INFLUENCE OF INDOOR ENVIRONMENT ON SICK BUILDING SYNDROME

Thuduwage Manori Perera

(128012V)

Degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

October 2020

INFLUENCE OF INDOOR ENVIRONMENT ON SICK BUILDING SYNDROME

Thuduwage Manori Perera

(128012V)

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

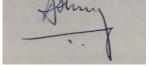
October 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Date: 21. 10. 2020


Perera T.M.

The above candidate has carried out research for the PhD thesis under our supervision.

Research Supervisors

.

Prof. (Mrs.) C. Jayasinghe

Prof. S.A.S. Perera

Dr. S.W. Rajapaksa

Date: 21. 10. 2020

Date: 30. 10. 2020

Date: 23. 10. 2020

ABSTRACT

Influence of indoor environment on sick building syndrome

People spend most of their time indoors, either at home or at work. Therefore, it is essential to maintain a high level of health and safety inside all types of buildings. The phenomenon where the health conditions of the occupants are adversely affected due to the indoor environment, it is called "Sick Building Syndrome" which is abbreviated as the SBS. The origin of indoor air pollutants is mainly categorized into three distinct sources. They are building materials and related human practices during construction and operation stages, outdoor sources and the prevailing ventilation condition of the structure in the discussion.

The importance of studying in-depth of the causes and prevention of SBS, lead this research to identify the effect of different building materials and operational practices on indoor air quality (IAQ) and quantify their impact with respect to its emission and the exposure of the occupants. Further, strategies have been determined to minimize the SBS while developing guidelines to create a healthier built environment.

In order to achieve these objectives, concentrations of Carbon Monoxide (CO), Carbon Dioxide (CO₂), Nitrogen Dioxide (NO₂), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM_{2.5}) were measured using Indoor Air Quality Monitor (IQM60 Environmental Monitor V5.0) and Haz-Dust Particulate Air Monitor. A questionnaire survey was conducted to evaluate the satisfaction of the occupants with the indoor environment that they reside and obtain an idea on their reviews to formulate a relationship between the level of comfort and IAQ. At the same time, the effect of the ventilation condition was assessed using the IAQ results of each of these locations.

Out of all the building materials and related activities, solvent-based wall paint was selected for the detailed analysis due to the identification of a prominent contribution to the indoor air pollution with its usage. Results from the questionnaire survey were able to justify and present a relationship between the indoor air pollutants and the key symptoms related to SBS. At the same time, ventilation condition has been identified as a key factor that contributes to the betterment of IAQ. A Computational Fluid Dynamic (CFD) model was developed using ANSYS-Fluent software, which was used to predict the TVOCs concentration generated from solvent-based wall paint concerning the ventilation rates under the control of environmental and test conditions. The experimental results were used to validate the CFD model before it is recommended for future references. The validated CFD model could be used to predict the building flush-out period and appropriate ventilation condition to dilute the accumulated pollutants inside the buildings.

Keywords: Indoor Air Quality (IAQ), Sick Building Syndrome (SBS), Solvent-based paint, TVOCs dispersion, CFD model

ACKNOWLEDGEMENT

At the completion of my candidature, I would like to extend my sincere gratitude to everyone who supported me, encouraged me and stayed by my side and contributed towards making it an unforgettable journey.

First and foremost, I would like to convey my earnest appreciation and gratitude to my main supervisor, Prof. (Mrs.) C. Jayasinghe of Department of Civil Engineering, University of Moratuwa, for her valuable insights and guidance provided throughout my doctoral studies. Further, the encouragement provided by my co-supervisors, Prof. S. A. S. Perera of Department of Chemical and Process Engineering, University of Moratuwa and Dr. S. W. Rajapaksa, Chairman of National Authority on Tobacco and Alcohol is highly appreciated.

Beside my supervisors, it is important that I mention the contribution provided by the progress review panel consisted of Prof. R. A. Attalage, Prof. S. Thilakasiri and Dr. C. S. Lewangamage for their insightful comments and immense knowledge that lead to the fine-tuning and successful completion of my doctoral thesis. Most importantly, my sincere thanks go to Prof. M. T. R. Jayasinghe, senior professor of Department of Civil Engineering, University of Moratuwa for his guidance and advice throughout my candidature. I feel truly honoured and privileged to have worked with such a high caliber team of advisors during the time of my Ph.D. studies.

Furthermore, I would like to extend my gratitude for the Senate Research Grant (SRC/LT/2012/04) for the financial support, the special grant secured by the supervisor from the University of Moratuwa for providing all the required equipment and late Prof. S. S. L. Hettiarachchi for providing facilities for the computer simulation. To add on, I would like to thank the undergraduate students Ms. E. D. S. P. Gunaratne, Ms. M. M. D. V. Gunathilake, Mr. H. K. R. Madushanka, Mr. A. M. K. R. Suraweera and Mr. G. D. V. M. Wijewikrama for supporting me in numerous ways to make the experiments a success. Further, I am highly grateful for the support received by Prof. T. S. G. Peiris of the Department of Mathematics, University of Moratuwa.

Moreover, my sincere thanks go to Mr. Achala Soysa, Mr. Janaka Bamunawala and Mr. Suneth Warnakulasuriya for the support and guidance whenever I needed during the course of my Doctoral studies. I am also thankful for the hospital staff of the sample theatre and all the technical staff of the Department of Civil and Mechanical Engineering, University of Moratuwa. I would also take this opportunity to thank Prof. Ajith De Alwis and his team for giving me permission to access and conduct questionnaire surveys and to my colleagues for being there with me at the times of need.

Finally, and most importantly, I would like to extend my heartiest gratitude to my husband and my parents for believing in me and encouraging me to pursue my career. On that note, I would like to dedicate this thesis to them for their unconditional love and continuous support to me throughout the peaks and valleys of my life.

TABLE OF CONTENT

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
LIST OF FIGURES	ix
LIST OF TABLES	xix
LIST OF ABBREVIATIONS	xxi

CHAPTE	R 1: INTRODUCTION	. 1
1.1	Background Information and context of the study	.1
1.2	Problem Statement	. 2
1.3	Research Gaps	.4
1.4	Research Justification	. 5
1.5	The objectives	. 6
1.6	The methodology	. 6
1.7	Equipment used	. 8
1.8	Content of the thesis	.9

CH	APTE	R 2: LITERATURE REVIEW	11
	2.1	General	11
	2.2	Introduction to Indoor Air Quality	12
	2.3	Sick Building Syndrome	14
	2.4	Sources and practices on Indoor Air Pollution	21
	2.4	.1 Building materials	21
	2.4	.2 Combustion products	22
	2.4	.3 Chemicals used in maintenance and operational periods	23
	2.4	.4 Vehicular emission	24
	2.4	.5 Environmental tobacco smoke	24
	2.4	.6 Ventilation rate	25
	2.4	.7 Outdoor air	26
	2.5	Different types of indoor pollutants	26

	2.5.	1	Biological contaminants	27
	2.5.	2	Volatile Organic Compounds (VOCs)	27
	2.5.	3	Carbon dioxide (CO ₂)	29
	2.5.	4	Carbon monoxide (CO)	30
	2.5.	5	Nitrogen dioxide (NO ₂)	31
	2.5.	6	Sulfur dioxide (SO ₂)	31
	2.5.	7	Heavy metals	32
	2.5.	8	Particulate Matter (PM)	33
	2.5.	9	Odour	37
	2.5.	10	Undesirable temperature	37
2.	6	The	corrective measures which have been taken to mitigate IAP	38
2.	7	Con	nputational Fluid Dynamics	42
2.	8	Sun	nmary	44

CHAPTER 3: EFFECT OF CHEMICAL BASED HOUSEHOLD PRODUCTS AND PRACTICES ON IAQ

ND PF	RAC	TICES ON IAQ	47
3.1	Gen	eral	
3.2	Deta	ails of the experimental programme	
3.3	Effe	ect of indoor sources on indoor air quality	
3.3.	1	Air freshener	
3.3.2	2	Wall paint	58
3.3.	3	Indoor air quality in a hospital theatre	
3.3.4	4	Indoor air quality in a motor vehicle service centre	72
3.3.	5	Synthetic building materials	80
3.3.	6	Mosquito coil	
3.3.2	7	Naphthalene ball	
3.3.	8	Incense sticks	
3.3.	9	Open waste burning (Dry leaves and Polythene)	
3.3.	10	Environmental tobacco smoke	
3.3.	11	Comparison and analysis of the experimental results of ind on IAQ	
3.4	Effe	ect of outdoor sources on indoor air quality	
3.5	Sun	ımary	

	R 4: QUESTIONNAIRE SURVEY ON OCCUPANT COMFORT AND ELATED HEALTH IMPACTS 126
4.1	General
4.2	Details of the questionnaire survey126
4.3	Questionnaire survey template
4.4	Results of the questionnaire survey
4.5	Indoor air quality of selected locations
	_Pollutant Type144
4.6	Relationship between sick building symptoms with indoor air pollutants 146
4.7	Impact of ventilation condition on IAQ: Based on questionnaire survey . 151
4.8	Summary

CHAPTER 5: EXPERIMENTAL PROGRAMME AND A MATHEMATICAL MODEL ON POLLUTANTS CONCENTRATION DUE TO WALL PAINT 159

5.1	General
5.1.1	Solvent-based paint
5.1.2	Water-based paint
5.1.3	Effect of environmental and test conditions on emission from paints 162
5.2	Details of the experimental programme164
5.2.1	Introduction164
5.2.2	Test chamber
5.2.3	Variation of pollutants' concentration with time due to the application of wall paints (Exp 1)
5.2.4	Variation of pollutants' concentration with distance due to the application of wall paints (Exp 2)
5.3	Results and analysis169
5.3.1	Results and analysis of Exp 1 169
5.3.2	Results and analysis of Exp 2 177
5.4	Mathematical model for TVOCs dispersion from the solvent-based paint181
5.4.1	Mathematical models for TVOCs variation with time (Exp 1) 181
5.4.2	Statistical analysis using Chi-Square goodness-of-fit
5.4.3	Mathematical models for TVOCs variation with time and distance (Exp 1 and Exp 2)
5.4.4	Impact of chamber volume on TVOCs dispersion using field data 185

5.4.5	TVOCs dispersion model validation using field data
5.4.6	Applications of the mathematical model
5.5 Su	mmary 191
	EFFECT OF VENTILATION ON DISPERSION OF TVOCs – DY WITH SOLVENT BASED PAINT
6.1 Ge	neral
6.2 De	tails of the experimental program 196
6.2.1	Introduction
6.2.2	Environmental and test conditions with an experimental procedure. 198
6.2.3	Air exchange rate
6.2.4	Variation of TVOCs concentration with different ventilation conditions (Exp 3)
6.2.5	Results and analysis of Exp 3 200
	omputational Fluid Dynamic model for TVOCs dispersion under differen ntilation condition
6.3.1	Introduction
6.3.2	Details on pre-processing stage
6.4 Re	sults and analysis of CFD models
6.5 Su	mmary

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 22

7.1	Conclusions	228
7.2	Recommendations	232
7.3	Future Research	235

REFERENCES	236
ANNEX A: SUPPLEMENTARY TABLES	258
ANNEX B: SUPPLEMENTARY FIGURES	266
ANNEX C: IAQ GUIDELINES FOR SELECTED POLLUTANTS	285
ANNEX D: QUESTIONNAIRE SURVEY TEMPLATE	291

LIST OF FIGURES

Figure 1.3:The methodology flow chart of the study.7Figure 1.4:Air Quality Monitor (IQM60 Environmental Monitor V5.0)8Figure 1.5:Haz-Dust Particulate Air Monitoring Equipment.8Figure 2.1:Psychrometric chart giving thermal comfort zones for Sri Lanka for various internal velocities38Figure 2.2:Summary of the literature review and identified research gap.46Figure 3.1:Structure of the preliminary study.52Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).53Figure 3.3:CO variation- Air freshener (20 ml)55Figure 3.4:NO ₂ variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.10:NO ₂ variation- Air freshener (20 ml)55Figure 3.10:NO ₂ variation- Air freshener (40 ml)56Figure 3.11:CO variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)57Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)56Figure 3.16:PM2.5 variation- Air freshener (40 ml)57Figure 3.17:CO variation- Air freshener (40 ml)57Figure 3.16:PM2.5 variation- Air freshener (40 ml)57Figure 3.17:CO v	Figure 1.1:	Deaths attributable to household air pollution	2
Figure 1.4:Air Quality Monitor (IQM60 Environmental Monitor V5.0)8Figure 1.5:Haz-Dust Particulate Air Monitoring Equipment.8Figure 2.1:Psychrometric chart giving thermal comfort zones for Sri Lanka for various internal velocities8Figure 2.2:Summary of the literature review and identified research gap.46Figure 3.1:Structure of the preliminary study.52Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).53Figure 3.4:NO2 variation- Air freshener (20 ml)55Figure 3.5:CO2 variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.8:RH variation- Air freshener (20 ml)55Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)57Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.12:TVOCs variation- Air freshener (40 ml)57Figure 3.13:PM2.5 variation- Air freshener (40 ml)57Figure 3.14:Temperature variatio	Figure 1.2:	Comparison of age-standardised death rate from Indoor Air Pollution	3
Figure 1.5: Haz-Dust Particulate Air Monitoring Equipment.	Figure 1.3:	The methodology flow chart of the study	.7
Figure 2.1:Psychrometric chart giving thermal comfort zones for Sri Lanka for various internal velocitiesFigure 2.2:Summary of the literature review and identified research gap.Figure 3.1:Structure of the preliminary study.Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).Figure 3.3:CO variation- Air freshener (20 ml)Figure 3.4:NO2 variation- Air freshener (20 ml)Structure of the reshener (20 ml)	Figure 1.4:	Air Quality Monitor (IQM60 Environmental Monitor V5.0)	8
internal velocities38Figure 2.2:Summary of the literature review and identified research gap.46Figure 3.1:Structure of the preliminary study.52Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).53Figure 3.3:CO variation- Air freshener (20 ml)55Figure 3.4:NO2 variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.10:NO2 variation- Air freshener (20 ml)55Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)57Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.18:NO2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint61Figure 3.21:PM2.5 variation- Wall paint61Figure 3.22:TOCs variation- Wall paint61Figure 3.23:RH variation- Wall paint <t< td=""><td>Figure 1.5:</td><td>Haz-Dust Particulate Air Monitoring Equipment</td><td>.8</td></t<>	Figure 1.5:	Haz-Dust Particulate Air Monitoring Equipment	.8
Figure 2.2:Summary of the literature review and identified research gap	Figure 2.1:	Psychrometric chart giving thermal comfort zones for Sri Lanka for vario	us
Figure 3.1:Structure of the preliminary study.52Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).53Figure 3.3:CO variation- Air freshener (20 ml)55Figure 3.4:NO2 variation- Air freshener (20 ml)55Figure 3.5:CO2 variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)57Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.12:TVOCs variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PLo2 variation- Wall paint60Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospit		internal velocities	38
Figure 3.2:Plan view of the test chamber used for the experiment on air freshener (All the dimensions are in meters).Figure 3.3:CO variation- Air freshener (20 ml)Figure 3.4:NO2 variation- Air freshener (20 ml)Solution- Air freshener (20 ml)55Figure 3.5:CO2 variation- Air freshener (20 ml)Solution- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)Solution- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)Solution- Air freshener (20 ml)55Figure 3.8:RH variation- Air freshener (20 ml)Solution- Air freshener (40 ml)56Figure 3.10:NO2 variation- Air freshener (40 ml)Solution- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)Solution- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)Solution- Air freshener (40 ml)57Figure 3.14:Temperature variation- Air freshener (40 ml)Solution- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)Solution- Wall paint60Figure 3.17:CO variation- Wall paintSolution- Wall paint60Figure 3.18:NO2 variation- Wall paintSolution- Wall paint60Figure 3.20:TVOCs variation- Wall paintSolution- Wall paint61Figure 3.23:RH variation- Wall paint	Figure 2.2:	Summary of the literature review and identified research gap	46
the dimensions are in meters)	Figure 3.1:	Structure of the preliminary study	52
Figure 3.3:CO variation- Air freshener (20 ml) 55Figure 3.4:NO2 variation- Air freshener (20 ml) 55Figure 3.5:CO2 variation- Air freshener (20 ml) 55Figure 3.6:TVOCs variation- Air freshener (20 ml) 55Figure 3.7:Temperature variation- Air freshener (20 ml) 55Figure 3.8:RH variation- Air freshener (20 ml) 55Figure 3.9:CO variation- Air freshener (40 ml) 56Figure 3.10:NO2 variation- Air freshener (40 ml) 56Figure 3.11:CO2 variation- Air freshener (40 ml) 56Figure 3.12:TVOCs variation- Air freshener (40 ml) 56Figure 3.13:PM2.5 variation- Air freshener (40 ml) 56Figure 3.14:Temperature variation- Air freshener (40 ml) 57Figure 3.15:RH variation- Air freshener (40 ml) 57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM2.5 variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (A	Figure 3.2:	Plan view of the test chamber used for the experiment on air freshener (A	11
Figure 3.4:NO2 variation- Air freshener (20 ml)55Figure 3.5:CO2 variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.8:RH variation- Air freshener (20 ml)55Figure 3.9:CO variation- Air freshener (40 ml)56Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)56Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.18:NO2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM2.5 variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63		the dimensions are in meters)	53
Figure 3.5: CO_2 variation- Air freshener (20 ml)55Figure 3.6:TVOCs variation- Air freshener (20 ml)55Figure 3.7:Temperature variation- Air freshener (20 ml)55Figure 3.8:RH variation- Air freshener (20 ml)55Figure 3.9:CO variation- Air freshener (40 ml)56Figure 3.10:NO ₂ variation- Air freshener (40 ml)56Figure 3.11:CO ₂ variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM _{2.5} variation- Air freshener (40 ml)56Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.18:NO ₂ variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM _{2.5} variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.23:CO variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63	Figure 3.3:	CO variation- Air freshener (20 ml)	55
Figure 3.6:TVOCs variation- Air freshener (20 ml)	Figure 3.4:	NO ₂ variation- Air freshener (20 ml)	55
Figure 3.7:Temperature variation- Air freshener (20 ml) 55Figure 3.8:RH variation- Air freshener (20 ml) 55Figure 3.9:CO variation- Air freshener (40 ml) 56Figure 3.10:NO2 variation- Air freshener (40 ml) 56Figure 3.11:CO2 variation- Air freshener (40 ml) 56Figure 3.12:TVOCs variation- Air freshener (40 ml) 56Figure 3.13:PM _{2.5} variation- Air freshener (40 ml) 56Figure 3.14:Temperature variation- Air freshener (40 ml) 57Figure 3.15:RH variation- Air freshener (40 ml) 57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.19:CO2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM _{2.5} variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.25:CO variation- Wall paint61	Figure 3.5:	CO ₂ variation- Air freshener (20 ml)	55
Figure 3.8:RH variation- Air freshener (20 ml)55Figure 3.9:CO variation- Air freshener (40 ml)56Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)56Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.19:CO2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM2.5 variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63	Figure 3.6:	TVOCs variation- Air freshener (20 ml)	55
Figure 3.8:RH variation- Air freshener (20 ml)55Figure 3.9:CO variation- Air freshener (40 ml)56Figure 3.10:NO2 variation- Air freshener (40 ml)56Figure 3.11:CO2 variation- Air freshener (40 ml)56Figure 3.12:TVOCs variation- Air freshener (40 ml)56Figure 3.13:PM2.5 variation- Air freshener (40 ml)56Figure 3.14:Temperature variation- Air freshener (40 ml)57Figure 3.15:RH variation- Air freshener (40 ml)57Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.19:CO2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21:PM2.5 variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63	Figure 3.7:	Temperature variation- Air freshener (20 ml)	55
Figure 3.10:NO2 variation- Air freshener (40 ml)	Figure 3.8:		
Figure 3.10:NO2 variation- Air freshener (40 ml)	Figure 3.9:	CO variation- Air freshener (40 ml)	56
Figure 3.12:TVOCs variation- Air freshener (40 ml)	Figure 3.10:	NO ₂ variation- Air freshener (40 ml)	56
Figure 3.13: $PM_{2.5}$ variation- Air freshener (40 ml)	Figure 3.11:	CO ₂ variation- Air freshener (40 ml)	56
Figure 3.14:Temperature variation- Air freshener (40 ml)	Figure 3.12:	TVOCs variation- Air freshener (40 ml)	56
Figure 3.15:RH variation- Air freshener (40 ml)	Figure 3.13:	PM _{2.5} variation- Air freshener (40 ml)	56
Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)Figure 3.17:CO variation- Wall paintFigure 3.18: NO_2 variation- Wall paintFigure 3.19:CO_2 variation- Wall paintFigure 3.20:TVOCs variation- Wall paintFigure 3.21: $PM_{2.5}$ variation- Wall paintFigure 3.22:Temperature variation- Wall paintFigure 3.23:RH variation- Wall paintFigure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)Figure 3.25:CO variation- Hospital theatre (Day_01)	Figure 3.14:	Temperature variation- Air freshener (40 ml)	57
Figure 3.16:Plan view of the test chamber used for the experiment on wall paint (All the dimensions are in meters)Figure 3.17:CO variation- Wall paintFigure 3.18: NO_2 variation- Wall paintFigure 3.19:CO_2 variation- Wall paintFigure 3.20:TVOCs variation- Wall paintFigure 3.21: $PM_{2.5}$ variation- Wall paintFigure 3.22:Temperature variation- Wall paintFigure 3.23:RH variation- Wall paintFigure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)Figure 3.25:CO variation- Hospital theatre (Day_01)	Figure 3.15:	RH variation- Air freshener (40 ml)	57
dimensions are in meters)59Figure 3.17:CO variation- Wall paint60Figure 3.18: NO_2 variation- Wall paint60Figure 3.19: CO_2 variation- Wall paint60Figure 3.20:TVOCs variation- Wall paint60Figure 3.21: $PM_{2.5}$ variation- Wall paint61Figure 3.22:Temperature variation- Wall paint61Figure 3.23:RH variation- Wall paint61Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)63Figure 3.25:CO variation- Hospital theatre (Day_01)65	Figure 3.16:		
Figure 3.18:NO2 variation- Wall paint	C		
Figure 3.18:NO2 variation- Wall paint	Figure 3.17:	CO variation- Wall paint	60
Figure 3.20:TVOCs variation- Wall paint	Figure 3.18:	NO ₂ variation- Wall paint	60
Figure 3.21:PM2.5 variation- Wall paint	Figure 3.19:	CO ₂ variation- Wall paint	50
Figure 3.21:PM2.5 variation- Wall paint	Figure 3.20:	TVOCs variation- Wall paint	60
Figure 3.22:Temperature variation- Wall paint	Figure 3.21:	PM _{2.5} variation- Wall paint	61
Figure 3.24:Plan view of the test chamber used for the experiment on IAQ inside the hospital theatre (All the dimensions are in meters)	Figure 3.22:		
hospital theatre (All the dimensions are in meters)	Figure 3.23:		
Figure 3.25:CO variation- Hospital theatre (Day_01)	Figure 3.24:	Plan view of the test chamber used for the experiment on IAQ inside the	he
		hospital theatre (All the dimensions are in meters)	53
Figure 3.26: CO variation- Hospital theatre (Day, 02) 65	Figure 3.25:	CO variation- Hospital theatre (Day_01)	55
$1 1 g u = 5.20$. CO variation- riospital ulcare (Day_02)	Figure 3.26:	CO variation- Hospital theatre (Day_02)	55
Figure 3.27: CO variation- Hospital theatre (Day_03)65	Figure 3.27:	CO variation- Hospital theatre (Day_03)	55
	Figure 3.28:		
	Figure 3.29:		
	Figure 3.30:		
	Figure 3.31:	· · · ·	

Figure 3.32:	NO ₂ variation- Hospital theatre (Base case)	
Figure 3.33:	CO_2 variation-Hospital theatre (Day_01)	
Figure 3.34:	CO_2 variation Hospital theatre (Day_02)	
Figure 3.35:	CO_2 variation- Hospital theatre (Day_03)	
Figure 3.36:	CO_2 variation- Hospital theatre (Base case)	
Figure 3.37:	TVOCs variation- Hospital theatre (Day_01)	
Figure 3.38:	TVOCs variation- Hospital theatre (Day_02)	
Figure 3.39:	TVOCs variation- Hospital theatre (Day_03)	
Figure 3.40:	TVOCs variation- Hospital theatre (Base case)	
Figure 3.41:	PM _{2.5} variation- Hospital theatre (Day_01)69	
Figure 3.42:	PM _{2.5} variation- Hospital theatre (Day_02)	
Figure 3.43:	PM _{2.5} variation- Hospital theatre (Day_03)	
Figure 3.44:	PM _{2.5} variation- Hospital theatre (Base case)	
Figure 3.45:	Temperature variation- Hospital theatre (Day_01)70	
Figure 3.46:	RH variation- Hospital theatre (Day_01)	
Figure 3.47:	Temperature variation- Hospital theatre (Day_02)	
Figure 3.48:	RH variation- Hospital theatre (Day_02)	
Figure 3.49:	Temperature variation- Hospital theatre (Day_03)71	
Figure 3.50:	RH variation- Hospital theatre (Day_03)	
Figure 3.51:	Temperature variation- Hospital theatre (Base case)	
Figure 3.52:	RH variation- Hospital theatre (Base case)	
Figure 3.53:	Plan view of the test chamber used for the experiment on IAQ in the vehicle	
C	service center (Workshop- All the dimensions are in meters)	
Figure 3.54:	Plan view of the test chamber used for the experiment on IAQ in the vehicle	
-	service center (Office- All the dimensions are in meters)73	
Figure 3.55:	CO variation-Vehicle service centre (Service area)74	
Figure 3.56:	NO ₂ variation- Vehicle service centre (Service area)74	
Figure 3.57:	CO ₂ variation- Vehicle service centre (Service area)74	
Figure 3.58:	TVOCs variation- Vehicle service centre (Service area)74	
Figure 3.59:	PM _{2.5} variation- Vehicle service centre (Service area)75	
Figure 3.60:	Temperature variation- Vehicle service centre (Service area)	
Figure 3.61:	RH variation- Vehicle service centre (Service area)75	
Figure 3.62:	CO variation-Vehicle service centre (Workshop)76	
Figure 3.63:	NO ₂ variation- Vehicle service centre (Workshop)76	
Figure 3.64:	CO ₂ variation- Vehicle service centre (Workshop)76	
Figure 3.65:	TVOCs variation- Vehicle service centre (Workshop)76	
Figure 3.66:	PM _{2.5} variation- Vehicle service centre (Workshop)77	
Figure 3.67:	Temperature variation- Vehicle service centre (Workshop)77	
Figure 3.68:	RH variation- Vehicle service centre (Workshop)77	
Figure 3.69:	CO variation- Vehicle service centre (Office)78	
Figure 3.70:	NO ₂ variation- Vehicle service centre (Office)78	
Figure 3.71:	CO ₂ variation- Vehicle service centre (Office)78	
Figure 3.72:	TVOCs variation- Vehicle service centre (Office)78	
Figure 3.73:	PM _{2.5} variation- Vehicle service centre (Office)79	
Figure 3.74:	Temperature variation- Vehicle service centre (Office)79	

Figure 3.75:	RH variation- Vehicle service centre (Office))
Figure 3.76:	Plan view of the test chamber used for the experiment on synthetic building	
0	materials (Location_01- All the dimensions are in meters)	-
Figure 3.77:	Plan view of the test chamber used for the experiment on synthetic building	
C	materials (Location_02- All the dimensions are in meters)	-
Figure 3.78:	Plan view of the test chamber used for the experiment on synthetic building	
C	materials (Location_03- All the dimensions are in meters)	-
Figure 3.79:	CO variation- Synthetic building materials (Location_01)83	3
Figure 3.80:	CO variation- Synthetic building materials (Location_02)83	3
Figure 3.81:	CO variation- Synthetic building materials (Location_03)83	3
Figure 3.82:	CO variation- Synthetic building materials (Base case)	3
Figure 3.83:	NO ₂ variation- Synthetic building materials (Location_01)84	1
Figure 3.84:	NO ₂ variation- Synthetic building materials (Location_02)84	1
Figure 3.85:	NO ₂ variation- Synthetic building materials (Location_03)84	1
Figure 3.86:	NO ₂ variation- Synthetic building materials (Base case)84	1
Figure 3.87:	CO ₂ variation- Synthetic building materials (Location_01)84	1
Figure 3.88:	CO ₂ variation- Synthetic building materials (Location_02)84	1
Figure 3.89:	CO ₂ variation- Synthetic building materials (Location_03)85	5
Figure 3.90:	CO ₂ variation- Synthetic building materials (Base case)85	5
Figure 3.91:	TVOCs variation- Synthetic building materials (Location_01)85	5
Figure 3.92:	TVOCs variation- Synthetic building materials (Location_02)85	5
Figure 3.93:	TVOCs variation- Synthetic building materials (Location_03)85	5
Figure 3.94:	TVOCs variation- Synthetic building materials (Base case)85	1
Figure 3.95:	Temperature variation- Synthetic building materials (Location_01)86	5
Figure 3.96:	RH variation- Synthetic building materials (Location_01)86	5
Figure 3.97:	Temperature variation- Synthetic building materials (Location_02)86	5
Figure 3.98:	RH variation- Synthetic building materials (Location_02)86	5
Figure 3.99:	Temperature variation- Synthetic building materials (Location_03)86	5
Figure 3.100:	RH variation- Synthetic building materials (Location_03)86	5
Figure 3.101:	Temperature variation- Synthetic building materials (Base case)	
Figure 3.102:	RH variation- Synthetic building materials (Base case)	7
Figure 3.103:	Plan view of the test chamber used for the experiment on mosquito coil (Al	
	the dimensions are in meters)	
Figure 3.104:	CO variation- Mosquito coil	
Figure 3.105:	NO ₂ variation- Mosquito coil	
Figure 3.106:	CO ₂ variation- Mosquito coil	
Figure 3.107:	TVOCs variation- Mosquito coil90	
Figure 3.108:	PM _{2.5} variation- Mosquito coil90	
Figure 3.109:	Temperature variation- Mosquito coil	
Figure 3.110:	RH variation- Mosquito coil	
Figure 3.111:	CO variation- Naphthalene balls	
Figure 3.112:	NO ₂ variation- Naphthalene balls	
Figure 3.113:	CO ₂ variation- Naphthalene balls	
Figure 3.114:	TVOCs variation- Naphthalene	
Figure 3.115:	Temperature variation- Naphthalene balls94	ł

Figure 3.116:	RH variation- Naphthalene balls94
Figure 3.117:	CO variation- Incense sticks
Figure 3.117:	NO ₂ variation- Incense sticks
Figure 3.119:	CO ₂ variation Incense sticks
Figure 3.120:	TVOCs variation- Incense sticks
Figure 3.120:	PM _{2.5} variation- Incense sticks
Figure 3.121: Figure 3.122:	Temperature variation- Incense sticks
Figure 3.122:	RH variation- Incense sticks
Figure 3.123: Figure 3.124:	Plan view of the test chamber used for the experiment on open waste burning
Figure 5.124.	(All the dimensions are in meters)
Figure 3.125:	CO variation- Burning dry leaves
Figure 3.125:	NO ₂ variation- Burning dry leaves
Figure 3.120.	CO ₂ variation- Burning dry leaves
Figure 3.127.	TVOCs variation- Burning dry leaves
Figure 3.128:	PM _{2.5} variation- Burning dry leaves
Figure 3.129.	Temperature variation- Burning dry leaves
Figure 3.130. Figure 3.131:	RH variation- Burning dry leaves
Figure 3.131. Figure 3.132:	
e	CO variation- Burning polythene
Figure 3.133:	NO ₂ variation- Burning polythene
Figure 3.134:	CO ₂ variation- Burning polythene
Figure 3.135:	TVOCs variation- Burning polythene
Figure 3.136:	PM _{2.5} variation- Burning polythene
Figure 3.137:	Temperature variation- Burning polythene
Figure 3.138:	RH variation- Burning polythene
Figure 3.139:	CO variation- ETS (Smoking 3 cigars continuously)
Figure 3.140:	NO ₂ variation- ETS (Smoking 3 cigars continuously)105
Figure 3.141:	CO ₂ variation- ETS (Smoking 3 cigars continuously)106
Figure 3.142:	TVOCs variation- ETS (Smoking 3 cigars continuously)
Figure 3.143:	Temperature variation- ETS (Smoking 3 cigars continuously)106
Figure 3.144:	RH variation- ETS (Smoking 3 cigars continuously)
Figure 3.145:	CO variation- ETS (Burning 3 cigars continuously)
Figure 3.146:	NO ₂ variation- ETS (Burning 3 cigars continuously)
Figure 3.147:	CO ₂ variation- ETS (Burning 3 cigars continuously)
Figure 3.148:	TVOCs variation- ETS (Burning 3 cigars continuously)
Figure 3.149:	PM _{2.5} variation- ETS (Burning 3 cigars continuously)
Figure 3.150:	Temperature variation- ETS (Burning 3 cigars continuously)108
Figure 3.151:	RH variation- ETS (Burning 3 cigars continuously)108
Figure 3.152:	Empirical CDF of TVOCs from air freshener
Figure 3.153:	Empirical CDF of TVOCs from wall paint
Figure 3.154:	Empirical CDF of TVOCs from hospital theatre- Day_3112
Figure 3.155:	Empirical CDF of TVOCs from motor vehicle service centre- Workshop.112
Figure 3.156:	Empirical CDF of TVOCs from incense sticks burning112
Figure 3.157:	Empirical CDF of TVOCs from open waste burning- Dry leaves112
Figure 3.158:	Empirical CDF of TVOCs from environmental tobacco smoke - Active
	smoking113

Figure 3.159:	Empirical CDF of TVOCs from environmental tobacco smoke - Bur	ning
	cigars	113
Figure 3.160:	Empirical CDF of PM _{2.5} from air freshener	113
Figure 3.161:	Empirical CDF of PM _{2.5} from wall paint	.113
Figure 3.162:	Empirical CDF of PM _{2.5} from hospital theater- Day_1	.113
Figure 3.163:	Empirical CDF of PM _{2.5} from motor vehicle service center- Workshop	.113
Figure 3.164:	Empirical CDF of PM _{2.5} from mosquito coil	.114
Figure 3.165:	Empirical CDF of PM _{2.5} from incense sticks	.114
Figure 3.166:	Empirical CDF of PM _{2.5} from open waste burning- Dry leaves	.114
Figure 3.167:	Empirical CDF of PM _{2.5} from open waste burning- Polythene	114
Figure 3.168:	Empirical CDF of PM _{2.5} from environmental tobacco smoke Burning c	igars
		.114
Figure 3.169:	Empirical CDF of CO from mosquito coil	114
Figure 3.170:	Empirical CDF of CO from naphthalene ball	.115
Figure 3.171:	Empirical CDF of CO from incense sticks burning	115
Figure 3.172:	Empirical CDF of CO from open waste burning- Dry leave	115
Figure 3.173:	Empirical CDF of CO from environmental tobacco smoke - Smoking c	igars
		.115
Figure 3.174:	Empirical CDF of CO ₂ from hospital theater- Day_1	. 115
Figure 3.175:	Empirical CDF of CO ₂ from motor vehicle service centre- Office	. 115
Figure 3.176:	Empirical CDF of CO ₂ from synthetic building materials- Location_02	. 116
Figure 3.177:	Empirical CDF of CO ₂ from environmental tobacco smoke – Smoking c	igars
		116
Figure 3.178:	Empirical CDF of NO ₂ from wall paint	116
Figure 3.179:	Plan view of the test chamber used for the experiment on outdoor source	es on
	IAQ (All the dimensions are in meters)	120
Figure 3.180:	CO variation- Outdoor source (Day-01)	121
Figure 3.181:	NO ₂ variation- Outdoor source (Day-01)	
Figure 3.182:	CO ₂ variation- Outdoor source (Day-01)	
Figure 3.183:	TVOCs variation- Outdoor source (Day-01)	
Figure 3.184:	PM _{2.5} variation- Outdoor source (Day-01)	122
Figure 3.185:	Temperature variation- Outdoor source (Day-01)	122
Figure 3.186:	RH variation- Outdoor source (Day-01)	.122
Figure 3.187:	CO variation- Outdoor source (Day_02)	.122
Figure 3.188:	NO ₂ variation- Outdoor source (Day-02)	
Figure 3.189:	CO ₂ variation- Outdoor source (Day_02)	
Figure 3.190:	TVOCs variation- Outdoor source (Day-02)	
Figure 3.191:	PM _{2.5} variation- Outdoor source (Day-02)	
Figure 3.192:	Temperature variation- Outdoor source (Day_02)	
Figure 3.193:	RH variation- Outdoor source (Day_02)	
Figure 4.1:	Structure of the questionnaire survey	127
Figure 4.2:	Response rate of the questionnaire survey	
Figure 4.3:		
	Respondent's age group distribution	
Figure 4.4: Figure 4.5:	Respondent's age group distribution Respondent's gender distribution Percentage of responses vs Complaints/ Symptoms	129

Figure 4.6:	Respondent's perception of symptom existence
Figure 4.7:	Respondent's perception about the time of the day when they feel discomfort-
i iguie	Sample A, B, C and D respectively
Figure 4.8:	CO variation- Sample A (Location A_1)
Figure 4.9:	NO_2 variation- Sample A (Location A_1)
Figure 4.10:	CO_2 variation- Sample A (Location A_1)
Figure 4.11:	TVOCs variation- Sample A (Location A_1)
Figure 4.12:	Temperature variation- Sample A (Location A ₁)
Figure 4.13:	RH variation- Sample A (Location A_1)
Figure 4.14:	CO variation- Sample A (Location A_2)
Figure 4.15:	NO ₂ variation- Sample A (Location A_2)
Figure 4.16:	CO_2 variation Sample A (Location A_2)
Figure 4.17:	TVOCs variation Sample A (Location A_2)
Figure 4.18:	Temperature variation- Sample A (Location A ₂)
Figure 4.19:	RH variation- Sample A (Location A_2)
Figure 4.20:	CO variation- Sample A (Location A_2)
Figure 4.21:	NO_2 variation- Sample A (Location A_3)
Figure 4.22:	CO_2 variation Sample A (Location A ₃)
Figure 4.23:	TVOCs variation Sample A (Location A_3)
Figure 4.24:	Temperature variation- Sample A (Location A ₃)
Figure 4.25:	RH variation- Sample A (Location A_3)
Figure 4.26:	CO variation- Sample B (Location B_1)
Figure 4.27:	NO_2 variation- Sample B (Location B_1)
Figure 4.28:	CO_2 variation Sample B (Location B_1)
Figure 4.29:	TVOCs variation Sample B (Location B_1)
Figure 4.30:	Temperature variation- Sample B (Location B ₁)
Figure 4.31:	RH variation- Sample B (Location B_1)
Figure 4.32:	CO variation- Sample B (Location B_1)
Figure 4.33:	NO ₂ variation- Sample B (Location B_2)
Figure 4.34:	CO_2 variation- Sample B (Location B_2)
Figure 4.35:	TVOCs variation- Sample B (Location B_2)
Figure 4.36:	Temperature variation- Sample B (Location B ₂)
Figure 4.37:	RH variation- Sample B (Location B ₂)
Figure 4.38:	CO variation- Sample B (Location B_3)
Figure 4.39:	NO_2 variation- Sample B (Location B_3)
Figure 4.40:	CO_2 variation- Sample B (Location B_3)
Figure 4.41:	TVOCs variation- Sample B (Location B ₃)
Figure 4.42:	Temperature variation- Sample B (Location B ₃)
Figure 4.43:	RH variation- Sample B (Location B ₃)
Figure 4.44:	CO variation- Sample B (Location B_4)
Figure 4.45:	NO_2 variation- Sample B (Location B_4)
Figure 4.46:	CO_2 variation- Sample B (Location B_4)
Figure 4.47:	TVOCs variation- Sample B (Location B ₄)
Figure 4.48:	Temperature variation- Sample B (Location B ₄)
Figure 4.49:	RH variation- Sample B (Location B4)
-8	

Figure 4.50:	CO variation- Sample B (Location B ₅)140
Figure 4.51:	NO ₂ variation- Sample B (Location B_5)
Figure 4.52:	CO_2 variation Sample B (Location B_5)
Figure 4.53:	TVOCs variation- Sample B (Location B_5)
Figure 4.54:	Temperature variation- Sample B (Location B ₅)
Figure 4.55:	RH variation- Sample B (Location B ₅)
Figure 4.56:	CO variation- Sample C
Figure 4.57:	NO_2 variation- Sample C
Figure 4.58:	CO ₂ variation- Sample C
Figure 4.59:	TVOCs variation- Sample C
Figure 4.60:	Temperature variation- Sample C
Figure 4.61:	RH variation- Sample C
Figure 4.62:	CO variation- Sample D
Figure 4.63:	NO ₂ variation- Sample D
Figure 4.64:	CO ₂ variation- Sample D
Figure 4.65:	TVOCs variation- Sample D
Figure 4.66:	Temperature variation- Sample D
Figure 4.67:	RH variation- Sample D
Figure 4.68:	Relationship between IAQ parameters and SBS symptoms- Sample A148
Figure 4.69:	Relationship between IAQ parameters and SBS symptoms- Sample B148
Figure 4.70:	Relationship between IAQ parameters and SBS symptoms- Sample C148
Figure 4.71:	Relationship between IAQ parameters and SBS symptoms- Sample D148
Figure 4.72:	CO variation- Sample E (Location E_1)
Figure 4.73:	NO_2 variation- Sample E (Location E_1)
Figure 4.74:	CO_2 variation- Sample E (Location E_1)
Figure 4.75:	TVOCs variation- Sample E (Location E ₁)152
Figure 4.76:	Temperature variation- Sample E (Location E ₁)152
Figure 4.77:	RH variation- Sample E (Location E_1)
Figure 4.78:	CO variation- Sample E (Location E ₂)
Figure 4.79:	NO ₂ variation- Sample E (Location E ₂)152
Figure 4.80:	CO ₂ variation- Sample E (Location E ₂)153
Figure 4.81:	TVOCs variation- Sample E (Location E ₂)153
Figure 4.82:	Temperature variation- Sample E (Location E ₂)153
Figure 4.83:	RH variation- Sample E (Location E ₂)153
Figure 4.84:	CO variation- Sample E (Location E ₃)153
Figure 4.85:	NO ₂ variation- Sample E (Location E ₃)153
Figure 4.86:	CO ₂ variation- Sample E (Location E ₃)154
Figure 4.87:	TVOCs variation- Sample E (Location E ₃)154
Figure 4.88:	Temperature variation- Sample E (Location E ₃)154
Figure 4.89:	RH variation- Sample E (Location E ₃)154
Figure 4.90:	CO variation- Sample E (Location E ₄)154
Figure 4.91:	NO ₂ variation- Sample E (Location E ₄)154
Figure 4.92:	CO ₂ variation- Sample E (Location E ₄)155
Figure 4.93:	TVOCs variation- Sample E (Location E ₄)155
Figure 4.94:	Temperature variation- Sample E (Location E ₄)155

Figure 4.95:	RH variation- Sample E (Location E4)155
Figure 4.96:	TVOCs variation with time at Sample A, B and C
Figure 4.97:	TVOCs variation with time at Sample A, B (Average) and C157
Figure 5.1:	Plan view of the test chamber I (All the dimensions are in meters)
Figure 5.2:	Plan view of the test chamber I (All the dimensions are in meters)165
Figure 5.3:	Plan view of the test chamber I during the Exp 1
Figure 5.4:	Plan view of the test chamber I during the Exp 2
Figure 5.5:	Orientation of the painted area during the Exp 2
Figure 5.6:	TVOCs variation with time- Solvent-based paint
Figure 5.7:	TVOCs variation with time- Water based paint170
Figure 5.8:	CO variation with time - Solvent-based paint
Figure 5.9:	CO variation with time- Water-based paint
Figure 5.10:	NO ₂ variation with time - Solvent-based paint173
Figure 5.11:	NO ₂ variation with time- Water-based paint
Figure 5.12:	CO ₂ variation with time - Solvent-based paint175
Figure 5.13:	CO ₂ variation with time- Water-based paint
Figure 5.14:	PM _{2.5} variation with time- Solvent-based paint
Figure 5.15:	PM _{2.5} variation with time- Water-based paint
Figure 5.16:	Timely variation of TVOCs with distances - Solvent-based paint
Figure 5.17:	Timely variation of TVOCs with distances - Water based paint
Figure 5.18:	One dimensional spatial variation of TVOCs with time during the first hour -
-	Solvent based paint
Figure 5.19:	One-dimensional spatial variation of TVOCs with time - Solvent-based paint
Figure 5.20:	Coefficients (a, c) variation with the distance184
Figure 5.21:	Plan view of the chamber III (All the dimensions are in meters)185
Figure 5.22:	TVOCs variation with time inside the chamber III -Solvent based paint186
Figure 5.23:	Comparison of the mathematical model for TVOCs dispersion with field data
Figure 5.24:	Plan view of the chamber II during the field data collection
Figure 5.25:	TVOCs dispersion model validation using field data- 1m ² 188
Figure 5.26:	TVOCs dispersion model validation using field data- $2m^2$
Figure 5.27:	TVOCs dispersion model validation using field data- 3m ² 189
Figure 5.28:	TVOCs dispersion model validation using field data- 4m ² 190
Figure 5.29:	TVOCs dispersion model validation using field data- 5m ² 190
Figure 6.1:	Overview of the CFD modelling
Figure 6.2:	Plan view of the test chamber II (All the dimensions are in meters)197
Figure 6.3:	Dimensions and the details of the openings (All the dimensions are in meters)
Figure 6.4:	TVOCs variation with different ventilation conditions
Figure 6.5:	TVOCs variation during the initial hours of an experiment of case 02-05201
Figure 6.6:	TVOCs max. concentration variation with ventilation conditions
Figure 6.7:	TVOCs variation curve obtained from MATLAB for experimental data- Case
C	01

Figure 6.8:	TVOCs variation curves obtained from MATLAB for experimental data- Case 02 -05203
Figure 6.9:	Variation of TVOCs dispersion time taken to the ambient condition (0 ppm) with TVOCs maximum concentration and air exchange rate (equation 6.3)
Figure 6.10:	Variation of TVOCs dispersion time taken to the indoor permissible value (0.75ppm) with TVOCs maximum concentration and air exchange rate (equation 6.4)
Figure 6.11:	Model view of the ventilation case 05
Figure 6.12:	Graphical representation of the ANSYS-Fluent model data –Case 01218
Figure 6.13:	Graphical representation of the ANSYS-Fluent model data –Case 02219
Figure 6.14:	Graphical representation of the ANSYS-Fluent model data –Case 03219
Figure 6.15:	Graphical representation of the ANSYS-Fluent model data –Case 04220
Figure 6.16:	Graphical representation of the ANSYS-Fluent model data –Case 05220
Figure 6.17:	Computational simulation results representation of TVOCs variation -Case
	01
Figure 6.18:	Computational simulation results representation of TVOCs variation -Case 02
	-05
Figure 6.19:	Computational simulation results representation of TVOCs variation until the
	atmospheric condition -Case 01222
Figure 6.20:	Comparison of ANSYS-Fluent data with Experimental data - Case 01223
Figure 6.21:	Comparison of ANSYS-Fluent data with Experimental data - Case 02223
Figure 6.22:	Comparison of ANSYS-Fluent data with Experimental data - Case 03224
Figure 6.23:	Comparison of ANSYS-Fluent data with Experimental data - Case 04224
Figure 6.24:	Comparison of ANSYS-Fluent data with Experimental data - Case 05224
Figure 7.1:	Most prominent indoor air polluting sources with causative agents
Figure 7.2:	Relationship of the SBS symptoms with air pollutant types230
Figure 7.3:	Summary of the experimental results of wall paint
Figure B1- i:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample A (All the dimensions are in meters)
Figure B1- ii:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample B1 (All the dimensions are in meters)267
Figure B1- iii:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample B2 (All the dimensions are in meters)267
Figure B1- iv:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample B3 (All the dimensions are in meters)
Figure B1- v:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample B4 (All the dimensions are in meters)
Figure B1- vi:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample B5 (All the dimensions are in meters)
Figure B1- vii:	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample C (All the dimensions are in meters)
Figure B1- viii	Plan view of the location used for the questionnaire survey and IAQ
	measurements of Sample D (All the dimensions are in meters)270
Figure B2:	Temperature Variation with Time -Solvent based paint271

Figure B3:	Temperature Variation with Time -Water based paint
Figure B4:	Relative Humidity Variation with Time - Solvent based paint
Figure B5:	Relative Humidity Variation with Time - Water based paint
Figure B6-i:	One dimensional spatial variation of TVOCs with time for entire experiment-
C	Solvent based paint: 1 hr -1.30 hr period from painting273
Figure B6-ii:	One dimensional spatial variation of TVOCs with time for entire experiment-
C	Solvent based paint: 1.30 hr- 2.20 hr period from painting273
Figure B6-iii:	One dimensional spatial variation of TVOCs with time for entire experiment-
-	Solvent based paint: 2.20 hr -3.10 hr period from painting
Figure B6-iv:	One dimensional spatial variation of TVOCs with time for entire experiment-
-	Solvent based paint: 3.10 hr- 4.00 hr period from painting274
Figure B6-v:	One dimensional spatial variation of TVOCs with time for entire experiment-
	Solvent based paint: 4.00 hr- 4.45 hr period from painting
Figure B6-vi:	One dimensional spatial variation of TVOCs with time for entire experiment-
	Solvent based paint: 4.45 hr -5.45 hr period from painting275
Figure B6-vii:	One dimensional spatial variation of TVOCs with time for entire experiment-
	Solvent based paint: 5.45 hr-6.00 hr period from painting276
Figure B7:	Timely variation of CO with distances - Solvent based paint276
Figure B8:	Timely variation of CO with distances - Water based paint277
Figure B9:	Timely variation of NO ₂ with distances - Solvent based paint277
Figure B10:	Timely variation of NO ₂ with distances - Water based paint278
Figure B11:	Timely variation of CO ₂ with distances - Solvent based paint278
Figure B12:	Timely variation of CO ₂ with distances - Water based paint279
Figure B13:	Timely variation of PM _{2.5} with distances - Solvent based paint279
Figure B14:	Timely variation of PM _{2.5} with distances - Water based paint
Figure B15:	Timely variation of Temperature with distances - Solvent based paint280
Figure B16:	Timely variation of Temperature with distances - Water based paint
Figure B17:	Timely variation of Relative Humidity with distances - Solvent based
	paint
Figure B18:	Timely variation of Relative Humidity with distances - Water based
	paint
Figure B19:	Model view of the ventilation case 01
Figure B20:	Model view of the ventilation case 02
Figure B21:	Model view of the ventilation case 03
Figure B22:	Model view of the ventilation case 04
Figure D1:	Questionnaire survey template- page 01
Figure D2:	Questionnaire survey template- page 02

LIST OF TABLES

Table 2.1: Selected IAQ guidelines for the study
Table 2.2: Air quality guidelines and regulations for Sri Lanka 36
Table 3.1: Summary of the experimental results- Air Freshener 57
Table 3.2: Summary of the experimental results- Wall paint
Table 3.3: Details of the experiments in hospital theatre 64
Table 3.4: Summary of the experimental results- Hospital Theatre
Table 3.5: Summary of the experimental results- Motor vehicle service centre
Table 3.6: Summary of the experimental results- Synthetic building materials 87
Table 3.7: Summary of the experimental results- Mosquito coil
Table 3.8: Summary of the experimental results- Naphthalene ball
Table 3.9: Summary of the experimental results- Incense sticks 98
Table 3.10: Summary of the experimental results- Open waste burning 103
Table 3.11: Summary of the experimental results- Environmental tobacco smoke 108
Table 3.12: Summary of the experimental results- Building materials, adverse indoo
environments and human practices on IAQError! Bookmark not defined
Table 3.13: Selected indoor sources and causative agents on IAP for the detailed analysis 111
Table 3.14: Summary of the CDFs and occupant exposure parameters for the selected
pollutants 117
Table 3.15: Different ventilation conditions maintained in the experiment on outdoor sources
Table 3.16: Summary of the experimental results- Outdoor sources
Table 4.1: Details of the selected locations for questionnaire survey 127
Table 4.2: Average concentrations of causative agents in ambient air
Table 4.3: Summary of the IAQ parameters at Sample A, B, C and D 144
Table 4.4: Summary of symptoms with related pollutant type 146
Table 4.5: Relationship matrix of SBS symptoms, IAQ parameters and respondent'
perception about symptom occurrence Error! Bookmark not defined
Table 4.6: Summary of IAQ at Sample E 155
Table 5.1: Concentration of causative agents inside the room (Before applying the paint) 16
Table 5.2: Maximum concentration and dispersion time of the paints 17 Table 5.2: Maximum concentration and dispersion time of the paints 10
Table 5.3: Mathematical models generated from MATLAB
Table 5.4: Mathematical models generated from MATLAB for the different locations 183
Table 5.5:.Statistical parameters of TVOCs dispersion model compared to the field
measurements
Table 6.1: Ventilation conditions and their descriptions
Table 6.2: Concentration of causative agents inside the room (Before applying the paint) 199
Table 6.3: Detailed calculation of the air exchange rate into the test chamber
Table 6.4: Goodness of fit parameters for MATLAB equations
Table 6.5: TVOCs dispersion time with ventilation condition 205
Table 6.6: Mathematical equations obtained from MATLAB for TVOCs dispersion time 207

Table 6.7: I	Details of "Mesh" with advanced size function property values	210
Table 6.8: I	Details of Assembly Meshing	210
Table 6.9: I	Inflation Properties	211
Table 6.10:	Details of "Discrete Phase Model"	214
Table 6.11:	Details of "Discrete Phase Model"- Continue	214
Table 6.12:	Mass fractions of non-reacting multispecies	215
Table 6.13:	Details of "Reference Values"	216
Table 6.14:	Details of "Initial Values" for flow field	217
Table 6.15:	Comparison of Computational Model with Experimental Data using the Maxim	um
	Concentration of TVOCs	225
Table 6.16:	Comparison of Computational Model with Experimental Data using the T	ime
	taken for the TVOCs Dispersion	225
Table A0:	Dimensions and the details of the openings (All the dimensions are in meters)	258
Table A1:	Base case average values for the comparison of experimental results	259
Table A2:	Densities of water-based and solvent-based paint mixtures	260
Table A3:	Emitted VOCs from water-based and solvent-based paints	260
Table A4:	Emitted VOCs from the water-based and solvent-based paint mixtures	and
	Turpentine	261
Table A5:	Details of the wet film thickness calculation	265
Table C1:	Summary of the IAQ guidelines for selected pollutants	285

LIST OF ABBREVIATIONS

ACGIH	American Congress of Governmental Industrial Hygienists
ACH	Air Changes per Hour
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
С	Computer
CDF	Cumulative Distribution Function
CF	Carpeted Floor
CFD	Computational Fluid Dynamics
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
dCO ₂	Difference between indoor and outdoor CO2 concentrations
DDT	Dichlorodiphenyltrichloroethane
DEHP	Bis (2-ethylhexyl) Phthalate
DPM	Discrete Phase Model
EDCs	Endocrine Disruptive Chemicals
EEA	European Environmental Agency
ETS	Environmental Tobacco Smoke
FIDOL	Frequency, Intensity, Duration, Offensiveness and Location
GC	Gas Chromatography
GHO	Global Health Observatory
GINA	Global Initiative for Asthma
H_2S	Hydrogen Sulfide
НСНО	Formaldehyde
HVAC	Heating, Ventilation, and Air Conditioning
IAP	Indoor Air Pollution
IAQ	Indoor Air Quality
IEQ	Indoor Environmental Quality
IPV	Indoor Permissible Value
IVC	Inadequate Ventilation Condition
MDF	Medium Density Fiberboard
MVSC	Motor Vehicle Service Centre
NCAR	National Center for Atmospheric Research
NIOSH	National Institute for Occupational Safety and Health
NO	Nitric oxide

NO ₂	Nitrogen Dioxide
NPA	Newly Painted Area
OC	Organic Carbons
OSHA	Occupational Safety and Health Administration
Р	Probability
PAHs	Polyaromatic Hydrocarbons
PB	Particle board
PBDEs	Polybrominated Diphenyl Ethers
PCBs	Polychlorinated Biphenyls
\mathbf{PM}_{10}	Particulate matter that have a diameter of less than 10 micrometers
PM _{2.5}	Particulate matter that have a diameter of less than 2.5 micrometers
\mathbf{PM}_5	Particulate matter that have a diameter of less than 5 micrometers
PMs	Particulate matters
PP	Photocopiers and Printers
PVC	Polyvinyl Chloride
QS	Questionnaire Survey
R ²	Coefficient of determination
RH	Relative Humidity
RI	Retention Index
RMSE	Root Mean Square Error
Rn	Radon
SBM	Synthetic Building Materials
SBS	Sick Building Syndrome
SO ₂	Sulfur dioxide
SSE	Sum of square Error
ТВ	Tuberculosis
ТГ	Tiled Floor
TI	Toxicity Index
TVOCs	Total Volatile Organic Compounds
UDF	User Defined Function
USEPA	United State Environmental Protection Agency
USEPA IRIS	United State Environmental Protection Agency -Integrated Risk Information
	System
VOCs	Volatile Organic Compounds
WHO	World Health Organization