TIME OPTIMIZED SMOOTH TRAJECTORY GENERATION FOR 2DOF AND 3DOF REDUNDANTLY ACTUATED CABLE SUSPENDED PARALLEL ROBOTS

Mudduwa Bathubaralage Lahiru Chaaminda Boralugoda

138533D

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa
Sri Lanka

October 2019

TIME OPTIMIZED SMOOTH TRAJECTORY GENERATION FOR 2DOF AND 3DOF REDUNDANTLY ACTUATED CABLE SUSPENDED PARALLEL ROBOTS

Mudduwa Bathubaralage Lahiru Chaaminda Boralugoda

138533D

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa
Sri Lanka

October 2019

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, in electronic or other medium. I retain the right to use this content in whole or in part in future works (such as articles or books).

Signature :
Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor: Prof. Rohan Munasinghe

Signature of the supervisor:
Date:

Abstract

Cable Suspended Parallel Robots (CSPR) are a type of cable driven parallel manipulators (CDPR) that has recently become popular for large workspace operations. They possess many advantages over common parallel robot architectures. They also possess the disadvantage of limited dynamics in motion due to the inability to exert compression and the constant limited downward force, gravity. Further, the redundancy in actuation in planar and spatial robots of certain footprints makes it challenging to determine the cable tensions and suitable dynamics for trajectories.

This thesis introduces an analytical model to circumvent the cable tension determination problem using a concept termed as 'Feasible Acceleration Diagram'. It then designs a novel methodology to generate time optimized point to point straight line trajectories with smooth dynamics for redundantly actuated 2DOF and 3DOF point-mass cable suspended parallel robots while ensuring positive cable tensions. The procedure of determination of kinematics for the trajectory is explained in detail with a test case for the 3DOF 4 cable scenario. Finally, the results obtained are verified by a simulation followed by a numerical method.

Acknowledgements

With immense gratitude I would like to acknowledge the support of the research supervisor Prof. Rohan Munasinghe, and course coordinator Dr. Chamira Edussooriya to make this research a success. I would also like to thank the academic staff of the Electronic and Telecommunication department for the guidance given throughout the academic period.

Finally, I want to thank my beloved wife for the encouragement and the support.

Table of Contents

Declaration ii
Abstract iii
Acknowledgements iv
Table of Contents v
List of Figures vi
List of Tables vii
List of Abbreviations vii

1. Introduction 1
1.1 Literature review 2
1.2 Existing system and problem statement 3
1.3 Objective 5
2. Feasible Accelerations Diagram (FAD) 6
2.1 Feasible acceleration diagram for 2 DOF (planar), 2-Cable configuration 6
2.2 Feasible accelerations diagram for 2DOF (planar), 3-Cable configuration 8
2.3 Feasible acceleration diagram for 3-DOF (spatial), 3-Cable configuration 10
2.4 Feasible acceleration diagram for 3-DOF (spatial), 4-Cable configuration 12
3. Formation of a Model for Point to Point Straight Line Trajectory with SmoothDynamics15
3.1 Basic requirements 15
3.2 Formation of kinematics 15
3.3 Formation of time optimization strategy 19
3.4 Application of S-Model in FAD and obtaining results 23
3.4.1 Application of S-Model in 3-DOF (spatial), 4-Cable configuration 23
3.4.2 Application of S-Model in 2-DOF (Planar), 3-Cable configuration 24
4. Experimental Setup 26
4.1. Application of the theory developed and obtaining the parameters of the trajectory 26
4.2 Simulation of results 29
4.2.1 Displacement vs. Time 30
4.2.2 Acceleration vs. Time 31
4.2.3 Verification of feasibility of acceleration 31
4.2.4 Magnitudes of tension couples 34
4.2.5 Verification of optimum duration 37
5. Conclusion 40
Reference List 41
Appendix A: Deduction Of Inequalities For Feasible Trajectories 43
Appendix B: Proof Supporting The Determination Of Q Points 46
Appendix C: Calculation Of ‘Tension Couples’ 48
List of Figures
Figure 1.1: Dual Base CDPR 01
Figure 1.2: Cable Suspended Parallel Robot: 3-DoF: 4Cable Configuration 02
Figure 2.1: 2DoF (Planar), 2Cable configuration 06
Figure 2.2: 2DOF, 2Cable Feasible Acceleration Diagram 06
Figure 2.3: 2DOF, 3-Cable Configuration 09
Figure 2.4: 2DOF, 3 Cable Feasible Acceleration Diagram 09
Figure 2.5: 3DOF (Spatial), 3-Cable configuration 10
Figure 2.6: 3DOF, 3-Cable Feasible Acceleration Diagram 10
Figure 2.7: 3DOF (Spatial), 3Cable configuration 12
Figure 2.8: 3DOF, 4Cable Feasible Acceleration Diagram 12
Figure 3.1: Behavior modelled for $\ddot{s}(t)$ 16
Figure 3.2: Behavior of $\ddot{s}(t), \dot{s}(t)$ and $s(t)$ 18
Figure 3.3: Illustration of P-points 19
Figure 3.4: Illustration of Q-points 21
Figure 4.1: plot of inequalities (22) to (27) in $\ddot{s}(t)$ vs. $s(t)$ 27
Figure 4.2: Profile of the displacement of EE 30
Figure 4.3: Profile of the acceleration of EE 32
Figure 4.4: Verification of Inequalities 32
Figure 4.5: Magnitudes of Tension Couples 35
Figure A.1: General configuration of any two cables in a 3DoF case 44
Figure A.2: Portion of FAD corresponding to cable directions in figure 20 44
Figure B.1: Illustration of $\mathrm{Q}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{j}}$ and Q_{k} points 46
Figure C.1: Illustration of Tension couples 48

List of Tables

Table 3.1: $\ddot{s}(t)$ Values 16
Table 3.2: Behavior of $\ddot{s}(t), \dot{s}(t)$, ands $(t) \quad 17$
Table 3.3:Values of $\ddot{s}(t), \dot{s}(t)$ and $s(t)$ at changing points of acceleration gradient 17
Table 3.4: Values of t and $s(t)$ at changing points of acceleration gradient 19
Table 3.5: Q-points 20
Table 4.1: P_{1} and T_{1} values of Test Case 29
Table 4.2: Behavior of $\ddot{s}(t)$ in Test Case 29
Table 4.3:Numerical Results of Verification of Time duration 38

List of Abbreviations

CSPR	$:$	Cable Suspended parallel Robot
CDPR	$:$	Cable Driven Parallel Robot
DBCDPR	$:$	Dual Base Cable Driven Parallel Robot
DOF	$:$	Degrees of Freedom
EE	$:$	End Effector
FAD	$:$	Feasible Acceleration Diagram

