SHEAR CAPACITY OF COMPOSITE DECK SLABS WITH CONCRETE FILLED STEEL TUBES

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Philosophy

> Electronic Theses & Dissertations www.lib.mrt.ac.lk

S.V.T.J. Perera

Supervised by

Dr. (Mrs) M.T.P. Hettiarachchi Dr. (Mrs) Manoja Weerasinghe

Department of Civil Engineering University of Moratuwa Sri Lanka

January 2008

ACKNOWLEDGMENTS

The author would like to thank Dr. (Mrs.) M.T.P. Hettiarachchi for her support, encouragement, and patience. He would also like to thank Dr. (Mrs.) Manoja Weerasinghe for giving this opportunity and guidance. Special thanks go to Prof. Priyan Dias, Dr. Ashoka Peiris, and Prof. S.A.S. Kulathilaka for serving on his progress committee. Thanks also to all faculty members in the Structures Division and Department of Civil Engineering for sharing their many years of wisdom and providing the best education possible. They have all been an inspiration.

The experimental work and test specimen preparation would not have been possible without the help from Mr. S.P. Madanayake and Mr. S. L. Kapuruge. Thanks also to the lab assistants who all worked as a team and helping in the lab. Thanks to Mr. H. N. Fenando, Mr. Linus Perera and Mr. J. M. Gunasekara for helping with many of the pushout tests.

This research has required a great amount of financial support. Thank you to the National Science Foundation Sri Lanka and Department of Civil Engineering for granting the studentship that made studying and researching possible. Thank you to the National Science Foundation Sri Lanka for sponsoring this research.

Abstract

Steel and concrete composite systems are generally used as major structural components in multi-storey buildings. Composite construction in buildings is more popular with profiled steel sheeting (steel decking) since it serves as a working platform to support the construction loads and also as permanent formwork for concrete. To achieve large column free spans (in the range of 8m-12m), as often demanded for multi-storey office buildings, "steel and concrete composite floor trusses" may form economical solutions since they provide the facility to accommodate various service ducts within the structural zone. The concept of introducing a concrete filled steel tube (CFST), instead of the conventional open flanged steel section, as the top chord of these floor trusses has been discussed. However, the viability of this new concept should be ensured by experimental evidence on the longitudinal shear transfer capacity at the composite stage.

This study discusses the experimental results of a series of push-off tests conducted on CFST embedded composite slab panels. The effect of providing different concrete top covers and effect of different concrete strengths have been investigated. With headed shear studs (two studs per sample, Configuration 3) 23%- 29% and 20%- 53% of increase in shear carrying capacity were achieved by increasing the concrete top cover from 20mm to 30mm and the concrete cube strength from grade 20 to grade 45 respectively. Composite slabs with CFSTs were 131% (only steel tube, Configuration 1) - 385% (steel tube with welded two steel strips, Configuration 2) higher than composite slabs with headed shear studs (two studs per sample). Then results of composite slabs with headed shear studs were compared with Eurocode-4 and it was at least 22% conservative.

Keywords: composite slab, steel, concrete, concrete filled steel tubes, steel decking

LIST OF CONTENTS	PAGE NO.
ACKNOWLEDGEMENT	i
Abstract.	ii
1. INTRODUCTION	
1.1 Background	01
1.2 Longitudinal Shear Failure	06
1.3 Push Out Test	07
1.4 Project Objectives	07
1.5 Methodology and Scope of Research es & Dissertations	07
1.6 Outline of Report	08
2. LITERATURE REVIEW	
2.1 General	09

2.2 Concrete Filled Steel Tubes	09
2.2.1 Concrete-Filled Steel Tube as Composite Members	09
2.2.2 Confining Effect on Concrete	09
2.2.3 Interaction between the Concrete Core and the Steel Tube	10
2.2.4 Mechanical Behavior of Concrete-Filled Steel Tubes	11

iii

2.2.4.1 Axially loaded CFST Columns	11
2.2.4.2 Pure Bending (CFST Beams)	11
2.2.4.3 Combined Axially Load and Bending (CFST Beam-Columns) 2.2.4.4 Shear in CFSTs	12 12
2.2.4.5 Torsion in CFSTs	13
2.3 Behaviour of Shear Strength of Composite Slabs and Development	
of Shear Strength Prediction Equations	13
2.4 Behavior of Shear Connector	21

3. EXPERIMENTAL INVESTIGATION

3.1 General	23
3.2 Test Specimen Configurations and Preparation Scrittations www.lib.mrt.ac.lk	23
3.2.1 Configuration - 01	23
3.2.2 Configuration - 02	24
3.2.3 Configuration - 03	24
3.3 Materials	26
3.3.1 Steel	26
3.3.2 Concrete	27
3.3.3 Welding of the Shear Connectors	27
3.4 Testing and Instrumentation	27

3.4.1 Testing Procedure	27
3.4.2 Instrumentation	28
3.4.2.1 Dial Gauges	28
4. EVALUATION OF EXPERIMENTAL TEST RESULTS	
4.1 General	29
4.2 Experimental Push-Out Test Results and Connection Behavior	29
4.2.1 Experimental Push-Out Test Results	29
4.2.2 Behavior of Shear Connector Moratuwa, Sri Lanka.	31
4.3 Effect of Concrete Strength on Shear Connectors	31
4.4 Effect of Concrete Top Cover on Shear Connectors	34
4.5 Effect of Concrete Failure Surface Area on Shear Connectors	36
4.6 Effect of Position of Shear Stud, and Status of Steel Tube on Shear Capacity in Configuration 3	י 39
4.7 Shear Failure Pattern with each Configuration	41
5. ANALYSIS AND DISCUSSION	
5.1 General	48
5.2 Prediction Method for Configurations 1, 2 and 3	48

V

5.3.1 The Effect of Concrete Cube Strength and Concrete Top Cover on Shear Carrying Capacity 44 5.3.2 Analysis for Configurations 1 45 5.3.3 Analysis for Configurations 2 5 5.3.4 Analysis for Configurations 3 55 5.3.4 Analysis for Configurations 3 55 5.4 Comparison of different prediction method related to Configurations 3 56 6. CONCLUSIONS 57 6. CONCLUSIONS 57 8. Electronic Theses & Dissertations 66 BIBLIOGRAPHY 67 APPENDIX 67 A.1 Area of Concrete Push-Out Failure Surface 67 A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992) 64 A.3 Sieve Analysis of Fine Aggregate 63 A.4 Physical Properties of Fine Aggregate 64 A.5 Sieve Analysis Report of Coarse aggregates 64 A.6 Mechanical Properties of Coarse Aggregates 64	5.3 Analysis for Configurations 1 and 2	48
5.3.2 Analysis for Configurations 1 49 5.3.3 Analysis for Configurations 2 5 5.3.4 Analysis for Configurations 3 53 5.4 Comparison of different prediction method related to Configurations 3 53 6. CONCLUSIONS 53 6. CONCLUSIONS 53 7.4 Comparison of different prediction method related to Configurations 3 50 6. CONCLUSIONS 53 8. Electronic Theses & Dissertations 60 BIBLIOGRAPHY 63 APPENDIX 64 A.1 Area of Concrete Push-Out Failure Surface 64 A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992) 64 A.3 Sieve Analysis of Fine Aggregate 63 A.4 Physical Properties of Fine Aggregate 64 A.5 Sieve Analysis Report of Coarse aggregates 64 A.6 Mechanical Properties of Coarse Aggregates 64	5.3.1 The Effect of Concrete Cube Strength and Concrete Top Cover on Shear Carrying Capacity	49
5.3.3 Analysis for Configurations 2 5 5.3.4 Analysis for Configurations 3 5 5.4 Comparison of different prediction method related to Configurations 3 50 6. CONCLUSIONS 53 White State Stat	5.3.2 Analysis for Configurations 1	49
5.3.4 Analysis for Configurations 3 53 5.4 Comparison of different prediction method related to Configurations 3 56 6. CONCLUSIONS 56 6. CONCLUSIONS 57 8. Electronic Theses & Dissertations 60 BIBLIOGRAPHY 62 APPENDIX 62 A.1 Area of Concrete Push-Out Failure Surface 62 A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992) 64 A.3 Sieve Analysis of Fine Aggregate 62 A.4 Physical Properties of Fine Aggregate 64 A.5 Sieve Analysis Report of Coarse aggregates 64 A.6 Mechanical Properties of Coarse Aggregates 64	5.3.3 Analysis for Configurations 2	51
5.4 Comparison of different prediction method related to Configurations 3 50 6. CONCLUSIONS 51 University of Moratuwa, Sri Lanka. 51 REFERENCES Electronic Theses & Dissertations BIBLIOGRAPHY 62 APPENDIX 63 A.1 Area of Concrete Push-Out Failure Surface 63 A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992) 64 A.3 Sieve Analysis of Fine Aggregate 63 A.4 Physical Properties of Fine Aggregate 64 A.5 Sieve Analysis Report of Coarse aggregates 64 A.6 Mechanical Properties of Coarse Aggregates 64	5.3.4 Analysis for Configurations 3	53
6. CONCLUSIONS 5: REFERENCES University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations REFERENCES Www.lib.mrt.ac.lk BIBLIOGRAPHY 6: APPENDIX A.1 Area of Concrete Push-Out Failure Surface 6: A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992) 6: A.3 Sieve Analysis of Fine Aggregate 6: A.4 Physical Properties of Fine Aggregate 6: A.5 Sieve Analysis Report of Coarse aggregates 6: A.6 Mechanical Properties of Coarse Aggregates 6:	5.4 Comparison of different prediction method related to Configurations 3	56
REFERENCESElectronic Theses & Dissertations60BIBLIOGRAPHY62APPENDIXA.1 Area of Concrete Push-Out Failure Surface62A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)64A.3 Sieve Analysis of Fine Aggregate62A.4 Physical Properties of Fine Aggregate64A.5 Sieve Analysis Report of Coarse aggregates64A.6 Mechanical Properties of Coarse Aggregates64	6. CONCLUSIONS University of Moratuwa, Sri Lanka,	58
BIBLIOGRAPHY63APPENDIXA.1 Area of Concrete Push-Out Failure Surface63A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)64A.3 Sieve Analysis of Fine Aggregate63A.4 Physical Properties of Fine Aggregate66A.5 Sieve Analysis Report of Coarse aggregates66A.6 Mechanical Properties of Coarse Aggregates67	REFERENCES Electronic Theses & Dissertations www.lib.mrt.ac.lk	60
APPENDIXA.1 Area of Concrete Push-Out Failure Surface64A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)64A.3 Sieve Analysis of Fine Aggregate64A.4 Physical Properties of Fine Aggregate64A.5 Sieve Analysis Report of Coarse aggregates64A.6 Mechanical Properties of Coarse Aggregates64	BIBLIOGRAPHY	62
A.1 Area of Concrete Push-Out Failure Surface63A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)64A.3 Sieve Analysis of Fine Aggregate63A.4 Physical Properties of Fine Aggregate66A.5 Sieve Analysis Report of Coarse aggregates66A.6 Mechanical Properties of Coarse Aggregates67	APPENDIX	
A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)64A.3 Sieve Analysis of Fine Aggregate65A.4 Physical Properties of Fine Aggregate66A.5 Sieve Analysis Report of Coarse aggregates66A.6 Mechanical Properties of Coarse Aggregates67	A.1 Area of Concrete Push-Out Failure Surface	63
A.3 Sieve Analysis of Fine Aggregate64A.4 Physical Properties of Fine Aggregate66A.5 Sieve Analysis Report of Coarse aggregates66A.6 Mechanical Properties of Coarse Aggregates67	A.2 Stud Shear Connector Resistance (according to ENV 1994-1-1:1992)	64
A.4 Physical Properties of Fine Aggregate60A.5 Sieve Analysis Report of Coarse aggregates60A.6 Mechanical Properties of Coarse Aggregates67	A.3 Sieve Analysis of Fine Aggregate	65
A.5 Sieve Analysis Report of Coarse aggregates60A.6 Mechanical Properties of Coarse Aggregates67	A.4 Physical Properties of Fine Aggregate	66
A.6 Mechanical Properties of Coarse Aggregates 67	A.5 Sieve Analysis Report of Coarse aggregates	66
	A.6 Mechanical Properties of Coarse Aggregates	67

A.7 Concrete Mix Proportions and Cube Compressive Strength Test Results 67

A.8 Moisture Content of Sand and Aggregates for Typical Sample (C30-20-3-ssp)	68
A.9 Push- Out Test Results	69

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk LIST OF TABLES

4. EVALUATION OF EXPERIMENTAL TEST RESULTS	
TABLE 4.1 Configuration 1 Test Results	30
TABLE 4.2 Configuration 2 Test Results	31
TABLE 4.3 Configuration 3 Test Results	31
TABLE 4.4 Effect of Concrete Failure Surface Area	38
TABLE 4.5 Effect of Concrete Failure Surface Area on Shear Capacity	38
TABLE 4.6 Effect of Stud Position on Shear Capacity for ConcreteTop Cover 25mm	40
TABLE 4.7 Effect of Steel Tube on Shear Capacity for Concrete Top Cover 25mr	n
and Stud Weak Position	40
5. ANALYSIS AND DISCUSSION	
TABLE 5.1 Test Results for Configuration 1	51
TABLE 5.2 Test Results for Configuration 2	53
TABLE 5.3 Test Results for Configuration 3	55
TABLE 5.4 Failure load comparison	57
APPENDIX	
TABLE A.9.1 Configuration-1 Summary	69
TABLE A.9.2 Configuration-2 Summary	70
TABLE A.9.3 Configuration-3 Summary	71

Concrete Steel Displacement Results	
TABLE A.9.4 Sample 2 (C30-20-1-iii)	72
TABLE A.9.5 Test Panel Concrete Cube Strength (C30-20-1-iii)	73
TABLE A.9.6 CFST Concrete Cube Strength (C30-20-1-iii)	73
TABLE A.9.7 Sample 3 (C30-20-1-i)	74
TABLE A.9.8 Test Panel Concrete Cube Strength (C30-20-1-i)	75
TABLE A.9.9 CFST Concrete Cube Strength (C30-20-1-i)	76
TABLE A.9.10 Sample 4 (C30-20-1-ii)	76
TABLE A 9.12 CEST Concrete Cube Strength (C30-20-1-ii)	79 79
TABLE A.0.12 CONTROL 5 (C_{20} 25.1 \cdots)	80
TABLE A.9.13 Sample 3 (C30-23-1-III) TABLE A.9.14 Test Panel Concrete Cube Strength (C30-25-1-iii)	80
TABLE A.9.15 CFST Concrete Cube Strength (C30-25-1-iii)	83
TABLE A.9.16 Sample 6 (C30-25-1-ii)	84
TABLE A.9.17 Test Panel Concrete Cube Strength (C30-25-1-ii)	87
TABLE A.9.18 CFST Concrete Cube Strength (C30-25-1-ii)	87
TABLE A.9.19 Sample 7 (C30-25-1-i)	88
TABLE A.9.20 Test Panel Concrete Cube Strength (C30-25-1-i)	91

TABLE A.9.21 CFST Concrete Cube Strength (C30-25-1-i)	91
TABLE A.9.22 Sample 8 (C45-25-1-iii)	92
TABLE A.9.23 Test Panel Concrete Cube Strength (C45-25-1-iii)	95
TABLE A.9.24 CFST Concrete Cube Strength (C45-25-1-iii)	95
TABLE A.9.25 Sample 9 (C45-25-1-i)	96
TABLE A.9.26 Test Panel Concrete Cube Strength (C45-25-1-i)	100
TABLE A.9.27 CFST Concrete Cube Strength (C45-25-1-i)	100
TABLE A.9.28 Sample 10 (C45-25-1-ii)	101
TABLE A.9.29 Test Panel Concrete Cube Strength (C45-25-1-ii)	105
Electronic Theses & Dissertations TABLE A.9.30 CFST Concrete Cube Strength (C45-25-1-ii)	105
TABLE A.9.31 Sample 11 (C20-25-1-ii)	106
TABLE A.9.32 Test Panel Concrete Cube Strength (C20-25-1-ii)	109
TABLE A.9.33 CFST Concrete Cube Strength (C20-25-1-ii)	109
TABLE A.9.34 Sample 12 (C20-25-1-iii)	110
TABLE A.9.35 Test Panel Concrete Cube Strength (C20-25-1-iii)	113
TABLE A.9.36 CFST Concrete Cube Strength (C20-25-1-iii)	113
TABLE A.9.37 Sample 13 (C20-25-1-i)	114
TABLE A.9.38 Test Panel Concrete Cube Strength (C20-25-1-i)	116
TABLE A.9.39 CFST Concrete Cube Strength (C20-25-1-i)	116

TABLE A.9.40 Sample 14 (C30-30-1-iii)	117
TABLE A.9.41 Test Panel Concrete Cube Strength (C30-30-1-iii)	120
TABLE A.9.42 CFST Concrete Cube Strength (C30-30-1-iii)	120
TABLE A.9.43 Sample 15 (C30-30-1-ii)	121
TABLE A.9.44 Test Panel Concrete Cube Strength (C30-30-1-ii)	123
TABLE A.9.45 CFST Concrete Cube Strength (C30-30-1-ii)	123
TABLE A.9.46 Sample 16 (C30-30-1-i)	125
TABLE A.9.47 Test Panel Concrete Cube Strength (C30-30-1-i)	128
TABLE A.9.48 CFST Concrete Cube Strength (C30-30-1-i) Electronic Theses & Dissertations	128
TABLE A.9.49 Sample 17 (C30-30-2-i)	129
TABLE A.9.50 Test Panel Concrete Cube Strength (C30-30-2-i)	132
TABLE A.9.51 CFST Concrete Cube Strength (C30-30-2-i)	132
TABLE A.9.52 Sample 18 (C30-30-2-ii)	133
TABLE A.9.53 Test Panel Concrete Cube Strength (C30-30-2-ii)	136
TABLE A.9.54 CFST Concrete Cube Strength (C30-30-2-ii)	136
TABLE A.9.55 Sample 19 (C30-30-2-iii)	137
TABLE A.9.56 Test Panel Concrete Cube Strength (C30-30-2-iii)	140
TABLE A.9.57 CFST Concrete Cube Strength (C30-30-2-iii)	140

TABLE A.9.58 Sample 20 (C30-20-2-i)	141
TABLE A.9.59 Test Panel Concrete Cube Strength (C30-20-2-i)	144
TABLE A.9.60 CFST Concrete Cube Strength (C30-20-2-i)	144
TABLE A.9.61 Sample 21 (C30-20-2-ii)	145
TABLE A.9.62 Test Panel Concrete Cube Strength (C30-20-2-ii)	148
TABLE A.9.63 CFST Concrete Cube Strength (C30-20-2-ii)	148
TABLE A.9.64 Sample 31 (C30-20-2-iii)	149
TABLE A.9.65 Test Panel Concrete Cube Strength (C30-20-2-iii)	152
TABLE A.9.66 Sample 22 (C30-25-2-i)	153
Electronic Theses & Dissertations TABLE A.9.67 Test Panel Concrete Cube Strength (C30-25-2-i)	156
TABLE A.9.68 Sample 26 (C30-25-2-ii)	157
TABLE A.9.69 Test Panel Concrete Cube Strength (C30-25-2-ii)	160
TABLE A.9.70 CFST Concrete Cube Strength (C30-25-2-ii)	160
TABLE A.9.71 Sample 30 (C30-25-2-iii)	161
TABLE A.9.72 Test Panel Concrete Cube Strength (C30-25-2-iii)	164
TABLE A.9.73 Sample 23 (C45-25-2-i)	165
TABLE A.9.74 Test Panel Concrete Cube Strength (C45-25-2-i)	168
TABLE A.9.75 Sample 24 (C45-25-2-ii)	169
TABLE A.9.76 Test Panel Concrete Cube Strength (C45-25-2-ii)	172

TABLE A.9.77 Sample 25 (C45-25-2-iii)	173
TABLE A.9.78 Test Panel Concrete Cube Strength (C45-25-2-iii)	176
TABLE A.9.79 Sample 27 (C20-25-2-i)	177
TABLE A.9.80 Test Panel Concrete Cube Strength (C20-25-2-i)	180
TABLE A.9.81 Sample 28 (C20-25-2-ii)	181
TABLE A.9.82 Test Panel Concrete Cube Strength (C20-25-2-ii)	184
TABLE A.9.83 CFST Concrete Cube Strength (C20-25-2-ii)	184
TABLE A.9.84 Sample 29 (C20-25-2-iii)	184
TABLE A.9.85 Test Panel Concrete Cube Strength (C20-25-2-iii) Image: Strength (C20-25-2-iii)	188
TABLE A.9.86 CFST Concrete Cube Strength (C20-25-2-iii)	188
TABLE A.9.87 Sample 32 (C30-20-3-ssp)	189
TABLE A.9.88 Test Panel Concrete Cube Strength (C30-20-3-ssp)	191
TABLE A.9.89 Sample 33 (C30-20-3-w)	192
TABLE A.9.90 Test Panel Concrete Cube Strength (C30-20-3-w)	194
TABLE A.9.91 Sample 34 (C30-20-3-CFST-w)	195
TABLE A.9.92 Test Panel Concrete Cube Strength (C30-20-3-CFST-w)	197
TABLE A.9.93 Sample 35 (C30-30-3-ssp)	198
TABLE A.9.94 Test Panel Concrete Cube Strength (C30-30-3-ssp)	200
TABLE A.9.95 Sample 36 (C30-30-3-CFST-w)	201

TABLE A.9.96 Test Panel Concrete Cube Strength (C30-30-3-CFST-w)	203
TABLE A.9.97 Sample 37 (C30-30-3-w)	204
TABLE A.9.98 Test Panel Concrete Cube Strength (C30-30-3-w)	206
TABLE A.9.99 Sample 38 (C30-25-3-ssp)	207
TABLE A.9.100 Test Panel Concrete Cube Strength (C30-25-3-ssp)	209
TABLE A.9.101 Sample 39 (C30-25-3-CFST-w)	210
TABLE A.9.102 Test Panel Concrete Cube Strength (C30-25-3-CFST-w)	212
TABLE A.9.103 Sample 40 (C30-25-3-w)	213
TABLE A.9.104 Test Panel Concrete Cube Strength (C30-25-3-CFST-w)	215
TABLE A.9.105 Sample 41 (C45-25-3-ssp)	216
TABLE A.9.106 Test Panel Concrete Cube Strength (C45-25-3-ssp)	218
TABLE A.9.107 Sample 42 (C45-25-3-CFST-w)	219
TABLE A.9.108 Test Panel Concrete Cube Strength (C45-25-3-CFST-w)	221
TABLE A.9.109 Sample 43 (C45-25-3-w)	222
TABLE A.9.110 Test Panel Concrete Cube Strength (C45-25-3-w)	224
TABLE A.9.111 Sample 44 (C20-25-3-w)	225
TABLE A.9.112 Test Panel Concrete Cube Strength (C20-25-3-w)	227
TABLE A.9.113 Sample 45 (C20-25-3-CFST-w)	228
TABLE A.9.114 Test Panel Concrete Cube Strength (C20-25-3-CFST-w)	230

TABLE A.9.115 Sample 46 (C20-25-3-ssp)	231
TABLE A.9.116 Test Panel Concrete Cube Strength (C20-25-3-ssp)	233

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1. INTRODUCTION

FIG.1.1 Composite Beams Using Shear Stud Connectors:(a) Non-Composite Solid Slab (b) Composite Slab Using Steel Deck	04
FIG.1.2 Typical Details of Push-Out Specimen	05
FIG. 1.3 Typical Push-Out Test of a Composite Slab with Steel Deck	06
FIG. 1.4 (a) Strong Position Stud in a Composite Beam, (b) Weak Position Stud in	a
Composite Beam	07

2. LITERATURE REVIEW

University of Moratuwa, Sri Lanka	
FIG.2.1 "Useful Stud Capacity," Que, as determined by Chinn (1965)	15
Electronic Theses & Dissertations	
www.lib.mrt.ac.lk	
FIG.2.2 Standard Connection Behavior	23

3. METHODOLOGY

FIG.3.1 Different Configurations of Deck-Slab Specimens to be Tested.	26
FIG. 3.2 Test Arrangement	27
4. EVALUATION OF EXPERIMENTAL TEST RESULTS	
FIG.4.1 Experimental Connection Behavior	32
FIG.4.2 Effect of Concrete Strength on Failure Load on Configuration-1 (for concrete top cover 25mm)	33
FIG 4.3 Effect of Concrete Strength on Failure Load on Configuration-2 (for concrete top cover 25mm)	34

xvi

FIG.4.4 Effect of Concrete Strength on Failure Load on Configuration-3 (for concrete top cover 25mm)	34
FIG. 4.5 Effect of Concrete Strength on Failure Load on Different Configurations (for concrete top cover 25mm)	34
FIG. 4.6 Effect of Concrete Top Cover on Failure Load on Configuration-1 (for grade 30 concrete)	34
FIG.4.7 Effect of Concrete Top Cover on Failure Load on Configuration-2 (for grade 30 concrete)	35
FIG. 4.8 Effect of Concrete Top Cover on Failure Load on Configuration-3 (for grade 30 concrete)	36
FIG 4.9 Effect of Concrete Top Cover on Failure Load on Different Configurations	36
FIG.4.10 Wedge Cone Failure Surface (a) Elevation (b) Plan	37
FIG 4.11 Effect of Concrete Failure Surface Area on Failure Load on Different Configurations (a) Concrete Grade 30 (b) Concrete Cover 25mm	39
FIG 4.12 Effects of Stud Position and Steel Tube on Shear Capacity (a) For Concrete Top Cover 25mm (b) For Concrete Top Cover 25mm and Stud Weak Position	41
FIG.4.13 Configuration 1 Shear Failure Pattern	42
FIG.4.14 Configuration 1 Failure Surface	43
FIG 4.15 Configuration 2 Shear Failure Pattern	44
FIG 4.16 Configuration 2 Failure Surface	45
FIG 4.19 Wedge Cone and Pyramid Cone Failure	48

5. ANALYSIS AND DISCUSSION

FIG.5.1 Ln Q_k versus Ln [A_c $f_{cu}^{(c/100)}$], Ln Q_k = 0.685 Ln (A_c f_{cu}) – 2.9345, R² = 0.372 50

FIG.5.2	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-1(for concrete grade 30 and concrete top covers 20, 25, 30mm)	51
FIG 5.3	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-1(for concrete top cover 25mm and concrete grades 20, 30, 45)	52
FIG 5.4	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-2(for concrete grade 30 and concrete top covers 20, 25, 30mm)	53
FIG 5.5	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-2(for concrete top cover 25mm and concrete grades 20, 30, 45) Electronic Theses & Dissertations	54
FIG 5.6	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-3(for concrete grade 30 and concrete top covers 20, 25, 30mm)	55
FIG 5.7	Concrete Strength Vs Failure Load (Experimental and Predicted) on Configuration-2(for concrete top cover 25mm and concrete grades 20, 30, 45)	56
FIG 5.8	Experimental Load Vs Predicted Load	57
FIG 5.9	Experimental Load Vs Predicted Load (Eurocode 4)	58