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ABSTRACT 

With the increase in terrorism worldwide, blast loading has received considerable 

attention. Blasts due to bomb explosions have become a new threat to buildings 

designed for normal static loads in Sri Lanka. Earthquakes are generally considered to 

be among the worst natural disasters on Earth. Reinforced concrete structures built in 

zones of low seismicity such as Sri Lanka, have not had seismic effect taken into 

consideration in the design. The seismic performance evaluation and upgrading for 

non-seismic designed building structures is the most urgent issue for seismic hazard 

mitigation. As such it is prudent to undertake detailed studies to better understand the 

behaviour of typical high-rise buildings in Sri Lanka under these two extreme events. 

Computer simulation has become an efficient tool in the analysis of structures under 

extreme loads. This study explores three-dimensional nonlinear dynamic analyses of a 

typical high-rise building in Sri Lanka under blast or earthquake loadings, with and 

without setbacks. A setback is a common geometric irregularity consisting of abrupt 

reduction of floor size in multistorey buildings above certain elevations. Setbacks 

usually arise from urban design demands for illumination and aesthetic requirements. 

These 20 storey reinforced concrete buildings have been designed for normal (dead, 

live and wind) loads. The influence of the setbacks on the lateral load response due to 

blasts and earthquakes in terms of peak deflections, accelerations and bending 

moments at critical locations (including hinge formation) is investigated. Structural 

response predictions were performed with the finite element analysis program 

SAP2000, using non-linear direct integration time history analyses. 

Results obtained for buildings with different setbacks are compared and conclusions 

drawn. From the comparisons it is revealed that buildings having symmetrical 

setbacks that protect the tower part above the setback level from blast loading show 

considerably better response in terms of peak displacement and inter-storey drift, 

when compared to buildings without setbacks, while the detrimental effects of 

symmetric setbacks for seismic response are not that significant. Further it is revealed 

that there needs to be a balance between the stiffness and mass of the building to get 

the optimum response under seismic loading. From the analyses it is revealed that 
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these twenty storey tall buildings with shear walls and frames that are designed for 

just normal loads perform reasonably well, without catastrophic collapse, when 

subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m, 

and also when subjected to a seismic excitation having a PGA of O.lg. The study 

helps to understand the relative performance of buildings with different setbacks, 

designed for normal static loads subjected to blast and earthquake loadings. 
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