EFFECTS OF CARBON BLACK AND GRAPHENE OXIDE ADDITIONS ON PROPERTIES OF ORDINARY PORTLAND CEMENT COMPOSITE

Abeysekara Mudiyanselage Buddhika Chandima

(159478M)

Degree of Master of Science

Department of Materials Science and Engineering

University of Moratuwa

Sri Lanka

June 2020

EFFECTS OF CARBON BLACK AND GRAPHENE OXIDE ADDITIONS ON PROPERTIES OF ORDINARY PORTLAND CEMENT COMPOSITE

Abeysekara Mudiyanselage Buddhika Chandima

(159478M)

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Materials Science

Department of Materials Science and Engineering

University of Moratuwa

Sri Lanka

June 2020

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books).

Signature:

Date:15.06.2020

The above candidate has carried out research for the partial fulfilment of the requirements for the degree of Master of Science in Materials Science under my supervision.

Name of the supervisor: Mr. S. P. Guluwita

Signature of the supervisor:

Date:15.06.2020

Acknowledgement

I take this chance to forward my greatest gratitude to University of Moratuwa, for letting me to do the postgraduate degree in Material Science in the Department of Materials Science and Engineering.

I owe my sincerely appreciation and deepest gratitude to my supervisor Mr. S.P. Guluwita, Senior lecturer of the Materials Science and Engineering, for his immense encouragement, guidance, and support given throughout the research to succeed this event.

I extended my gratitude to Dr. (Mrs.) A.S.Galhenage who is the coordinator of the Master degree program, Material Science and Mr. S. V. Udayakumara who is the research coordinator of the Master degree program, for providing me laboratory facilities in the department and I would like to thank to all academic staff members of the Department of Material Science who encouraged and guided me.

I am very grateful to Mr. M. T. M. R. Jayaweera who gave tremendous support and great exposure me to doing analysis through that period especially when using instrument such as SEM analysis. At the same I am very grateful to junior academic staff members; they help me in various ways.

I also extend my gratitude Mr. V. Shvahar department head of department of Material Science and Engineering.

Next, I like to convey my gratitude to my colleagues Ms. Madhavi Abeywickrama, Mr. Arjuna Fernando and Mr. Sampath Pattiwala who help me in crucial moments in various ways.

I convey my heartiest gratitude to my loving family, husband; Dilan Dheerarathna and my loving daughters; Vinudi and Thenudi, for their support. They did great help for me in every respect. Thank you for everyone who encouraged me for this task and who wish my progress.

Abstract

The effect of the carbon black (CB) and graphene oxide (GO) on the mechanical properties and microstructure of cement mortar composite were studied by preparing CB-cement composite (CBCC) and GO-cement composite (GOCC) mortars. These properties were investigated by treating the cement mortar with 0.01% to 0.1% of GO and 0.1% to 1.0% of CB of the cement weight. The results revealed that the highest compressive strength obtained for 0.4% of CBCC and for 0.04% of GOCC. The incorporation of CB and GO to the cement motor simultaneously increased the compressive strength of the samples drastically. The highest increase of the compressive strength was equal to 43.27% for specimens evaluated at the age of 2 days for the cement composite specimens of 0.4% CB and 0.03% of GO. The addition of 0.4% of CB increased the flexural strength of cement motor up to 53.54% and 0.03% of GO increased the flexural strength of cement motor up to 46.54% for 28 days. The addition of the combination of 0.3% CB and 0.04% GO to the cement composite enhanced the flexural strength by 60.61%. GO was found to be able to accelerate the hydration process by forming the flower-like cement hydration crystals which contribute to the enhancement of the early mechanical properties. The analysis of the microstructure relieved that the addition of CB provides the filling effect while GO could affect the growth form of cement hydration products.

Table of Content

Declaration of	the candidate & Supervisor	Ι
Acknowledgen	nent	II
Abstract		III
Table of Conte	nt	IV
List of Figures		VI
List of Tables		VIII
List of abbrevia	ations	IX
1. Introduction		1
1.1 Portland		1
1.2 Structure	of Cement	2
1.3 Portland c	ement hydration	2
1.4 Concrete		4
1.5 Cement C	omposites	5
1.6 Nanomat	erials for Construction	5
1.7 Graphene	Oxide	6
1.7.1 P	reparation of graphene oxide from graphite oxide	7
1.7.2 C	arbon Black	8
1.8 Research	gap and significance of the project	9
1.9 Objective		9
2. Literature I	Review on topic	10
3. Methodolog	gy	14
3.1 Materials		14
3.2 Method		15
3.2.1 C	ement Composite	15
3.2.2 S	tandard Consistency of cement paste	17
3.2.3 II	nitial Setting Time	18
3.2.4 C	ompressive Strength	19
3.2.5 F	lexural strength	24
3.2.6 S	caning Electron Microscopy	26
4. Results and	discussion	27
4.1 Composit	ions of the materials	27
4.1.1 C	ement characterization	27

	4.1.2	Composition of the Carbon Black	28
	4.1.3	Composition of the Graphene Oxide	28
	4.2 Mecha	anical Properties of composite	30
	4.2.1	Compressive strength	30
	4.2.2	Flexural strength	38
	4.2.3	Consistency and Initial setting time	41
	4.2.4	Analysis of Scanning Electron Microscope	42
5	5 Conclus	sions and Recommendations	50
I	Reference L	ist	502
1	Appendix A	A: Specification sheet of Carbon black	56
1	Appendix E	3: Specification sheet of Graphene oxide	57
1	Appendix C	C: Individual result of Compressive strength of CBCC	
5	579 Appen	dix D: Individual result of Compressive strength of GOCC	
e	50 Appendi	x E: Flexural strength values of CBCC	61
1	Appendix F	F: Flexural strength values of GOCC	62
1	Appendix C	G: Flexural strength values of GO + CB cement composite	63

List of Figures

Figure 1.1	Simplified illustration of solid phase development in hydrated cement			
	paste	4		
Figure 1.2	The graphical representation of graphene oxide	7		
Figure 1.3	The particle size of carbon black	8		
Figure 2.1	The images of SEM analysis (GONF-combined cement paste with	The images of SEM analysis (GONF-combined cement paste with		
	0.05% GONF at 7 days)	13		
Figure 3.1	Test prism moulds	20		
Figure 3.2	Cement motor mixer machine	21		
Figure 3.3	Jolting apparatus	22		
Figure 3.4	Curing tank	23		
Figure 3.5	500 kN Compressive Strength Testing Machine	24		
Figure 3.6	Test specimens during and after testing	25		
Figure 3.7	Schematic diagram of loading for determination of flexural strengt	h		
		25		
Figure 4.1	SEM image of Carbon Black	28		
Figure 4.2	XRD patterns of the GO	29		
Figure 4.3	SEM image of the Graphene Oxide	29		
Figure 4.4	Samples of CBCC	30		
Figure 4.5	The variation of average compressive strength of carbon black			
	reinforced cement composite	31		
Figure 4.6	Samples of GO	32		
Figure 4.7	The variation of average compressive strength of GOCC	33		
Figure 4.8	The improvement in compressive strength comparison with specim	iens		
	without GO & CB (%)	35		
Figure 4.9	Compressive strength of CB and CO cement composite with			
	Polycarboxylic admixture	37		
Figure 4.10	Flexural Strength of cement composite with CB and GO	40		
Figure 4.11	The images of SEM analysis (Control Cement motor for 07 days)	43		
Figure 4.12	The images of SEM analysis of CBCC with 0.4% CB at 07 days	44		

Page

Figure 4.13	The images of SEM analysis of GOCC with 0.04% GO at 07 days	44
Figure 4.14	The images of SEM analysis of CB 0.4% and GO 0.03% cement	
	composite at 07 days	45
Figure 4.15	The SEM images of the test specimens under different mixing amo	unt
	of carbon black.	46
Figure 4.16	The SEM images of the test specimens under different mixing amo	ount
	of Graphene Oxide.	47
Figure 4.17	The mechanism of formation of cement hydration crystals with	
	addition of GO	48

List of Tables

Table 1.1	Composition of the OPC	1
Table 1.2	The composition of cement clinker with notation	2
Table 3.1	Particle size distribution of the ISO reference sand	144
Table 3.2	Preparation of CB - Cement composite	166
Table 3.3	Preparation of GO - Cement composite	16
Table 3.4	Co-effect of the GO and CB cement composite	17
Table 3.5	Preparation of CB-GO cement composite with Hypercrete HS	
	admixture	18
Table 3.6	Temperature & Humidity Conditions	19
Table 3.7	Temperature & Humidity Conditions	20
Table 3.8	The mass and the proportion of the materials	20
Table 4.1	Cement composition	27
Table 4.2	Compressive strength of CB - Cement composite	31
Table 4.3	Compressive strength of GO - Cement composite	34
Table 4.4	Co-effect of the GO and CB cement composite	35
Table 4.5	Co-effect of Polycarboxylic based admixture for the GO	
	and CB cement composite	36
Table 4.6	Flexural strength of CB - Cement composite	38
Table 4.7	Flexural strength of GO - Cement composite	39
Table 4.8	Co-effect of the GO and CB cement composite	39
Table 4.9	IST and Normal Consistency of CBCC	42
Table 4.10	IST and Normal Consistency of GOCC	42

List of abbreviations

Abbreviation	Description	
OPC	Ordinary Portland cement	
IST	Initial Setting Time	
CBCC	CB- Cement Composite	
GOCC	GO- Cement Composite	
SEM	Scanning Electron Microscope	
C-S-H	Calcium silicate hydrate	
CBCM	Cement based composite materials	
GO	Graphene oxide	
СВ	Carbon Black	
PCE	Polycarboxylic Ether	
PC	Polycarboxylic	
W/C	water/cement	
CNTs	Carbon Nanotubes	
CNFs	Carbon Nano Flakes	
BHC	Blended Hydraulic Cement	