	Prepared aggregate from Dankotuwa clay	104
5.2	Stationary furnace	104
53	Crushing and sieving process	105
5.5 5.4	Prenared concrete specimens	103
5. 1	Tested concrete specimen	107
5.5 5.6	Prismatic concrete specimens	107
57	Drving shrinkage annaratus	100
5.7	Water absorption rate of C12 aggregate	100
5.0	(a) = a = a = a = a = a = a = a = a = a =	109

5.9	Water absorption rate of N9 aggregate	109
5.10	Pore structure of C12 aggregate	110
5.11	Pore structure of N9 aggregate	110
5.12	The average drying shrinkage of prepared concrete specimens	111
5.13	The compressive strength of ICC/N9	112
5.14	The compressive strength of ICC/C12	113
6.1	Parameters of Effective pore structure	116
A.1 A.2	Pore structure of the aggregate prepared at 800°C (Nachchaduwa clay) Identified pore boundaries of the aggregate prepared at 800°C (Nachchadu	130 wa
	clay)	130
A.3	Pore structure of the aggregate prepared at 900°C (Nachchaduwa clay)	131
A.4	Identified pore boundaries of the aggregate prepared at 900°C (Nachchadu clav)	wa 131
Δ 5	Pore structure of the aggregate prepared at $1000^{\circ}C$ (Nachchaduwa clay)	131
Δ.6	Identified nore boundaries of the aggregate prepared at 1000° C (Nachchad	152
A.0	clay)	132
A.7	Pore structure of the aggregate prepared at 1100°C (Nachchaduwa clay)	133
A.8	Identified pore boundaries of the aggregate prepared at 1100°C (Nachchad	uwa
	clay)	133
A.9	Pore structure of the aggregate prepared at 1200°C (Nachchaduwa clay)	134
A.10	Identified pore boundaries of the aggregate prepared at 1200°C (Nachchad clay)	luwa 134
A.11	Pore structure of the aggregate prepared at 1300°C (Nachchaduwa clay)	135
A.12	Identified pore boundaries of the aggregate prepared at 1300°C (Nachchad	uwa
	clay)	135
A.13	Pore structure of the aggregate prepared at 800°C (Metiagoda clay)	136
A.14	Identified pore boundaries of the aggregate prepared at 800°C (Meti-	136
Δ 15	Pore structure of the aggregate prepared at 900° C (Metiagoda clay)	130
A.16	Identified pore boundaries of the aggregate prepared at 900°C (Meti-	137
	agoda clay)	137
A.17	Pore structure of the aggregate prepared at 1000°C (Metiagoda clay) .	138
A.10	agoda clay)	138
A.19	Pore structure of the aggregate prepared at 1100°C (Metiagoda clay) .	139
A.20	Identified pore boundaries of the aggregate prepared at 1100°C (Meti-	
	agoda clay)	139
A.21	Pore structure of the aggregate prepared at 1200°C (Metiagoda clay) .	140
A.22	Identified pore boundaries of the aggregate prepared at 1200°C (Meti-	
	agoda clay)	140
A.23	Pore structure of the aggregate prepared at 800°C (China clay)	141
A.24	Identified pore boundaries of the aggregate prepared at 800°C (China	1 4 1
		141
A.25	Pore structure of the aggregate prepared at 900°C (China clay)	142

A.26 Identified pore boundaries of the aggregate prepared at 900°C (China	1.40
Clay)	142
A.27 Pore structure of the aggregate prepared at 1000 C (China Ciay) A.28 Identified pore boundaries of the aggregate prepared at 1000°C (China	143
clay)	143
A.29 Pore structure of the aggregate prepared at 1100°C (China clay) A.30 Identified pore boundaries of the aggregate prepared at 1100°C (China	144
clay)	144
A.31 Pore structure of the aggregate prepared at 1200°C (China clay) A.32 Identified pore boundaries of the aggregate prepared at 1200°C (China	145
clay)	145
A.33 Pore structure of the aggregate prepared at 800°C (Dankotuwa clay) .	146
A.34 Identified pore boundaries of the aggregate prepared at 800°C (Danko-	
tuwa clay)	146
A.35 Pore structure of the aggregate prepared at 900°C (Dankotuwa clay) \therefore	147
A.36 Identified pore boundaries of the aggregate prepared at 900°C (Danko-	
tuwa clay)	147
A.37 Pore structure of the aggregate prepared at 1000°C (Dankotuwa clay) . A 38 Identified pore boundaries of the aggregate prepared at 1000°C (Danko-	148
tuwa clay)	148
A.39 Pore structure of the aggregate prepared at 1100°C (Dankotuwa clay).	149
A.40 Identified pore boundaries of the aggregate prepared at 1100°C (Danko-	
tuwa clay)	149
A.41 Pore structure of the aggregate prepared at 1200°C (Dankotuwa clay) .	150
A.42 Identified pore boundaries of the aggregate prepared at 1200°C (Danko-	
tuwa clay)	150
B.1 The manufacturing framework of the aggregates	152
B.2 Extracted raw clay materials	153
B.3 Available equipment at Rajarata tile plant	156
B.4 Decoration (Onglaze) electrical furnace	158

LIST OF TABLES

Chemical shrinkage of different compounds in cement.	13
Water storing methods of different materials	19
Lightweight aggregates types	23
Water absorption of different porous materials	25
Volume percentage of three types of pores	28
The compressive strength variation with heating rates	38
Comparison of fast and slow heating processes	39
Effect on heating rate and temperature on water absorption	40
Change in water absorption according to heating time and temperature	40
Chemical composition of the selected clay samples	44
Re-calculated chemical composition of the selected clay samples	45
Pore size variation of the pore structures of Nachchaduwa clay	67
Pore size variation of the pore structures of Dankotuwa clay	67
Pore size variation of the pore structures of Metiagoda clay	72
Pore size variation of the pore structures of China clay	74
Parameters of different pore structures	81
Internal curing properties of the pore structures	93
Mix design calculation for grade 30 concrete	106
The variation of the compressive strength and workability according to	
the grade of concrete	114
Specification of the excavator	153
Cost for the raw material extraction	154
Specifications of the loader	154
Specifications of the tipper	155
Cost for the raw material transportation	155
Cost for the raw material preparation	157
Details of Furnace and firing cost	157
Cost for aggregate preparation	158
Cost for management	159
	Chemical shrinkage of different compounds in cement Water storing methods of different materials

LIST OF ABBREVIATIONS

Abbreviation	Description
ICC	Internal Curing Concrete
LWA	Lightweight Aggregate
ICA	Internal Curing Aggregate
K_P	Bloating coefficient
W/C	Water to cement ratio
FM	Fineness Modulus
EICA	Effective Internal Curing Aggregate
SAP	Superabsorbent Polymers
EPS	Effective Pore Structure
BNEC	Bloated-non Expansive Clays
UNEC	Unbloated-non Expansive Clays
SSD	Surface Saturated Dry
STA	Simultaneous Thermal Analysis
DSC	Differential Scanning Calorimetry
TGA	Thermogravimetry Analysis